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RANS modeling for compressible
and transitional flows

By F. S. Lien1, G. Kalitzin AND P. A. Durbin

Recent LES suggested that the turbulence fluctuation in the wall-normal direction
v′ plays an important role in the evolution of transition. This motivates the use
of v2 − f model for turbomachinery flows, in which different types of transition
co-exist. An ‘ad hoc’ Reynolds-number-dependent term is added to Cε1 in the ε-
equation in order to reduce the level of near-wall dissipation rate. As a result, the
onset and length of transition are greatly improved for a moderate level of free-
stream turbulence intensity. However, the peak of streamwise turbulence intensity
within the transition zone is underestimated. The implication of this is that the
intermittency effect needs to be incorporated into the model – for example, based
on the ‘conditioned Navier-Stokes equation’ which splits the equation into turbulent
and nonturbulent parts – in order to capture the correct physical mechanism of tran-
sition. Another objective of this study is to resolve the issue of whether the ‘elliptic
relaxation’ model can be used for supersonic flows. The results for the RAE2822
transonic airfoil will demonstrate that a good agreement with experimental data
has been achieved. This is because the pressure-strain term (∼ f), though elliptic
in nature, acts simply as a source term in the v2-equation, which is not associated
with the convection process.

1. Introduction
Turbomachinery flows, even in simple linear cascades, pose a range of physical, ge-

ometrical, and numerical challenges. The former includes the passing-wake/boundary-
layer interaction, shock/boundary-layer interaction, rotation, tip and passage vor-
tices, impingement, separation, and transition. Because the turbulence level in com-
pressors and turbines is typically about 5 − 10% (except in the wakes, where the
turbulence level can be as high as 15−20%), three types of transition are commonly
observed in gas turbine engines. The first is called ‘bypass transition’, in which
Tollmien-Schlichting waves are completely bypassed and turbulent spots are directly
produced within the boundary layer by the influence of free-stream turbulence. The
second, termed ‘separated-flow’ transition, often occurs in the free shear layer close
to the reattachment point of a laminar separation bubble. The third, caused by the
periodic passing of wakes from upstream airfoils, is called ‘wake-induced’ transition.
Moreover, pressure gradients due to curvatures of blade surfaces also influence the
evolution of transition. For example, favorable pressure gradient tends to delay
transition and, when the acceleration parameter K = ν/U2

∞(dU∞/dx) > 3× 10−6,

1 University of Waterloo, Canada



268 F. S. Lien, G. Kalitzin & P. A. Durbin

results in ‘relaminarization’. On the other hand, adverse pressure gradient tends to
promote transition. Only the first two types of transition will be investigated here.

Modeling transition within the RANS approach was mostly based on the low-
Reynolds-number eddy-viscosity formulation. Examples include Launder & Sharma’s
k − ε model (1974) and Craft’s et al. k − ε − A2 model (1995). Although these
two models can give credible results for a flow over a flat plate with a sharp lead-
ing edge at zero pressure gradient, the transition was predicted too early when the
flow is accelerated/decelerated, and in certain circumstances numerical instabilities
also occurred (see Chen et al., 1998a & 1998b, for details). In order to improve
these deficiencies, several researchers introduced the intermittency factor γ into the
expression of turbulent viscosity:

νt = γν∗t , (1)

where ν∗t is the turbulent viscosity from one of the conventional eddy-viscosity
models, in order to control the growth of transition through the level of turbulent
shear stress and, consequently, the production of turbulence. For example, Huang &
Xiong (1998) chose the γ experimentally correlated by Dhawan & Narasimha (1958)
and combined it with Menter’s SST model (1993) for low-speed turbine flows. Stee-
land & Dick (1996), on the other hand, performed the ‘conditioned-averaging’ on
the Navier-Stokes equation, which was split into turbulent and nonturbulent parts.
Both parts together with a transport equation for γ were solved simultaneously
for flows subjected to favorable/adverse pressure gradients. Recent LES for bypass
transitional flow (Yang et al., 1994) suggested that v′ – the turbulence fluctuation
in the wall-normal direction – plays an important role within the transition process.
This motivates us to apply the v2 − f model (Durbin, 1995), without the inclusion
of γ at the present stage, to transitional flows, in which both bypass transition and
separated-flow transition involve.

The v2 − f model consists of three transport equations for the turbulent kinetic
energy k, the dissipation of the turbulent kinetic energy ε, and a transport equa-
tion for the energy of the fluctuations normal to the streamlines v2. In addition,
the model includes a Helmholz type equation for a quantity f which models the
pressure-strain term. This equation is elliptic in nature, and as a consequence in-
formation from all spatial directions is used to compute the variable f at a given
point. In regions of transonic flows where the velocity exceeds the speed of sound,
only information from the upstream direction is needed to compute mean flow pa-
rameters. In addition, any shock waves appearing in the flow may induce strong
spatial gradients in the source terms of the turbulent model. This raises the ques-
tions of whether the elliptic relaxation model is able to represent transonic flows and
how accurate it is in predicting the shock location in flows involving shock-boundary
layer interactions. This forms the second part of the present investigation.

2. Unified approach of v2 − f model
The turbulent velocity and time scales, L and T , are determined from the stan-

dard k − ε equations:
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∂tk + U · ∇k = Pk − ε+∇ · [(ν +
νt
σk

)∇k], (2)

∂tε+ U · ∇ε =
Cε1Pk − Cε2ε

T
+∇ · [(ν +

νt
σε

)∇ε]. (3)

where T and L (to be used later) are:

T = max
[
k

ε
, 6
(ν
ε

)1/2]
, L = CL max

[
k3/2

ε
, Cη

(ν3

ε

)1/4]
. (4)

In order to avoid the stagnation anomaly, the realizability constraints are imposed
on both scales (Durbin, 1996):

T ≤ k√
3 v2Cµ

1√
2SijSij

, L ≤ k3/2

√
3 v2Cµ

1√
2SijSij

(5)

where Sij = 1
2 (∂Ui∂xj

+ ∂Uj
∂xi

). On no-slip boundaries, y → 0,

k = 0, ε→ 2ν
k

y2
. (6)

The v2 transport equation is

∂tv2 + U · ∇v2 = kf − v2
ε

k
+∇ · [(ν +

νt
σk

)∇v2], (7)

where

kf = φ22 − ε22 +
v2

k
ε (8)

represents redistribution of turbulence energy from the streamwise component.
Non-locality is represented by solving an elliptic relaxation equation for f :

L2∇2f − f =
1
T

(C1 − 1)

[
v2

k
− 2

3

]
−C2

Pk
k
, (9)

The asymptotic behavior of φ22 and ε22 near a wall are (see, for example, Mansour
et al.,1988):

φ22 = −2
v2

k
ε, ε22 = 4

v2

k
ε. (10)

where y is minimum distance to walls. This yields the boundary condition for f :

kf(0)→ −5
v2

k
ε or f(0)→ −20ν2v2

ε(0)y4
(11)
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(Durbin, 1995)
The Boussinesq approximation is used for the stress-strain relation:

uiuj
k
− 2

3
δij = −νt

k
(
∂Ui
∂xj

+
∂Uj
∂xi

), (12)

where the eddy viscosity is given by

νt = Cµv2T. (13)

The original boundary condition for f , i.e. Eq. (11), involves ε(0) in the de-
nominator, which is ill-defined in the laminar and transitional regions. This causes
oscillations for f(0) in those regions as illustrated in Fig. 1 for a boundary-layer
flow over a flat plate. As the flow becomes fully turbulent further downstream, f(0)
is well-defined and its distribution becomes fairly smooth. Note that the oscillatory
behavior of f(0) does not in any way influence the laminar flow solution, which is
governed mainly by the molecular viscosity of the fluid. This problem, most often
encountered when a segregated numerical procedure is adopted, can be overcome
by reformulating the underlined term of Eq. (7) as follows:

φ22 − ε22 + 6
v2

k
ε︸ ︷︷ ︸

=kf

−6
v2

k
ε, (14)

which changes slightly the definition of f . Important to know here is that such a
modification also ensures that v2 ∼ y4 as y → 0. As y →∞, the kinematic blocking
effect arising from ‘elliptic relaxation’ should disappear, i.e. both kf− v2

k ε in Eq. (7)

and kf − 6v2

k ε in Eq. (14) should be identical and equal to

−C1
ε

k
(v2 − 2

3
k)− C2Pk. (15)

Therefore, the use of kf − 6v2

k
ε requires the source term of Eq. (9) to be changed

to:
1
T

[
(C1 − 6)

v2

k
− 2

3
(C1 − 1)

]
− C2

Pk
k
. (16)

To facilitate the coding, two variants of the v2 − f model are combined into the
same set of equations:

∂tv2 + U · ∇v2 = kf − nv2
ε

k
+∇ · [(ν +

νt
σk

)∇v2], (17)

L2∇2f − f =
1
T

[
(C1 − n)

v2

k
− 2

3
(C1 − 1)

]
− C2

Pk
k
, (18)
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Figure 1. Distribution of f(0) for a flow over a flat plate.

where n = 1 corresponds to the original v2 − f model and n = 6 relates to the
variant of the model discussed in Lien & Durbin (1996). The constants of the
original model (i.e. n = 1) are:

Cµ = 0.22, σk = 1, σε = 1.3,

Cε2 = 1.9, C1 = 1.4, C2 = 0.3 (19)

Cε1 = 1.4(1 + 0.045
√
k/v2), CL = 0.25, Cη = 80. (20)

For n = 6, Cε1, CL, Cη needs a slight adjustment:

Cε1 = 1.4(1 + 0.050
√
k/v2) + 0.4 exp(−0.1Rt), CL = 0.23, Cη = 70, (21)

where Rt = k2/εν. The underlined term above is introduced to improve the predic-
tion of bypass transition (see Section 4.1 for details), and its effect on the solution in
the fully turbulent region is insignificant as illustrated in Fig. 2 for a fully-developed
channel flow at Reτ = 395 (Kim et al., 1987).

3. Numerical method
All transitional flows in Sections 4.1 and 4.2 have been computed with the

STREAM general geometry, block-structured, finite-volume code (Lien et al., 1996).
Advection is approximated by a TVD scheme with the UMIST limiter (Lien &
Leschziner, 1994). To avoid checkerboard oscillations within the co-located storage
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Figure 2. Channel flow: (a) with 0.4 exp(−0, 1Rt) inCε1; (b) without 0.4 exp(−0, 1Rt)
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arrangement, the “Rhie and Chow” interpolation method (1983) is used. The solu-
tion is effected by an iterative pressure-correction SIMPLE algorithm applicable to
both subsonic and transonic conditions.

The transonic computations in Section 4.3 were performed with the CFL3D
computer code (Krist et al., 1998), which solves the time-dependent thin-layer
Reynolds-averaged Navier Stokes equations using multi-block structured grids. A
semi-discrete finite-volume approach is used for the spatial discretization. The con-
vective and diffusion terms are discretized with a third order upwind and a central
difference stencil, respectively. The code uses flux-difference splitting based on the
Roe-scheme. Time advancement is implicit. Approximate factorization is used to
invert the mean flow system of equations. The steady-state computations have
been performed by marching in time from an initial guess. Multigrid and local time
stepping are used for convergence acceleration.

The v2−f model is solved separately from the mean flow. The k and ε equations
as well as the v2 and f equations are solved pairwise simultaneously. First-order
upwind discretization of the convective terms has been employed. The time in-
tegration of the equations is implicit. The boundary conditions are also treated
implicitly. Approximate Factorization (AF) and the Generalized Minimum Resid-
ual (GMRES) (Saad, 1986) algorithm are used to invert the resulting matrices.
While the latter is more robust, it requires more computational memory. The AF
method decomposes the matrices formed by the implicit operator into 1D tridi-
agonal matrices. This allows a very fast inversion of the matrices with very low
memory requirements. The splitting, however, is an approximation and introduces
error terms which necessitate smaller timesteps.
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4. Results and discussion

4.1 Flow over a flat plate with a sharp leading edge at zero pressure gradient
The first problem investigated here is the simplest (though fundamentally impor-

tant) transitional-flow test cases proposed in the European Research Community
On Flow Turbulence And Combustion (ERCOFTAC) Special Interest Group on
Transitional Modeling, which include cases T3A, T3A-, T3B, T3B+ and T3BDNS

(see Savill, 1993, for details). Two cases, namely T3A and T3A-, will be presented
and the corresponding initial conditions are given in the following table:

T3A Tu = 3% U∞ =19.6 m/s lε∞ =5.2 mm at x=-150 mm
T3A- Tu = 0.9% U∞ =5.2 m/s lε∞ =10.4 mm at x=-150 mm

The computation domain extends to 0.15 m upstream of leading edge, allowing the
free-stream turbulence quantities to be specified as the in-flow condition:

kin = 1.5(Tu U∞)2, εin =
k

3/2
in

lε∞
(22)

The computational mesh for T3A, containing 200× 50 nodes, is employed here, in
which sufficient number of grid lines are clustered towards the leading edge. As the
turbulence transport plays an important role in triggering the bypass transition, it is
crucial to use a second-order convection scheme for both momentum and turbulence
quantities (Chen et al., 1998a).

Predicted skin-friction distributions for T3A and the corresponding profiles of
mean-velocity and turbulence-intensity u′ at three locations across the laminar,
transitional, and fully-turbulent regions are given in Figs. 3-5. As seen from Fig. 3,
the introduction of the transition-correction term 0.4 exp(−0.1Rt) to Cε1 signifi-
cantly improves the prediction of the onset of transition. As a result, the U -profile
within the transition zone (x=595 mm) is better predicted in comparison with the
original model. Although the new Rt-dependent term in Cε1 does better predict
the location of the peak value of u′, the level of turbulence intensity is too low,
particularly at x=595 mm. This discrepancy is partially due to the use of Boussi-
nesq stress-strain relation, in which turbulence intensities are assumed to be locally
isotropic (∼ 2

3k). The new Rt-dependent term also acts to further suppress the
u′ level by increasing slightly the value of Cε1 near the wall, which suppresses the
generation of turbulence energy and, consequently, delays the onset of transition. It
is clear that the mechanisms of triggering and controlling the evolution of transition
process are different in the experiment and in the model. The LES work of Yang
et al. (1994) suggested that u′ and v′ are not well correlated within the transition
region. So far only the LES results are able to predict the correct peak of u′ within
the laminar and transition regions.

The skin-friction distribution for T3A- case, of which the level of free-stream
turbulence intensity and dissipation-rate length scale are lower than T3A, is given
in Fig. 6. As seen, the onset of transition is too early, and the sensitivity of the
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Figure 3. Flat plate (T3A): skin-friction distributions. n=6 with Rt
correction; n=6 without Rt correction; n=1 (original model); • expt.

0 0.2 0.4 0.6 0.8 1
U/Uo

0

1

2

3

4

5

6

Y
(m

m
)

X=45 mm

0 0.2 0.4 0.6 0.8 1
U/Uo

0

5

10

15

20

25

Y
(m

m
)

X=595 mm

0 0.2 0.4 0.6 0.8 1
U/Uo

0

10

20

30

40

50

60

70

Y
(m

m
)

X=1495 mm

Figure 4. Flat plate (T3A): streamwise velocity profiles. n=6 with Rt
correction; n=1 (original model); expt.

Rt-dependent term to very low turbulence intensity is too weak. One possible rea-
son for this is that at Tu = 0.9% the influence of Tollmien-Schlichting waves might
not be entirely negligible. The results suggest that the dissipation equation and,
likely, the ‘elliptic relaxation’ equation, which is responsible for energy redistri-
bution among different Reynolds-stress components, require further re-calibration,
particularly within the transition region. The introduction of intermittency factor
γ into the model will increase the model’s sensitivity to a number of flow features
such as pressure gradients and free-stream turbulence level, depending on how γ is
correlated. To pursue this modeling approach further, the provision of DNS data is
indispensable.
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Figure 5. Flat plate (T3A): streamwise turbulence-intensity profiles. n=6
with Rt correction; n=1 (original model); expt.
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Figure 6. Flat plate (T3A-): skin-friction distributions. n=6 with Rt
correction; • expt.

4.2 Double-circular-arc (DCA) compressor blade

The experimental data for DCA compressor blade was obtained by Deutsch &
Zierke (1988) using one-component LDV system. The blade is formed by two circu-
lar arcs and has a 65◦ camber angle, a 20.5◦ stagger angle, a solidity of 2.14, and a
228.6 mm chord length. Three incidence angles were measured and only i = +5◦ –
the one with massive trailing-edge separation as illustrated in Fig. 7 – is considered
here. The Reynolds number, based on the inlet velocity and blade chord length, is
505,000. The turbulence intensity and length scale, recommended by Chen et al.
(1998b) and used herein, are Tu = 2% and lε∞= 4.5 mm, which give the correct
turbulence level at the edges of boundary layers in accord with the experimental
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Figure 7. DCA compressor blade: massive trailing separation.

data. An 8-block computational mesh of 25,000 nodes, which surrounds the blade
and extends in the cross-stream direction from the middle of one passage to the
middle of the adjacent ones, is employed.

Experimental data suggests the existence of a large separation bubble near the
leading edge. To resolve this feature, it is important to impose the realizability con-
straint on turbulence time and length scales in order to reduce excessive turbulence
energy close to the stagnation region. The turbulence-energy contours obtained with
and without the realizability constraint are shown in Fig. 8, and its impact on the
size of leading-edge separation bubble are given in Fig. 9. As seen from Figs. 8 and
9, the separation bubble obtained with the realizability constraint is considerably
larger than that obtained without the constraint. This is because without the con-
straint the turbulent mixing along the curved shear layer is too high, which entrains
too much fluid into the bubble and, as a result, causes a too early reattachment.

The differences in the fluid displacement close to the leading edge also affect the
development of the boundary layer further downstream. This is illustrated by the
streamwise velocity profiles at two locations, x/c = 12.7% and x/c = 94.9%, given
in Fig. 10. The model without the realizability constraint appears to predict well
the velocity profile at x/c = 12.7%. However, the flow is too turbulent, which tends
to resist separation. As a result, the boundary layer at x/c = 94.9% is slightly too
thin. On the other hand, the use of realizability constraint overpredicts the size of
leading-edge separation bubble, which results in slightly too thick boundary layers
at both x/c = 12.7% and x/c = 94.9%.

The distributions of pressure coefficient Cp on both sides of the blade are given
in Fig. 11. The pressure plateau, clearly seen on the suction side beyond 80% of the
chord, indicates that a massive trailing-edge separation exists. The model without
including the realizability constraint predicts a too early pressure recovery on the
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Figure 8. DCA compressor blade: turbulence-energy contours near the leading
edge obtained without (left) and with (right) realizability constraint.
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suction side, which is consistent with a too thin boundary layer at x/c = 94.9%
observed in Fig. 10. Overall, it is fair to say that the results returned by the v2− f
model variants agree reasonably well with the measurement even in this complex
flow involving impingement, transition, and massive separation.

4.3 RAE2822 transonic airfoil
Flow around the transonic RAE2822-airfoil has been chosen to study the perfor-

mance of the v2 − f model in predicting shock-boundary layer interaction. Two
test cases, case 9 and case 10, from the experiments by Cook et al. (1979) have
been considered. The flow conditions for these cases differ only slightly in Mach and
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Figure 12. RAE2822 airfoil: computational mesh 256x64.

Reynolds number. While in case 9 the shock is too weak to induce separation, for
case 10 the flow separates at the shock. The amount of separation and the position
of the shock is very dependent on the turbulence model used.

The experimental data was obtained in the wind tunnel for the flow conditions:
case 9: M = 0.73, Re = 6.50 106, α = 3.19o; and case 10: M = 0.75, Re =
6.20 106, α = 3.19o. Transition has been tripped in the experiments near the leading
edge of the airfoil at x/c = 0.03 on both the upper and lower surface of the airfoil.

To compare the experimental data with the computed flow around the airfoil in
free-flight conditions, corrections to the tunnel data are required. Different wind
tunnel corrections have been used in the various studies published in the literature
(see Haase et al., 1992, Krist et al., 1998, and others). The flow conditions used in
the EUROVAL-project are adopted here. They are for case 9: M = 0.734, Re =
6.50 106, α = 2.54; and for case 10: M = 0.754, Re = 6.20 106, α = 2.57. Note that
for case 10 in particular, researchers tend to compute the flow with a slightly larger
angle of attack. Clearly, this influences the location of the shock. The shock location
and the pressure distribution, particularly on the suction side, are influenced by the
outer extent of the computational domain. The finite far field boundary causes a
lower circulation around the airfoil, leading to an underprediction of lift. A vortex
correction to the far-field boundary condition adjusts the circulation around the
airfoil and has, therefore, been employed for the present computations.

In addition, computations have been carried out with the Spalart-Allmaras (1992)
and Menter SST (1993) models to allow a comparison of results computed with the
same flow solver. Both these models are included in the standard release of CFL3D,
version 5.0. The v2−f model has been implemented in CFL3D in its original form.
This corresponds to setting n = 1 in Eqs. (17) and (18). Transition has been fixed by
switching of the production terms in the equations as described in Kalitzin (1997).
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Figure 13. RAE2822 airfoil: pressure and skin friction distribution; case 9,
: v2 − f 256x64, : v2 − f 512x128, ◦ : expt.
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Figure 14. RAE2822 airfoil: pressure and skin friction distribution; case 9,
: v2 − f , : Spalart-Allmaras, : Menter SST, ◦ : expt.



282 F. S. Lien, G. Kalitzin & P. A. Durbin

C
p

-1.5

-1

-0.5

0

0.5

1

1.5
0 0.2 0.4 0.6 0.8 1

C
f

x/c

0.005

0.0025

0

0.0025

0.005

0.0075

0 0.2 0.4 0.6 0.8 1

Figure 15. RAE2822 airfoil: pressure and skin friction distribution; case 10,
: v2 − f , : Spalart-Allmaras, : Menter SST, ◦ : expt.
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The present computations were carried out using the EUROVAL mesh, which
consists of 256x64 cells. 192 cells are located on the airfoil surface. The far field is
about 15 cord lengths from the airfoil. The average y+ value of the first cell above
the wall is about 1. The airfoil is represented in this mesh along the measured (not
the designed) airfoil contours. The mesh is shown in Fig. 12.

A grid dependency study has been carried out with the v2 − f model for case
9 on a mesh with twice as many cells in each direction. The average y+ value
of the first cell above the wall is for this mesh about 0.5. The pressure and skin
friction distribution is almost mesh independent as indicated by the results shown
in Fig. (13).

A comparison of the pressure and skin friction distribution computed with the
v2−f , the Spalart-Allmaras and the Menter SST models are shown in Figs. 14 and
15 for case 9 and 10, respectively. While the pressure distribution agrees quite well
with the experimental data for all models for case 9, the shock location is generally
too far downstream for case 10. The v2 − f model predicts the shock location very
similarly to the Spalart-Allmaras model in both cases. It is, however, interesting
to note that the skin friction computed with the Spalart-Allmaras model for case
10 reveals a fully separated flow from the shock downstream to the trailing edge.
One would expect that this separation would lead to a thicker boundary layer with
the consequence of a shock location further upstream. The SST model, in contrast,
predicts the shock further upstream while the separation bubble is of similar size
as with the v2 − f model. It is also interesting to note the similarity in the skin
friction on the pressure side of the airfoil for the Menter SST and the Spalart-
Allmaras models. The skin friction predicted with the v2 − f model is slightly
larger here than with the other two models.

The lift and drag coefficients for case 9 and 10 are given in the table below. For
the v2− f model the predicted force coefficients lie somewhere in between the ones
obtained with the Menter SST and Spalart-Allmaras models.

v2 − f (512x128) v2 − f Spalart-Allmaras Menter SST Expt
case 9
CL .7983 .7995 .8066 .7789 .803
CD .01645 .01733 .01738 .01611 .0168
case 10
CL .7570 .7628 .7262 .743
CD .02587 .02645 .02407 .0242

The convergence of all three models investigated for case 9 required about 1000
iterations for a 5-order magnitude drop in the L2 norm of the residual of the mean
flow and turbulence quantities. In the v2−f computation of case 10, however, small
unsteady oscillations in v2 and f were observed between the shock and the trailing
edge. These oscillations are caused by the use of local timesteps for the turbulence
equations. The computation fully converged when a constant timestep was used
throughout the boundary layer. The results presented were achieved by using local
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timesteps for the mean flow and constant timesteps for the turbulence equations.
This finding requires further investigation.

5. Conclusions
A unified formulation of the v2 − f model, which allows two types of boundary

conditions at walls depending on the value of integer ‘n’, is adopted here with
application to both transitional and compressible flows, the latter involving shock
waves. The outcome of the present study permits the following conclusions to be
drawn:

(1) In most cases (some of the results are not included here for brevity), both variants
have very similar performance. The ‘code-friendly’ version (i.e. n=6) is numeri-
cally more robust for transitional flows when an uncoupled solution procedure is
adopted.

(2) The performance of the v2 − f model for a flow over compressor-cascade blades,
involving both the leading-edge and trailing-edge separation, are very encourag-
ing. The imposition of realizability constraint on turbulence scales significantly
reduces the level of turbulence energy at the stagnation region. Although the
size of the resulting laminar separation bubble is slightly too large, the velocity
profiles close to the trailing edge are in good agreement with the experimental
data.

(3) In order to model the transition mechanism on the basis of physical ground, the
intermittency effect needs to be incorporated into RANS models. The DNS data,
once available, will provide detailed information in terms of the Reynolds-stress
budget and intermittency factor, which can be used to re-calibrate the pressure-
strain term and turbulence-dissipation equation within the transition region.

(4) Combining Dhawan & Narasimha’s intermittency factor with the v2 − f model
based on the conditioned Navier-Stokes equation approach is currently under
investigation.

(5) The results obtained with the v2− f model for the RAE2822 airfoil demonstrate
the capability of predicting transonic flows around airfoils. The present compu-
tations were carried out with the original model setting n = 1. Generally, the
model converges well even on the finer mesh. This is attributed to a pairwise im-
plicit solution of the model’s equations and an implicit treatment of the boundary
conditions.
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