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Assessment of non-local effect on pressure term
in RANS modeling using a DNS database

By R. Manceau1, M. Wang AND P. Durbin

A DNS database for the channel flow at Reτ = 590 is used to investigate the validity
of the hypotheses used to model the pressure term in the Reynolds stress transport
equations by elliptic relaxation. It is shown that the correlation function involving
the fluctuating velocity and the Laplacian of the pressure gradient, which is modeled
by an exponential function, is actually not isotropic. It is not only elongated in
the streamwise direction but also asymmetric in the direction normal to the wall.
This feature is the main cause for the slight amplification of the redistribution
between the Reynolds stress components in the log layer as predicted by the elliptic
relaxation operator. The expected reduction in redistribution is predicted by a new
formulation of the model, which can be derived by accounting for the asymmetry in
the correlation function, without using any wall echo correction terms. The belief
that this reduction is due to the wall echo effect is called into question through the
present DNS analysis.

1. Introduction
During the past few decades, turbulence modelers mainly focussed on the pressure

term in the Reynolds stress transport equations. In second moment closures, the
production is exact and, accordingly, the pressure term is one of the most important
terms to be modeled. Indeed, in a channel flow, this term is the main productive
term in the equations for the diagonal Reynolds stresses except for the component
in the streamwise direction, and balances the production term in the Reynolds shear
stress equation (Mansour, Kim & Moin 1988).

Chou (1945) was the first to derive the integral equation of the pressure term
from the Poisson equation for the pressure fluctuations and to distinguish between
the slow part, rapid part and surface term (even though he did not use this termi-
nology). For the rapid part, which involves the mean velocity gradient, he proposed
to consider that the latter is locally a constant in order to be taken outside the
integral. Since Chou’s pioneering work, this approach has become very popular in
the turbulence modeling community and the starting-point of all second moment
closure models (e.g. Launder, Reece & Rodi 1975).

Bradshaw, Mansour & Piomelli (1987) assessed the validity of this local appro-
ximation for the rapid pressure using a DNS database. They showed that in the
channel flow at Reτ = 180 (Kim, Moin & Moser 1987), this hypothesis is valid only
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for y+ ≥ 40. As a result, models based on it cannot be integrated down to the wall
without modifications such as the introduction of damping functions.

In order to avoid the ad hoc damping functions, which are usually calibrated on
experimental or DNS data with little theoretical basis, Durbin (1991) introduced
a novel method. He proposed to model directly the two-point correlation in the
integral equation of the pressure term, which preserves the non-local effect in the
Reynolds stress transport equations. Then, he introduced the so-called elliptic
relaxation approach, allowing the derivation of second moment closure models which
can be integrated down to the wall without any damping functions.

While this method has led to very encouraging results, some room for improve-
ment remains. One purpose of the present work is to assess the validity of the
two-point correlation approximation, which was originally derived on an intuitive
basis. Secondly, this work aims to assess the influence of the anisotropy of the two-
point correlation on the pressure term in order to support future modifications of
the model. Durbin’s model assumes an isotropic shape for the correlation function,
which may be the main improvable point of the method. These modeling issues
will be examined using a channel flow DNS database at Reτ = 590 (Moser, Kim
& Mansour 1998). In particular, the anisotropy of the correlation function will be
explored, and the evolution of the length scale across the channel evaluated.

2. The pressure term in a channel

2.1. Integral equation of the pressure term

The pressure term which appears in the Reynolds stress equations is

φij = −1
ρ

(ujp,i + uip,j) , (1)

where ρ is the density, p is the fluctuating pressure, ui are the fluctuating ve-
locity components and .,i denotes derivative with respect to the xi coordinate.
The overline indicates ensemble average. Usually, φij is split into two terms: the
pressure-strain correlation and the pressure diffusion (Launder, Reece & Rodi 1975).
However, the original form (1) of φij will be used for the following reasons: first,
Lumley (1975) showed that the decomposition is not unique and that this particular
one is not the best one ; secondly, in the vicinity of a wall, the asymptotic behavior
is not preserved for certain components. For instance, if i = 1 and 2 correspond
respectively to the streamwise direction and the direction normal to the wall, the
component φ12 behaves as y, whereas the pressure-strain and the pressure diffusion
take a non-zero value at the wall. Therefore, in order to model correctly the total
pressure term, it is necessary to model both terms of the decomposition such that
their sum decreases as y in the vicinity of the wall.

The pressure fluctuation is the solution of the Poisson equation obtained by taking
the divergence of the fluctuating part of the Navier-Stokes equations:

∇2p = −2ρUi,j uj ,i+ρ (uiuj − uiuj) ,ij , (2)
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where ∇2 denotes the Laplacian operator and Ui the ith component of the mean
velocity. Since the differentiations are commutative, the gradient of the pressure
fluctuation is also the solution of a Poisson equation:

∇2p,k = −2ρ (Ui,j uj ,i ) ,k +ρ (uiuj − uiuj) ,ijk . (3)

In the following, the gradient of the pressure fluctuation will be assumed to satisfy
the boundary condition ∂p,k /∂n = 0, where n is the outgoing unit vector normal
to the wall. This condition is not exact, but Kim (1989) uses this type of hypothesis
for the pressure itself and showed that this is valid in the channel flow at Reτ = 180.
In the present case, the same hypothesis can be applied to the pressure gradient,
considering that its “Stokes part”, i.e. the part produced by the inhomogeneous
boundary condition, can be neglected.

The general solution of Eqs. (3) is

p,k (x) = −
∫

Ω

∇2p,k (x′)
4π‖x′ − x‖ dV (x′)−

∫
∂Ω

p,k (x′)
∂

∂n′

(
1

4π‖x′ − x‖

)
dS(x′) , (4)

where bold letters x and x′ denote position vectors, dV and dS the elementary
volume and surface and ∂Ω the domain boundary.

Multiplying (4) by the fluctuating velocity and taking ensemble averaging, one
can derive an integral equation for ujp,i and hence φij ,

ρφij(x) = −
∫

Ω

(
uj(x)∇2p,i (x′) + ui(x)∇2p,j (x′)

) dV (x′)
4π‖x′ − x‖ −∫

∂Ω

(
uj(x)p,i (x′) + ui(x)p,j (x′)

) ∂

∂n′

(
1

4π‖x′ − x‖

)
dS(x′) . (5)

This equation will henceforth be referred to as the integral equation of the pressure
term. It involves two-point correlations such as uj(x)∇2p,i (x′), which need to be
modeled and are the main concern of this work.

In some situations, the surface integral in (4) can be transformed into a volume
integral. For instance, in a semi-infinite space, bounded by an infinite plane, as
considered by Launder, Reece & Rodi (1975), Eq. (4) can be written as

p,k (x) = −
∫

Ω

∇2p,k (x′)
(

1
4π‖x′ − x‖ +

1
4π‖x′∗ − x‖

)
dV (x′) , (6)

where x′∗ is the image term of x′ by symmetry with respect to the plane. The
function

GΩ(x,x′) = − 1
4π‖x′ − x‖ −

1
4π‖x′∗ − x‖ (7)

is then called the Green function of the domain Ω.
In more general geometries, the Green function is unknown. In the particular

case of a channel, the Green function is easy to derive only after taking Fourier
transforms in x- and z-directions (Kim 1989). This spectral Green function is not
useful for the present purpose: however, a form of (4) without surface integral will
be needed in the following analysis, especially in §5.1, where the question of the
wall echo effect will be investigated. The purpose of the next section is to derive a
sufficiently good approximation of (4) which does not involve any surface integral.
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Figure 1. Sketch of a channel (C0) and its images.

2.2. Approximation of the Green function in a channel
The simplest solution to eliminate the surface integral in (4) is to neglect it.

Chou (1945) used this approximation but emphasized that all the conclusions which
can be drawn are thus valid only at locations “not too close to the boundary of the
moving fluid” because, in the vicinity of the wall, the weight of the surface integral
has the same order of magnitude as the volume integral. This can be easily seen
in the case of a semi-infinite domain bounded by a plane. In this case, Eq. (4) can
be written as (6), which shows that if the fixed point x is sufficiently close to the
wall, the principal term and the image term are almost equal. If x is exactly on the
wall, the two terms are identical. Furthermore, Bradshaw (1973) noted that the
order of magnitude of the image term is still 15% of the total when the correlation
length scale is L = κy, where κ is the Karman constant. The influence of this term
will be assessed in §5.1. At this point, the surface integral cannot be neglected and
therefore, in order to allow the following DNS analysis to be valid down to the wall,
a less crude approximation than that used by Chou is needed.

Let us consider a channel C0 bounded by two infinite planes P0 and P1 (Fig. 1).
In this domain, the problem to solve is

∇2f = g , (8)

with f,n = 0 on ∂C0. Let us now consider the image channels C−1 and C1 shown
in Fig. 1, which are symmetrical to C0 with respect to P0 and P1, respectively.
Extending g by symmetry in C−1 and C1, solving Eq. (8) in the domain C−1∪C0∪C1

and using all the symmetries, the solution can be shown to take the form

f(x) = −
∫

C0

H(x,x′0) g(x′0) dV (x′0) −
∫
∂C0

∂H(x,x′0)
∂n′

f(x′0) dS(x′0) , (9)

with
H(x,x′0) =

1
4π‖x′−1 − x‖ +

1
4π‖x′0 − x‖ +

1
4π‖x′1 − x‖ , (10)

where x′−1 and x1 are the specular images of x′0 in P0 and P1 (Fig. 1), respectively.
The surface integral in this expression can now be neglected. Indeed, on P0, the
derivative of H(x,x′0) can be evaluated:

∂

∂n′
H(x,x′0) =

‖x′−1 − x‖ · n′

4π‖x′−1 − x‖3
− ‖x

′
0 − x‖ · n′

4π‖x′0 − x‖3
+
‖x′1 − x‖ · n′

4π‖x′1 − x‖3
. (11)
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Since x′−1 = x′0, the sum of the two first terms is zero and hence the surface
integral only involves the contribution of the image x′1, which is far from the point
x. Likewise, on the other wall P1, the surface integral only contains the contribution
of the image point on P−1. This is in contrast to Chou’s approximation, where the
derivative in the neglected surface integral is equal to the second term of (11). It
goes to infinity when x′0 = x, giving to the surface integral the same weight as
the volume integral. In the following analysis, the function H(x,x′0) will be used,
considering it as a sufficiently good approximation of the Green function, even in
the vicinity of the walls.

3. The elliptic relaxation method

By using the approximate Green function, the integral equation of the pressure
term (5) can be written as

ρφij(x) = −
∫

Ω

(
uj(x)∇2p,i (x′) + ui(x)∇2p,j (x′)

)
H(x,x′) dV (x′) . (12)

In this equation, two-point correlations between the fluctuating velocity and the
Laplacian of the pressure gradient appear. Following Durbin (1991), in order to
preserve the non-local effect, they can be modeled as

un(x)∇2p,m (x′) = un(x′)∇2p,m (x′) exp
(
−‖x

′ − x‖
L

)
, (13)

where L is the correlation length scale. The validity of this hypothesis will be
scrutinized in §5.2 using a DNS database. Here, the rationalization of the elliptic
relaxation equation is analyzed in the context of channel flow.

Durbin (1991) used Chou’s approximation, which excludes the image terms in
H(x,x′). The integral equation of the pressure term, combined with the model
(13), becomes

ρφij(x) = −
∫

Ω

(uj(x′)∇2p,i (x′) + ui(x′)∇2p,j (x′))
exp

[
−‖x

′ − x‖
L

]
4π‖x′ − x‖︸ ︷︷ ︸
E(x,x′)

dV (x′) .

(14)
The function E(x,x′) is the free-space Green function associated with the operator
−∇2 + 1/L2. Hence, (14) is the solution of the following Yukawa equation?:

φij − L2∇2φij = −L
2

ρ
(uj∇2p,i + ui∇2p,j) . (15)

? In 1935, Yukawa was the first to apply this inversion in physics to solve the equation of inter-

action potential between particles.
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Noting that in quasi-homogeneous situations, the second term on the LHS of this
equation vanishes, Durbin proposed to use a quasi-homogeneous model φhij instead
of the RHS. This leads to the following elliptic relaxation model for φij :

φij − L2∇2φij = φhij . (16)

Any quasi-homogeneous model, such as LRR model or SSG model, can be used for
φhij , thus allowing the extension of these models down to solid boundaries. Indeed,
(16) is valid down to the wall, when appropriate boundary conditions for φij are
provided (Durbin 1993).

However, Eq. (14) does not give rigorously the solution of (15) in a plane channel.
Analogous to the Green function for the Laplacian operator, the Green function
associated with the Yukawa operator must at least be approximated using the image
points with respect to the walls. Thus, a better approximation to the solution of
(15) is

ρφij(x) = −
∫

Ω

(uj(x′0)∇2p,i (x′0) + ui(x′0)∇2p,j (x′0))

exp
[
−‖x

′
−1 − x‖
L

]
4π‖x′−1 − x‖ +

exp
[
−‖x

′
0 − x‖
L

]
4π‖x′0 − x‖ +

exp
[
−‖x

′
1 − x‖
L

]
4π‖x′1 − x‖

 dV (x′0) .

(17)
Now, using the approximation (13) for the two-point correlations, the integral equa-
tion of the pressure term (12) does not lead to (17) but to the following equation:

ρφij(x) = −
∫

Ω

(uj(x′0)∇2p,i (x′0) + ui(x′0)∇2p,j (x′0))

exp
[
−‖x

′
0 − x‖
L

]
4π‖x′−1 − x‖ +

exp
[
−‖x

′
0 − x‖
L

]
4π‖x′0 − x‖ +

exp
[
−‖x

′
0 − x‖
L

]
4π‖x′1 − x‖

 dV (x′0) .

(18)
Hence, the modeled pressure term (18) does not rigorously satisfy the Yukawa
Eq. (15). However, the main contribution of the image terms to the integral cor-
responds to point x′0 near the walls. For instance, the weight of the first im-
age term is important when 1/4π‖x′−1 − x‖ has the same order of magnitude as
1/4π‖x′0 − x‖, i.e., very close to the wall, where x′−1 ' x′0. Then, the exponen-
tial factors exp(−‖x′−1 − x‖/L) and exp(−‖x′0 − x‖/L) are almost equal as well.
Therefore, even considering that the Green function in a channel must be at least
approximated by H(x,x′), rather than using Chou’s approximation, the elliptic re-
laxation model for the pressure term (16) can be considered as valid, as long as the
model for the two-point correlations (13) is valid itself.
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4. Focus and description of the DNS assessment

4.1 Issues to examine in the elliptic relaxation method
The elliptic relaxation approach is based on a unique hypothesis, namely the

approximation (13) of the two-point correlations. This approximation was originally
introduced intuitively by Durbin (1991) in order to preserve the dependence of the
pressure term on all the points of the domain, leading to the well known non-local
effect in the Reynolds stress equations.

The standard way (Monin & Yaglom 1975) of defining a correlation function f
to be used in (12) is by writing the two-point correlations as

uj(x)∇2p,i (x′) + ui(x)∇2p,j (x′) = (uj(x)∇2p,i (x) + ui(x)∇2p,j (x)) f(x,x′) .
(19)

In this expression, the one-point correlation is expressed in x, i.e., the point where
the velocities are evaluated in the two-point correlation. Then, it can be moved
outside the integral in (12), which leads to the loss of the non-locality of the pressure
term. However, this formulation allows the definition of the following length scale:

L(x)2 =
∫

Ω

f(x,x′)H(x,x′)dV (x′) , (20)

which is an integral scale, since it provides the ratio between the integral and the
correlation at zero separation:

ρφij = −L2(uj(x)∇2p,i (x) + ui(x)∇2p,j (x)) . (21)

In order to preserve the non-local effect, the correlation function must be defined
in the following way:

uj(x)∇2p,i (x′) + ui(x)∇2p,j (x′) = (uj(x′)∇2p,i (x′) + ui(x′)∇2p,j (x′)) f(x,x′) .
(22)

The only difference between (19) and (22) is the point where the one-point correla-
tion is evaluated. If (22) is used in (12), the single-point correlation cannot be taken
outside the integral. But the decomposition of the two-point correlation into the
one-point correlation evaluated at x′ and the correlation function, and the modeling
of the latter as a function which solely depends on the difference x′ − x, allows the
conversion of the integral to a convolution product. Thus, Eq. (12) can be inverted,
leading to (15). The feature which is used here is that −∇2δ+ δ/L2, where δ is the
Dirac function, is equal to the inverse of exp(−r/L)/r for the convolution product.
Hence, the non-local effect is preserved through the Yukawa operator.

The shape of the correlation function defined by (22) has never been assessed
before. The first purpose of this work is then to check if the approximation
f(x,x′) = exp(−‖x′−x‖/L) is consistent with the DNS data. For instance, the cor-
relation function in (22) is not prevented from being larger than 1. If the root-mean
square of the velocity fluctuation un varies rapidly in one direction, un(x)∇2p,m (x′)
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can become larger than un(x′)∇2p,m (x′). On the other hand, the correlation bet-
ween the velocity and the Laplacian of the pressure gradient should decrease very
rapidly with increasing separations and hence, the correlation function should re-
main smaller or only slightly larger than one.

The length scale used in the approximation (13) is not rigorously an integral
scale because it does not satisfy (21). Nevertheless, it is the integral of the function
exp(−r/L) from zero to infinity. One may attempt to evaluate this length scale
as the integral of the correlation function f(x,x′). However, as will be shown in
§5.4, this definition is not satisfactory. Thus, another purpose of the present work
is to evaluate alternative definitions of the length scale, and compare it with the
turbulent length scale k3/2/ε, which is used in elliptic relaxation models.

The ultimate objective of the evaluations of the correlation function and the
length scale is to find ways to improve the elliptic relaxation approach. As pointed
out by Wizman et al. (1996), the elliptic relaxation equation does not act in the
right direction in the log layer. For instance, if the IP and Rotta models are used
as the source term in (16), since the anisotropy is fairly constant in the log layer,
φij has the same behavior in 1/y as ε and P . Then, it can be easily shown that the
solution of (16) is

φij =
1

1− 2C2κ2 φ
h
ij , (23)

if the length scale is L = Cκy, where κ is the Karman constant. Hence, in the log
layer, the redistribution of energy between the components of the Reynolds stress
tensor is amplified, while a damping due to the presence of the wall is expected.

Therefore, Wizman et al. (1996) introduced other formulations of the elliptic
relaxation equation. The first one, the so-called neutral formulation, is defined as

φij −∇2(L2φij) = φhij . (24)

It produces neither amplification nor reduction of the redistribution in the log layer,
since it leads to φij = φhij . The second one, which yields the best agreement with
DNS data, is given by

φij − L2∇
(

1
L2∇(L2φij)

)
= φhij . (25)

It exhibits a damping of the redistribution in the log layer.
These empirically derived new formulations require further justifications. What

is suspected here is that the approximation of the correlation function f by an
exponential function is not appropriate. Indeed, the latter is isotropic, whereas
the former may decrease more rapidly when the point x′ is moving towards the
wall than when it is moving away from it. Experiments from Sabot (1976) in a
pipe show that the contours of the two-point correlations of velocities are tightly
packed between the point of zero separation and the wall. It is suspected that the
same phenomenon occurs for correlations between velocity and Laplacian of the
pressure gradient. Moreover, this feature is closely linked to the variation of the
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length scale in the near wall region. When the correlation function is modeled by
an isotropic function, the same weight is given to points towards the wall and those
away from it. Since the source term decreases in the log layer, it results in an
over-prediction of the integral. This phenomenon can be suspected to be the reason
for the erroneous behavior of the elliptic relaxation equation in the log layer. This
idea will be carefully explored in the following DNS analysis, in order to support
modifications of the model such as those proposed by Wizman et al. (1996).

In addition, some general improvements of the model can be expected from such
reformulations. Because of the erroneous behavior described above, it is difficult
to reproduce accurately both the viscous sublayer and log layer. For instance,
the coefficients of the V2F model have been tuned as a compromise between the
boundary layer and the channel flow, since it is impossible to predict perfectly
both flows with the same set of coefficients. Furthermore, this type of compromise
limits the influence of the elliptic relaxation equation to a region very close to the
wall. Parneix, Laurence & Durbin (1998) showed that in the case of the backstep
flow, the turbulent force −uv,y in the mean streamwise velocity equation is over-
predicted in the backflow region, which acts to slow down the flow, leading to
an under-prediction of the intensity of the recirculation. All modifications of the
coefficients attempted by them proved ineffective, and they only managed to reduce
the error by 50% by including terms involving the gradient of the mean flow in the
turbulent transport term. In this case some improvement can be expected too by
extending the influence of the elliptic relaxation equation in the backflow region and
particularly by reformulating this equation in order to account for the variations of
the length scale.

4.2 Channel flow database and post-processing
Since the Laplacian of the pressure gradient, which involves three spatial deriva-

tives, will be calculated, a very accurate DNS database is needed. The database
used in this study is the most recent channel flow simulation of Moser, Kim & Man-
sour (1998) at Reτ = 590. This flow was computed on a grid of 384 × 257 × 384
points in streamwise (x), wall normal (y) and spanwise (z) directions, respectively.
The computational domain is given by 2πδ, 2δ and πδ in x, y and z, where δ denotes
the channel half-width. The simulation code employed a spectral method (Fourier
series in x and z, and Chebychev polynomial in y) for spatial derivatives, and a
semi-implicit scheme for time integration. A total of 75 fields (restart files) are
available for statistical averaging.

In order to assess the shape of the correlation function f defined by (22), the
two-point correlations between the fluctuating velocities and the Laplacian of the
pressure gradient must be calculated. They are evaluated in the following manner:
• First, the Laplacian of the total pressure gradient is evaluated directly from the

velocity field, ∇2p̃ = −ũi,j ũj ,i where .̃ denotes total quantities. The spatial
derivatives are calculated using the same Fourier/Chebychev spectral method as
for the DNS.
• The one-point and two-point correlations between the gradient of the Laplacian of

the total pressure and the velocity components ũj(x′)∇2p̃,i (x′) and ũj(x)∇2p̃,i (x′)
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are then computed. The gradient is calculated using Fourier spectral derivatives
in x and z, and fourth order finite differences in y.
• The corresponding mean quantities involving Ui and ∇2P,i are calculated. They

are finally subtracted out from correlations between total quantities in order to
obtain the correlations between fluctuating quantities.

The ensemble averages are replaced by averaging in the homogeneous directions and
over the 75 restart fields. The computations are very expensive. As a practical mat-
ter, calculations are performed at 7 representative y-locations only, for separations
in x-y, x-z, y-z planes.

5. Results and discussion

5.1 The wall echo
Since the paper of Launder, Reece & Rodi (1975), it has been widely accepted in

the turbulence community that, in a semi-infinite space bounded by a plane at y = 0,
the image term in the integral equation of φij represents the so-called wall echo
effect, responsible for the reduction of the amplitude of the energy redistribution
between components of the Reynolds stress tensor. Consequently, in second moment
closure models, extra terms are frequently incorporated to account for this effect
(Gibson & Launder 1978). These wall echo terms depend on the distance to the
wall, which is often not well defined in complex geometries. The inclusion of wall
echo terms often worsen the predictions in engineering applications even though
they have proven to be effective in simple flows.

The physical reasoning behind this is that the pressure fluctuations are reflected
by the wall, introducing an “echo” contribution which can be considered as ins-
tantaneous in an incompressible flow. Considering each point of the domain as a
source of pressure fluctuations, the echo can be represented by an image source of
fluctuations. The contribution of this echo actually increases the pressure fluctu-
ations (in a closed room, the echo increases the noise). This feature is linked to
the homogeneous Neumann boundary condition at the wall. Mathematically, this
can be related to the fact that the presence of the wall induces the presence of an
image term in the Green function (7). On account of the homogeneous Neumann
boundary condition, the image term appears with the same sign as the principal
term, whereas if a homogeneous Dirichlet boundary condition was satisfied at the
wall, it should have an opposite sign.

Thus, the wall echo effect cannot be responsible for the damping of the energy
redistribution. Figure 2 shows a comparison among the three source terms in the
integral Eq. (12) of the pressure term, corresponding to the three parts in H(x,x′0)
(cf. (10)), for the components φ11 and φ22. The magnitudes of these source terms
have been arbitrarily normalized such that the maximum of the first image term
(n = −1) is 1. The solid line, representing the principal term (n = 0), has been
truncated because it approaches infinity at y+ = y′+ = 30. It is clear that the first
image term (n = −1), associated with the closer wall located at y+ = 0, is always
of the same sign as the principal term. It can also be noticed that this term gives
more weight to the region very close to the wall, where it becomes equal to the
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Figure 2. Comparisons of the different source terms in the integral Eq. (12) of the
pressure term with H(x,x′0) given by (10) at location y+ = 30. Separations in x-
and z-directions are zero. (a) φ11; (b) φ22. n=0 (principal term); n=-
1 (first image term); n=1 (second image term). The vertical coordinate is
arbitrarily normalized such that the maximum of n = −1 term is 1.

principal term and the two-point correlation changes sign for the component φ22,
as shown in Fig. 2b. However, this feature is not present in Fig. 2a and, moreover,
the contribution of this part of the domain to the integral is rather small. It must
be emphasized that even though the n = −1 source term appears negligible near
the point of zero separation relative to the n = 0 term, which goes to infinity, its
contribution to the integral is significant. Indeed, the value of the volume integral
of 1/r between r = 0 and r = 1 is only 2π. Thus, Figs. 2a and 2b clearly show
that the contributions of the image terms to the integral are of the same sign as
the contribution of the principal term. Unfortunately, it is not possible here to
evaluate quantitatively the relative weight of each term because it involves two-
point correlations with separations in the whole 3D-domain, which have not been
calculated.

At this point a very interesting conclusion can be drawn. The image terms in
the integral Eq. (12) with H(x,x′) defined by (10), which account for the wall
echo, actually have an amplification effect on the redistribution of turbulent en-
ergy between the different component of the Reynolds stress. Thus, it is time to
abandon the traditional way of modeling the damping of the redistribution, which
consists of introducing Gibson & Launder (1978) type terms involving functions of
the geometry. This damping can only be caused by the damping of the two-point
correlation itself, which is a consequence of the no-slip boundary conditions and the
wall-blocking effect.

This phenomenon is an inhomogeneity effect, which can only be accounted for
by non-local models, such as the elliptic relaxation model. However, it has been
shown in §4.1 that the behavior of the latter is not satisfactory in the log layer. The
following sections will show that this flaw is due to the fact that the model does
not account for the asymmetry of the correlation function in the direction normal
to the wall, which is a consequence of the variation of the length scale in inhomo-
geneous regions. By reformulating the elliptic relaxation equation, the damping of
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Figure 3. Correlation function defined by (26) calculated from the DNS data
at different y locations: y+ = 4; y+ = 14; y+ = 30; y+ = 80; y+ = 150;
y+ = 400; y+ = 590. Separations in x- and z-directions are zero. (a) f(x,x′) =
u1(x)∇2p,1 (x′)/u1(x′)∇2p,1 (x′); (b) f(x,x′) = u2(x)∇2p,2 (x′)/u2(x′)∇2p,2 (x′).

the redistribution in the log layer can be reproduced, without introducing any “wall
echo” correction term (§6.2).

5.2 Asymmetry of the correlation function in y-direction

The main purpose of this study is to investigate through DNS data the shape
of the correlation function defined by (22), which is modeled by an exponential
function in the elliptic relaxation method. First, it must be emphasized that this
model function is unique, i.e., it does not depend on the component of φij . This
feature is not supported by any theoretical result, but is necessary to warrant the
frame independence of the model. On the other hand, using DNS data, a correlation
function f(x,x′) can be calculated for each component of φij :

f(x,x′) =
uα(x)∇2p,β (x′) + uβ(x)∇2p,α (x′)
uα(x′)∇2p,β (x′) + uβ(x′)∇2p,α (x′)

, (26)

without summation over Greek indices. It is obviously impossible to derive a model
of f which matches the DNS results for all the components. Hence, the following
analysis should be interpreted in a qualitative rather than quantitative sense.

Figure 3 shows the correlation function f(x,x′) corresponding to components φ11

(Fig. 3a) and φ22 (Fig. 3b) for 7 different y locations, at zero x- and z-separation.
Each curve has been truncated for clarity, since the ratio (26) becomes rather
“noisy” for large separations. Several observations can be made from the figure:
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Figure 4. Comparison of shapes of the correlation function corresponding to
φ22 for separations in the 3 principal directions at different locations. (a) y+ = 14,
(b) y+ = 30, (c) y+ = 80, (d) y+ = 150, (e) y+ = 590. Separations: , x-
direction, (∆y = ∆z = 0); , y-direction, (∆x = ∆z = 0); , z-direction,
(∆x = ∆y = 0).

• The correlation functions corresponding to φ11 and φ22 are quite different. In
particular, the correlation length scale appears to be significantly larger at every
location for the 11 component than for the 22 component.
• The correlation function becomes negative at certain separations, particularly for

the 22 component.
• The correlation length scale varies with location. It increases rapidly when the

fixed point x moves away from the wall. Then, it seems to reach a maximum level
and decreases slightly as the center of the channel is approached. This behavior
seems to be qualitatively the same for both components.
• These functions have asymmetrical shapes, particularly in the log layer. As

pointed out in §4.1, the correlation function defined by (26) is not restricted
to values less than or equal to 1. It can be observed in Fig. 3b that this is indeed
the case. For instance, the correlation function at y+ = 400 reaches a maximum
value of approximately 1.15 at y′+ ' 405.

The main conclusion which can be drawn from the figures is that the correlation
function is very asymmetric. This feature is linked to the rapid variation of the
length scale, which increases with distance from the wall. Modeling the correlation
function by an exponential function leads to too much weight being placed in the
region between the point and the wall. Therefore, as will be described below, the
over-estimation of the pressure term in the log layer can be corrected by introducing
some asymmetry in the model for f(x,x′).

5.3 Anisotropy of the correlation function

Figure 4 shows the correlation function corresponding to φ22, evaluated from
(26) with α = β = 2, for separations in the principal directions. Note that for
separations in y-direction the correlation function goes to −∞ when the point y′

approaches the wall, as can be seen in Figs. 4a and 4b. This is because in the
ratio (26), the one-point correlation involves u2(y′), which behaves as y′2 in the
vicinity of the wall, whereas the two-point correlation only contains u2(y) which is
constant with respect to y′. Accordingly, the ratio behaves as y′−2 near the wall.



316 R. Manceau, M. Wang & P. Durbin

f
(x
,x
′ )

-40
-30

-20
-10

0
10

20
30

40 -40
-30

-20
-10

0
10

20
30

40

0

0.5

1
(a)

∆x+ ∆y+

∆
y

+

∆x+

-40 -30 -20 -10 0 10 20 30 40

-40
-30
-20
-10
0
10
20
30
40

(b)

Figure 5. Correlation function corresponding to φ22 at y+ = 80 for separations
in the x-y plane (∆z = 0). (a) f(x,x′), (b) Iso-correlation contours. Contour levels
from −0.5 to 1 are separated by 0.1.

All the Figs. 4a-e show that the velocity u2 and the y-derivative of the Laplacian of
the pressure are correlated over a longer distance in the streamwise direction than
in other two principal directions. This feature is consistent with the streamwise
elongation of the turbulent structures observed in the experiments. This anisotropy
is very important near the wall (Fig. 4a) and becomes less pronounced away from
it (Figs. 4b-e). Note that at the center of the channel, the correlation function is
still anisotropic.

The anisotropy of the correlation function at location y+ = 80, corresponding
to Fig. 4c, can also be observed in Fig. 5. In 5a, f(x,x′) is plotted as a function
of separation in the x-y plane (∆z = 0). Figure 5b shows the contour levels of
this surface. One can observe that near the point of zero separation, the highest
contour, which corresponds to f(x,x′) = 1, is almost round. The shape of the
contours becomes more elongated in the x-direction as the level decreases.

The asymmetry of the correlation function in y-direction, emphasized in §5.2,
appears in Fig. 5b as well. When looking only at the spacing between consecutive
contours, the function may seem somewhat symmetric. But it must be noted that
the contours are not centered at the point of zero separation. Actually, the highest
contour level plotted, f(x,x′) = 1, contains this point. This asymmetry is clearly
observed as well in the regions of negative contour values. First, they are not
symmetrical with respect to zero, since they are approximately centered at ∆y+ =
−25 and ∆y+ = 35. Secondly, the extremum of the region corresponding to positive
separations is much lower than the other one.

The above observations demonstrate that the correlation function is not only
asymmetric in the y-direction but also anisotropic, especially in the very near-wall
region (y+ < 30). Consequently, it calls into question the use of the exponential
function, which does not distinguish between streamwise, wall-normal and spanwise
directions. However, this anisotropy cannot be considered as being responsible for
the defects noted in §4.1, since in the case of channel flow, the non-local effect
obviously does not act in the homogeneous directions. Nevertheless, this points out
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Figure 6. Length scales based on curves in Fig. 4. (a) Comparison of the different
length scales in y-direction: / Left length scale; � Central length scale; . Right length
scale; L = CL max

(
k3/2ε−1, Cην

3/4ε−1/4
)

with CL = 0.045;Cη = 80.0. (b)
Comparison of the length scale in the 3 directions: � Central length scale in y-
direction; ◦ Length scale in x-direction; Length scale in z-direction.

a feature of the correlation function which can become important in more complex
flows.

5.4 The correlation length scale

The length scale L entering the model of the two-point correlations (13) is not
easy to determine in DNS data. As emphasized in §4.1, it does not correspond
rigorously to the integral scale (20).

It is noted that L is the integral of the function exp(−r/L) from zero to infinity.
This property allows one to evaluate a length scale in each direction, but it is
unfortunately not satisfactory. Since the x-direction is homogeneous, the integral
over x of quantities involving x-derivatives is zero. Hence, the evaluation of the
length scale in x-direction of the correlation function associated to φ11, i.e., the
function defined by (26) with α = β = 1, gives exactly zero. This is due to the fact
that it does not give the right weights to the different regions. Indeed, considering
isotropic turbulence and ignoring the image terms, it can be seen that the 3-D
integral (20) reduces to the 1-D integral

∫∞
0
rf(x, r)dr, which increases the relative

weight of the large separations.
The method which will be used in the following is not an integral method. It

can be noted that the function exp(−r/L) takes the value 1/e for r = L. Thus, a
length scale can be defined by the separation where the correlation function takes
this value. Although this method is very simple, it provides a measure of the width
of the function in each direction. The drawback is that it only characterizes the
shape of the function at small separations and, in particular, it does not account
for the negative excursions.

Nevertheless, this method allows the evaluation of the qualitative behavior of the
length scale across the channel and distinguishes between the length scales evaluated
at the left and right of the zero separation point, characterizing the asymmetry of
the function. Figure 6 shows the different length scales which can be evaluated from
the correlation functions depicted in Fig. 4. Figure 6a compares the different length
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scales defined in the y-direction: the left (right) length scale corresponds to the
value of negative (positive) separation at which the correlation function is equal to
1/e, and the “central” length scale is the mean of the left and right length scales. It
can be observed that, except for the peculiar behavior at y+ = 14, the asymmetry
is weak close to the wall and becomes more pronounced away from it. This trend
is reversed when the center of the channel is approached.

The growth of the central length scale with y is nearly linear up to y+ = 200. In
Fig. 6a, the length scale used in the elliptic relaxation model is also plotted. It can
be seen that the global shape is very satisfactory, although the coefficient CL has
been reduced by a factor of 4. This value of CL cannot be considered as the value
which must be used in the model, since it only corresponds to the component φ22.

Figure 6b shows the evolution across the channel of the length scale in the 3
principal directions. Although their amplitudes are different, their behaviors appear
quite similar, except for y+ < 100, where a spike appears in the streamwise length
scale.

These results indicate that the length scale used in the model, which is the stan-
dard turbulent length scale bounded by the Kolmogorov length scale, represents
quite satisfactorily the variations of the correlation length in the channel. The
coefficient CL is likely over-estimated, but the results presented here are mainly
qualitative and therefore, the coefficient tuned by computer optimization must be
preferred. Overall, these results justify the way the length scale is modeled in the el-
liptic relaxation method. The use of the Kolmogorov length scale as a lower bound,
which was originally introduced only to avoid singularities in the model, has proved
important to improving the predictions of the model. This is due to the behavior of
the correlation length described above, which does not go to zero and varies linearly
in the vicinity of the wall.

6. Proposed modification to the model

6.1 Correction to the model of the correlation function
The results presented in the previous section show that the model of the corre-

lation function can be improved. For the present study, whose main purpose is to
find ways to correct the wrong behavior in the log layer as detailed in §4.1, the most
noteworthy feature of the correlation function is its asymmetry in the y-direction.
Indeed, Fig. 7 shows that, when the original correlation function model is used, the
two-point correlation obtained by multiplying the model function by the one-point
correlation from the DNS data (cf. (26)), is larger toward the wall than away from
it. This is very different from the two-point correlation computed directly from the
DNS fields, which is quite symmetrical. Consequently, the integral of the two-point
correlation is over-estimated, leading to the incorrect amplification of the pressure
term pointed out in §4.1.

This work does not attempt to find the best way to modify the model. Rather,
it presents a direction in which an improvement of the model can be sought. An
example of modification is presented in Fig. 7. The asymmetrical correlation func-
tion shown in 7b is obtained by introducing a dependence on the gradient of the
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Figure 7. A priori test of the two-point correlation obtained using two different
correlation functions. (a) One- and two-point correlations. All quantities are nor-
malized by the value of the two-point correlation at zero separation. One-point
correlation from DNS (x = x′); ◦ Two-point correlation from DNS; Two-
point correlation obtained using the symmetrical exponential correlation function
shown in (b) and the one-point correlation from DNS; Two-point correla-
tion obtained using the asymmetrical exponential correlation function shown in (b)
and the one-point correlation from DNS. (b) Model of the correlation function.

Symmetrical correlation function: f(y, y′) = exp(−|y′ − y|/L); Asym-
metrical correlation function: f(y, y′) = exp(−|y′ − y|/(L+ (y′ − y)dL/dy).

length scale: f(y, y′) = exp(−|y′− y|/(L+ (y′− y)dL/dy). The resulting two-point
correlation, shown in 7a, is much closer to the DNS value than the one obtained
using the original model. In particular, the new function corrects the erroneous
shape observed between the point and the wall. The next section will detail the
consequence of this new model on the form of the elliptic relaxation equation.

6.2 Reformulation of the elliptic relaxation equation
The simple modification of the correlation function model proposed above can

easily lead to a new form of the elliptic relaxation model. The correlation function
is henceforth modeled by

f(x,x′) = exp
(
− r

L+ ru · ∇L

)
, (27)

where r and u denote respectively ‖x′ − x‖ and (x′ − x)/‖x′ − x‖. Considering
the new term ru · ∇L as a small correction, a Taylor expansion of (27) leads to the
following expression:

f(x,x′) = exp
(
− r
L

)
+
r2

L2 exp
(
− r
L

)
u · ∇L . (28)
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Using (28), the integral equation of the pressure term leads to two terms φaij and
φbij . The first term is the same as the original one and satisfies

φaij − L2∇2φaij = −L
2

ρ
gij , (29)

where gij denotes the one-point correlation uj∇2p,i + ui∇2p,j. The second term

φbij = 8
L3

ρ
∇L · ∇gij (30)

is a correction term. Following Durbin (1991), the RHS of (29) can be replaced
by any quasi-homogeneous model, which corresponds to modeling gij by ρφhij/L

2.
There are two possible ways to take into account the correction term in the model.
First, it can be considered as an explicit correction as

φaij − L2∇2φaij = φhij ; (31)

φbij = 8L3∇L · ∇
φaij

L2 . (32)

Here, (31) gives exactly the same solution as the original model, while (32) provides
an explicit correction. The second possibility is to introduce the correction directly
into the elliptic relaxation equation in the following manner:

φij − L2∇2φij − 8L3∇L · ∇φij
L2 = φhij . (33)

The same analysis as in §4.1 can be conducted in the log layer, which yields the
following results:

(a) with the explicit formulation (31) and (32): φij = 1− 24C2κ2

1− 2C2κ2 φ
h
ij ;

(b) with the implicit formulation (33): φij = 1
1 + 22C2κ2φ

h
ij .

Both new formulations give a reduction of the redistribution, in contrast to the
original one, which gave an amplification, as pointed out in §4.1. Note that the
reductions are identical up to the third order in the small parameter Cκ.

Thus, the simple modification of the model for the correlation function proposed
above overcomes the deficiencies of the original model in the log layer. The so-called
“wall echo effect”, called into question in §5.1, can be obtained only by accounting
for the asymmetry of the correlation function in the direction normal to the wall,
i.e., by introducing a dependence on the gradient of the length scale in the model.
This can be compared to the correction applied by Launder & Tselepidakis (1991),
who sought to avoid the use of wall echo terms by introducing an “effective velocity
gradient” in their pressure term model, defined as

∇Ueffi = ∇Ui + ceffL(∇L · ∇)∇Ui (34)

(see Wizman et al. (1996) for more details). This approach accounts for the inho-
mogeneity of the flow in the near-wall region, which is very similar to the present
work.
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7. Conclusions

A DNS database for a channel flow at Reτ = 590 has been used to assess the valid-
ity of the model assumptions in the elliptic relaxation method. Several conclusions
can be drawn:
• The method, which is based on the approximation of the correlation function

(26) by an exponential function, is consistent with DNS data, although some
refinements are necessary. In particular, the length scale used in the model,
defined by the standard turbulent length scale bounded by the Kolmogorov length
scale, reproduces rather surprisingly the overall shape of that obtained from DNS
data.
• The shape of the correlation function depends on the component of the two-point

correlation tensor used to evaluate it. Therefore, one can not expect an accurate
reproduction of all the two-point correlations. Only a global accounting of the
non-local effect is possible.
• An analysis of the image terms entering the approximate Green function of the

channel shows that they actually lead to an amplification, rather than reduction,
of the redistribution between the components of the Reynolds stress, in contrast
to the common belief. The reduction can only be due to the damping of the source
term in the integral equation, especially for the diagonal component normal to
the wall. Accordingly, this is not a wall echo effect, but a wall blocking effect.
• The correlation function computed from DNS data is strongly asymmetric in

the direction normal to the wall, particularly in the log layer. Modeling it by
a simple exponential function gives too much weight to the region between the
point and the wall. Since the one-point correlation increases rapidly toward the
wall, it yields an over-estimation of the pressure term. This is the reason for the
observed erroneous amplification of the redistribution in the log layer.
• The correlation function is anisotropic. In particular, very close to the wall, the

iso-correlation contours are strongly elongated in the streamwise direction. This
feature has no influence on the channel flow, and its effect on complex flows
cannot be determined in the present study.
• A simple modification to the correlation function model, accounting for the ob-

served asymmetry in the direction normal to the wall, allows the derivation of
a new formulation of the elliptic relaxation equation which does not possess the
same defect as the original version. This result shows that the reduction of the
redistribution in the log layer can be reproduced by introducing inhomogeneity
effects and avoiding the use of any wall echo correction terms.

Based on the physical insight gained through this study, effort will continue to be
directed toward the improvement of the elliptic relaxation method. Different formu-
lations of the model will be tested in simple flows, in order to assess the improvement
of the predictions. The new model will be calibrated on the channel flow and the
boundary layer flow to allow its application in more complex configurations.
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