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DNS study of stability of trailing vortices

By P. Orlandi1, G. F. Carnevale2, S. K. Lele AND K. Shariff

Three-dimensional numerical simulations are used to investigate the possibility of
diminishing the strength of trailing vortices. Direct numerical simulation is first
used to reproduce results of recent laboratory experiments on the short-wave co-
operative instability for two counter-rotating vortices. The effect of perturbing the
vortices by internal and external density perturbations is considered. It is found
that perturbing trailing vortices with temperature variations may be a useful means
of initiating the short-wave instability and ultimately causing the cross diffusion of
vorticity necessary to destroy the coherence and strength of the trailing vortices.

1. Introduction
Vortices in the wake of heavy aircraft pose a serious threat to following aircraft.

The danger is particularly severe during landings and take-offs for two reasons.
First, the extension of the flaps of the leading aircraft may create trailing vortices
that are even stronger than the wing tip vortices. Second, the proximity of the
following aircraft to the ground means that a small perturbation in its trajectory
may be disastrous. Thus sufficient separation between planes must be maintained
to allow time for the dispersal of trailing vortices. If it were not for this require-
ment, intervals between landings and take-offs could be reduced significantly with
obvious economic benefit. There are two strategies being pursued to ameliorate this
situation. One involves attempting to better quantify the time interval needed for
safety given current plane designs. The other considers the possibility of modifying
and controlling the vortices to accelerate their dispersal. In either case, an improved
knowledge of the possible instabilities of trailing vortices is essential. Thus, in an
age of jumbo jets and congested airports, the evolution of vortices shed from the air-
planes is a pressing issue and recently has received a great deal of attention. There
have been several experimental studies in real flight conditions and in wind tunnels,
as discussed in the review article by Spalart (1998). Also, in the last few years
direct numerical simulations have been performed to study aspects of this problem.
For example, the influence of atmospheric turbulence on creating instabilities with
a wavelength on the order of the diameter of the vortex cores was studied by Risso,
Corjon & Stoessel et al. (1996) in a relatively small computational domain. It is
also possible to simulate the Crow (1972) instability, which is of much longer scale.
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Figure 1. Schematic diagram of a pair of counter-rotating trailing vortices. In
this configuration the mutual advection causes the vortices to move in the downward
direction (the negative x direction). The spanwise separation of the centers of the
vortices is b and the core size is a. The orientation of the axis is also displayed.
Note that the z axis points out of the page.

The effects of the Crow instability can be seen on clear days when airplanes fly at
high altitudes and their contrails are visible. As the instability unfolds, the contrails
merge at places to form elongated rings or loops.

Trailing vortices come in counter-rotating pairs (see Fig. 1). The wing tips of
the plane each shed one vortex in such a pair. Also the flaps when extended shed
pairs of vortices. The diagram in Fig. 1 shows the separation distance b between the
centers of the vortices, the core size or radius a, and the orientation of our coordinate
system. The y direction, pointing from the center of one vortex to the other, we
will call the spanwise direction. The direction along the core, the z direction, we
will refer to as axial. The signs associated with the centers of the vortices in the
figure refer to the sign of the z component of vorticity, ωz. For the orientation of
the pair of counter-rotating vortices shown in the figure, the propagation by mutual
advection is in the negative x direction.

We can consider two relevant processes for decreasing the dangerous effects of
trailing vortices. The maximum velocity due to a vortex of given strength or circu-
lation Γ scales as Γ/a. Thus the dangerous effects of the vortex can be decreased
by increasing its core radius, which can be accomplished most efficiently by tur-
bulent diffusion. This will not, however, diminish the circulation. Decreasing the
circulation can be accomplished by cross diffusion and cancellation between the
two-counter rotating vortices. Although the Crow instability can lead to a decrease
in Γ by cross diffusion, it appears that it proceeds too slowly and over too long a
distance. We will focus here instead on the so called ‘elliptical cooperative insta-
bility, which has a length scale comparable to the vortex core size and a growth
rate that can exceed that of the Crow instability. This short-wavelength instability
has been the subject of a number of theoretical studies (c.f. Widnall et al.1974;
Pierrehumbert, 1986; Bayly, 1986; Landman and Saffman, 1987; and Waleffe 1990).
The basic mechanism involved in the instability is that strain produced by one of
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the vortices on the other amplifies bends in the vortex profile, creating a sinusoidal
modulation on the core shape and position along the axial direction. The instability
has been demonstrated in laboratory experiments by Thomas and Auerbach (1994)
and Leweke and Williamson (1998). These laboratory experiments verified many
of the predictions of linear instability theory. In these experiments, the Reynolds
number, ReΓ = Γ/ν, ranged from 2500 to 12000. At least at the lower end of this
range, the values of ReΓ are sufficiently low to permit direct numerical simulation
of the experimental flows with a reasonable number of grid points. Believing that
there will be many similarities between the instability as observed in the laboratory
and that which may occur for the much higher Reynolds number flows caused by
the trailing vortices in airplane wakes, we began our investigation with a numerical
study of the laboratory experiment. In Section 2, we describe simulations in which
we applied a random velocity perturbation to two counter-rotating vortices. The
evolution in these simulations showed a short-wave cooperative instability closely
reproducing that observed in the laboratory. In all of the simulations presented
here the initial Reynolds number was fixed at ReΓ = 3400.

Our investigation of the laboratory experiments leads to the conclusion that, in
order for the short-wave cooperative instability to be of practical use in dispersing
trailing vortices, the fastest growing mode of the instability should be selectively
and strongly forced. One method of forcing that may be feasible would be to apply
a strong temperature variation to the trailing vortices with a wavelength matched
to the faster growing cooperative instability. Following this idea, we performed a
series of simulations in which temperature perturbations were applied either in the
cores of the vortices or in the vicinity of the vortices. The results showed that
this method can indeed be used to force the destruction of the vortices much more
rapidly than by the application of random velocity perturbations. This is discussed
in Section 3.

2. Simulation of the laboratory experiments
The appropriate evolution equations are the Navier-Stokes equations for a uniform

density incompressible fluid. Our numerical model is based on the momentum
equation which can be written as

∂ui
∂t

+
∂uiuj
∂xj

= − ∂p

∂xi
+ ν

∂2ui
∂xj2

, (1)

with ∇ · u = 0. Our numerical scheme uses a staggered mesh with the velocity
components located on the faces of the cell and the pressure at the center, and it
uses a fractional step method (Kim & Moin 1985). This scheme is described in
detail in Verzicco and Orlandi (1996).

The complicated mechanism by which vortices are created in the laboratory would
be rather difficult to simulate and, in any case, not of prime concern in this study.
Thus we are content to perform simulations in which the initial state is a pair of
counter-rotating vortices. The choice of the structure of the initial vortices requires
some care. If one starts with vortices whose vorticity distributions in an x − y
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cross section are radially symmetric, then there will be a transition period in which
fluid is shed in the wake of the vortices during the period in which the structure
of each vortex adjusts to the presence of the other vortex. This adjustment is a
purely two-dimensional process (cf. Carnevale & Kloosterziel 1994) and is of little
interest to the present study. We could wait for this adjustment period to pass and
then use the resulting adjusted vortices as the initial vortices for our study. As an
alternate approach, we found that the adjustment phase could be mostly eliminated
by using vortices whose structure is given by the analytical formula for the vortices
of the Lamb dipole (1945, section 165). This is a vortex structure in which there are
two counter-rotating vortices with the entire dipolar vorticity distribution confined
in a circular region whose radius we will denote by aL. When unperturbed, the
Lamb dipole propagates at a constant speed UL without change. For sufficiently
high resolution, this form-preserving motion can be readily simulated. Taking as an
initial condition the two semicircular halves of the Lamb dipole separated by some
distance, we found that in the subsequent evolution the two vortices adjusted the
presence of each other more smoothly and without the large amount of vorticity
shedding observed in the case initialized with two circularly symmetric vortices.
In all of the simulations presented below, the unperturbed basic state is taken as
the two halves of the Lamb dipole with the vorticity extrema separated by some
distance b, and the initial condition is prepared by adding perturbations to this.

To initialize our simulations of the laboratory experiments, the perturbation used
was a randomly generated three-dimensional velocity field. This perturbation was
localized to the region were the axial vorticity ωz0 was greater in magnitude than
a given threshold (set arbitrarily at 20% of the unperturbed vorticity maximum).
The random velocity thus generated was not solenoidal, but this defect is remedied
automatically by the first time step of the simulation, which projects the initial
velocity onto a solenoidal field. The perturbed field is then found to have pointwise
fluctuations in the cross vorticity components, ωx and ωy of at most 20% of |ωz0|max.
The basic simulation then consisted of the interaction of the pair of the counter-
rotating vortices for a fixed period of time. Three different values were used for the
separation between the vortices to see how the growth of the instability varied with
separation. We began by comparing the results of a set of runs with resolution Nx =
Ny = Nz = 64 and domain size (Lx, Ly, Lz) = (2π, 2π, π) where Nx is the number
of grid points in the x direction and L is the size of the computational domain
in the x-direction in units of the unperturbed Lamb dipole radius aL. These runs
produced velocity fields that seemed under-resolved, lacking features evident in the
experimental visualizations. A further set of runs with Nx = Ny = Nz = 128 was
then performed. These simulations resembled those in the laboratory experiments
very well, and it seemed that this resolution was sufficient to resolve the structures
that were important to the short-wave cooperative instability. However, when we
checked the speed of the dipole, we found it fell significantly short of the speed of
the theoretical dipole. We obtained some improvement by increasing the domain
size and resolution in the spanwise direction. This is because, in periodic geometry,
if the vortices are not sufficiently far from the boundaries in the spanwise direction,
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Figure 2. History of the positions of the vorticity maxima. The line with symbols
corresponds to the experimental data of Leweke and Williamson (1998). The other
curves correspond to the numerical simulations with b = 1.9, b + 1.4,
and b = 1.

they will strongly feel the presence of the periodic replicas. As discussed below, we
found that Ly = 3π was a reasonable choice for our simulations. Also we found
that Lz = π was sufficient to allow two full wavelengths of the most unstable mode.
Thus our final set of simulations was performed with (Nx, Ny, Nz)=(128,192,128)
and (Lx, Ly, Lz) = (2π, 3π, π).

A theoretical estimate of the speed of the dipole can be made based on the speed
of a dipole composed of two line vortices. The azimuthal velocity field created by a
straight line vortex of circulation Γ at a distance b from the vortex is vθ = Γ/(2πb),
where θ is taken as the azimuthal angular coordinate in a cylindrical coordinate
system centered on the vortex. Thus, two mutually advecting line vortices of equal
strength separated by a distance b will propagate at this speed. For the problem
of trailing vortices, it is often convenient to nondimensionalize length by b, the
separation between centers of the vortices, and time by τ = 2πb2/Γ, the time it
takes the dipole to travel a distance b. In these units, which we shall refer to as τ
units, the speed of the idealized dipole of line vortices is 1. This system of scaling
will be denoted by an asterisk superscript. Another system that is useful here is the
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advective time scaling based on the unperturbed Lamb dipole with zero separation
between the halves of the Lamb dipole. The length unit in this system is aL and the
time unit is aL/UL. This system we will refer to as advective scaling. All quantities
without the asterisk superscript will be in these units.

In Fig. 2, we show histories of the position of the maximum of the vorticity for
three simulations with different values of b. The circulation in advective units was
the same in each case: Γ = 6.83. The values of b were measured a short time after
the initial adjustment of the dipole. In units of aL the values of b were 1.0, 1.4, and
1.9. In Fig. 2, the position is in units of b, and time is in units of τ . Also shown in the
diagram are the results from one of the laboratory experiments as given by Leweke
and Williamson (1998). The laboratory experiments for the early evolution show a
speed almost precisely equal to 1 in τ units. Our simulations, however, show speeds
of about 0.85. There are two reasons for the reduced speed. First of all, since the
vortices involved here are not circularly symmetric, there is some ambiguity about
how b should be chosen. We simply measured the distance between the extrema
of vorticity. For the Lamb dipole, with no separation between the halves of the
dipole, the theoretical speed in units of b and τ is, in fact, approximately 0.87 (cf.
Carnevale, Kloosterziel and Philippe, 1993). Thus some of the error may be due to
our definition of b when b is close to 1. This cause for discrepancy should diminish as
b increases due to the fact that the vorticity distributions for each vortex would then
become more circularly symmetric. Unfortunately, in a periodic domain a second
problem then arises. As b increases, the effect of the periodic replica of the vortices
on the speed of the dipole increases. For example, on a domain with Ly = 3π (in
units of aL) and with b = 2, there would be approximately a 15% decrease in speed
due to this effect. We had to make a decision about choosing the domain size that
would be large enough to give reasonable values for the speed and yet with a high
enough resolution to observe small structures during the breakdown of the vortices.
Some experimentation suggested that Ly = 3π was a reasonable compromise.

There are various quantities that can be used to measure the progress of the
cooperative instability. For the unperturbed pair of vortices, the only nonzero com-
ponent of the vorticity is the axial vorticity ωz. Thus a good indicator of the growth
of an instability would be the evolution of the maximum value of the magnitude
of one of the other components of vorticity. In Fig. 3a we plot the evolution of
the maximum value of the spanwise vorticity ωy for the three simulations with
different values of b. Vorticity and time have been nondimensionalized using τ as
defined above. Also plotted is the history of the maximum value of the axial vor-
ticity (chain-dashed line) for one of the simulations. The curves for ωy each have a
section that is roughly linear on this linear-logarithmic plot, indicating exponential
growth in time. In the inviscid theory, the growth rate for the short-wave instability
is constant when measured in τ units. Thus, the approximate collapse of the data
for the three values of b also suggests that this exponential growth is the result of
the short-wave cooperative instability.

The viscous theory of the instability does introduce some dependence on b which
does not seem correctly reproduced in our simulations. As discussed above, there is
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Figure 3. a) History of the maximum value of the spanwise vorticity ωy for three
cases: b = 1.9, b+ 1.4, and b = 1.0. For comparison, the history
of the maximum value of ωz ( ) for b = 1 is also plotted. b) History of the
circulation normalized by its initial value. The line types for the different values of
b are as in panel (a)

some ambiguity in the definition of b especially when the vortices are close together.
For the case of the largest b represented (solid line), the growth rate is approximately
σ∗ = 0.91 while the theoretical prediction, taking viscous decay into account, is
σ∗ = 0.99. We found some improvement in the correspondence in a simulation in
which the spanwise domain size was increased to 4πaL. In that case σ∗ = 0.96.
However, the viscous theory predicts that σ∗ should decrease with b (cf. Leweke
and Williamson, 1998) while here we find just the opposite.

Note that the value of ωy becomes comparable to ωz for t∗ ≈ 13. The evolution
of ωx (not shown) is similar to that of ωy. The vorticity components in x and y
directions becoming comparable in magnitude to the axial vorticity indicates that
the dipolar structure of the vortices may be breaking down. As we will see, the
ωx and ωy components produce strong deformations associated with small scales
as would occur in a transition to turbulent flow. One indication of the destruction
of the vortices is the history of the circulation which is shown in Fig. 3b. This
circulation Γ was obtained by integrating the spanwise vorticity in each xy plane
for 0 ≤ y ≤ Ly/2 and then separately for −Ly/2 ≤ y ≤ 0, and then finally averaging
over z. By t∗ ≈ 13, in all cases, there is a significant drop in Γ, and this occurs
at approximately the same time as the values of ωx and ωy become comparable to
that of ωz. Actually, this Γ is not an ideal measure of the circulation or strength of
the vortices. The circulation around a material circuit is changed by viscosity only,
but due to lack of symmetry of the sinuous mode, the decay of Γ as defined here is
not necessarily a measure of the destruction of circulation by viscosity. The present
measure could decrease even in the inviscid case: at a cross-section where there is
a rightward bend, the circulation in the right half decreases due to transport of
opposite sign vorticity from the left half; at a cross-section where there is a leftward
bend, the circulation in the right half also decreases because it is being transported
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into the left half. For future work, a better measure might be the circulation around
a suitable ensemble of material circuits.

To visualize the three-dimensional character of the shortwave instability, we pro-
duced isosurface plots of vorticity and velocity. For each of the three simulations
with different values of b, the vorticity structures observed were qualitatively similar
once time was scaled with τ . Visualization by this method shows some structures
that are very similar to those observed by dye visualization in the experiments by
Leweke & Williamson (see the top panel of Fig. 4). In Fig. 4, we show the isosur-
face plots of the magnitude of the vorticity |ω| for the case b = 1.9. The isosurface
value is the same at each time shown and is |ω/ω0| = 0.4 where |ω0| is the max-
imum magnitude of the unperturbed dipole vorticity field. Note that in both the
laboratory experiments and the simulations the instability is sinuous; that is, the
sinusoidal bending of the vortex cores are in phase. This is interesting because when
one considers the effect of one vortex upon the other to be a pure strain, there is
no mechanism for choosing the phase relationship between the distortions of each
vortex. The isosurface plot for t∗ = 9.0 represents the field at a time in the expo-
nentially growing phase indicated in Fig. 3a. As we will see below, the perturbation
vorticity and velocity fields at this point match the predictions of linear theory
well. By time t∗ = 10.5, nonlinear effects are evident. The formation of ‘caps’
on the points where the isosurface is most curved results from vortex stretching in
the spanwise direction. This is followed by the production of the vortices seen at
t∗ = 12.0, which span the two original cores and which begin the cross-diffusion of
circulation.

It is interesting to consider the form of the perturbation during the exponential
phase of the growth. Theoretical predictions for the fastest growing unstable mode
can be found in Leweke and Williamson (1998) and Waleffe (1990). In Fig. 5 we
show contour plots of the axial velocity and vorticity perturbation fields in an x−y
cross section at time t∗ = 9.0. The cores of the vortices are marked by the thick
solid lines, which are vorticity magnitude contours at a level that is a factor of e−1

less than the instantaneous maximum. The perturbation fields are qualitatively
as predicted by the linear theory. The asymmetry here is probably due to the
asymmetry in the original random forcing. According to the theory, there should
be a ±45◦ angular difference in the orientation of the the dipolar perturbation
structures on the two vortices. In addition, the orientation of the dipolar velocity
perturbation field should be perpendicular to that of the perturbation vorticity field.
We see that these relationships hold approximately in this cross section.

As for the wavelength of the fastest growing mode, theory based on a Rankine
vortex (uniform vorticity core) predicts a wavelength λ = 2.51aR, where aR is the
radius of the core. Unfortunately, since our vortices are not circularly symmetric
in cross section and do not have a uniform distribution of ωz, it is not clear what
distance to use for aR in making a comparison with the theory. Since the Rankine
vortex achieves its maximum vorticity at the radial position aR, we can try to
substitute the radius where the maximum value of velocity is achieved along some
direction for the value of aR. At t∗ = 9.0, for the case b = 1.9 shown in Fig. 5, the
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Figure 4. Top: dye visualization of the short-wave instability in the laboratory
by Leweke & Williamson (1998). Four lower panels: isosurface plots of |ω/ω0| = 0.4
for the case of the two vortices separated by b = 1.9. The times represented from
left to right, top to bottom, are t∗ = 1.5, 9.0, 10.5, and 12.0.
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Figure 5. Contours of ω′z (left) and of u′z (right) in an x-y cross section of one
vortex in the dipole shown in Fig. 4 (b = 1.9). The time is t∗ = 9. The thick solid
curves indicate the contour of total vorticity magnitude |ω| at a level of e−1 times
the maximum value.

distance between the point of minimum velocity and maximum vy for one of the
vortices is approximately 0.69aL. This is an upper bound on the velocity induced
by the core given the elongation of the core in the x-direction. Substituting this
value for aR, the wavelength should be λ = 1.73aL, whereas, in the simulation
the wavelength is λ = 0.5πaL ≈ 1.57aL instead, which is within about 10% of the
predicted value. The wavelengths in the periodic domain are discrete and so the
instability cannot pick out a wavelength that is not one of the discrete set. We
tried varying Lz by 10% to allow the wavelength to better match the theoretical
prediction and found the results to be substantially the same as those given above.

From a practical standpoint, it seems from Fig. 3a that random perturbations
applied to the vortices is an inefficient way of initiating the cooperative instability.
The initial perturbation has maximum vorticity amplitude of about 10% that of the
unperturbed vortices. However, this decays greatly in the initial transient period,
and importantly, we see that the larger the value of b, the more profound is the initial
decay. It took about 5τ periods for the exponential growth to become evident. If
we imagine linearizing the equations of motion about the unperturbed vortices and
considering the eigenmodes of the resultant differential operator, it appears that
our initial perturbation is made of a superposition of eigenmodes, many of which
are decaying. The projection of the initial perturbation on the growing eigenmodes
must be very small. If a 10% perturbation could be applied in the pure fastest
growing normal mode, then the transient phase could be avoided. With an inviscid
theoretical maximum growth rate of σ∗ = 9/8, the period of growth would only need
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to be 2τ . We attempted to initialize the flow field with the dipole perturbed by the
fastest growing eigenmode predicted by theory based on the Rankine vortex. This
reduced the transient period by about half, but that still left a significant period
of decay. Given the distortion of each vortex due to the presence of the other, it is
not surprising that the theoretical normal mode based on the Rankine vortex is not
a pure normal mode for the actual dipole. In addition, it is probably not practical
from the viewpoint of aircraft design to consider the application of a perturbation
exactly designed to match the velocity field of the pure normal mode. Thus, in the
next section, we turn to the question of finding a perturbation or forcing which is
more readily applied to the destruction of the dipole.

3. Density perturbations
As a practical method for strongly perturbing trailing vortices, we considered

the application of density perturbations both within and exterior to the vortex
cores. Such perturbations could be achieved through heating. If the perturbation is
applied with a variation in intensity along the axial direction, then a buoyancy force
of varying strength will be felt along the length of the vortex. If the wavelength
of the spatial variation of the perturbation is tuned to that of the cooperative
instability, then not only will the vortex be disturbed by the buoyancy forcing, but
also by the interaction of the neighboring vortex through the cooperative instability.

The simplest approximation that captures the buoyancy force due to small density
variations is the Boussinesq approximation. If the acceleration of gravity is taken
to be in the negative x-direction, which is the direction of our dipole motion, then
the Boussinesq approximation for the momentum equation can be written as

∂ui
∂t

+
∂uiuj
∂xj

= − ∂p
′

∂xi
+

1
Re

∂2ui
∂xj2

− θδi1, (2)

and the equation for the density is

∂θ

∂t
+
∂θuj
∂xj

= +
1

ReSc

∂2θ

∂xj2
. (3)

The notation assumes the directions x, y, z are numbered sequentially from 1 to 3,
and δij is the Kronecker delta. In these equations we nondimensionalize length by
aL and time by aL/UL where aL and UL are the radius and speed of the unperturbed
Lamb dipole. The dimensionless density θ is given by

θ̂ =
ρ′gaL
ρ0U2

L
, (4)

where ρ′ is the perturbation to the background density ρ0 and g is the acceleration
of gravity. Note that p′ is the pressure less the background pressure −ρ0gx. The
Reynolds number is given by Re = ULaL/ν, and Sc is the Schmidt number given
by Sc = ν/κ where κ is the thermal diffusivity.
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In deriving the Boussinesq approximation, one assumes that ρ′/ρ is sufficiently
small. In particular, a term equal to(

ρ′

ρ

)(
1
ρ0

∂p′

∂x

)
has been neglected. Thus the approximation is strictly valid only if this term is
small compared to the retained term θ. This can be translated into the statement
that the centripetal acceleration within the trailing vortex, which is on the order
of U2/a, should be much less than the acceleration due to gravity. Assuming a
vortex circulation of 100m2/s and a core radius of about 5m would make the ratio
of centripetal to gravitational acceleration about 1/2. Thus it may be necessary to
use the full Navier Stokes equations for accurate predications, but we can get some
first insights by using the simpler Boussinesq approximation.

To see how buoyancy forcing affects a pair of counter-rotating vortices, we began
with a simple test. We used the same basic vorticity distributions as in the previous
section; that is, the vortices are initially taken as the separated halves of a Lamb
dipole. To these vortices we added an initial distribution of θ that was taken to
be independent of the axial coordinate x and proportional to the magnitude of the
vorticity in each of the vortices with the maximum amplitude set at θ0. In one case
we took θ0 = +1 and in the other θ0 = −1. Since there was no variation in the axial
direction, two-dimensional numerical simulations sufficed to show the evolution. In
Fig. 6, where we have plotted the trajectories of the extrema of vorticity for these
two simulations, we see the interesting effect of the temperature perturbation. As
predicted by Turner (1959), the speed of the ‘heavy’ vortices which are originally
moving in the −x direction decreases and the separation of the vortices increases. It
may seem counterintuitive that adding weight to the downward propagating vortices
can slow them down, but, in fact, the total momentum does increase as the vortices
separate and entrain more fluid in their motion. The tendency for the ’heavy’
vortices to slow and move apart and the ‘light’ vortices to move together and speed
up could be used to distort the vortices and perhaps destroy their coherence by
modulating the density distribution in the axial direction. Given the impracticality
of cooling trailing aircraft vortices and the advantage of light vortices being forced
to move closer together, we shall mainly consider perturbations with θ < 0.

On the question of the size of the density perturbation to use, we can use some
order of magnitude estimates. First we must estimate the values to use for aL and
UL in formula (4). The radius of the vortices in the unperturbed Lamb dipole cannot
be related easily to the radius of actual trailing vortices. Recall that in the case
of the randomly perturbed dipole with b = 1.9, we found a maximum velocity at a
distance of about 0.7aL. Thus if we take a core radius for a trailing vortex as say
a = 5m, then we would estimate aL to be somewhat larger, say aL = a/0.7 ≈ 7m.
The speed UL of a Lamb dipole in terms of the circulation of its vortices and aL is
given approximately by UL = Γ/(2.2πaL) (see Kloosterziel and Carnevale, 1993).
Thus if we take Γ = 100 m2/s, this would give UL ≈ 2 m/s. Thus for |θ0| = 1 the
magnitude to the density variation as a percentage of the background would be 6%
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Figure 6. Trajectories of the vorticity extrema for θ0 = −1 (• ) and θ0 = +1 ( ).
The vortices propagate in the negative x-direction.

according to formula (4). In terms of temperature, this would correspond to a 20%
variation on a background of 300◦K.

It is interesting to consider how the temperature variation forces the growth of
the non-axial vorticity. Taking the curl of the momentum equation, we obtain the
vorticity equation,

∂ωi
∂t

+ uj
∂ωi
∂xj

= ωj
∂ui
∂xj

+
1
Re

∂2ωi
∂xj2

− εij1
∂θ

∂xj
, (5)

from which we can see how the buoyancy term directly forces the vorticity compo-
nents ωy and ωz. In particular, a modulation of θ in the z direction will directly
force the growth of ωy, which is the field that we used to monitor the progress of
the cooperative instability in the random initial velocity perturbation cases. There
we found that when ωy became comparable to ωz, strong cross diffusion between
the counter-rotating vortices occurred. Thus if we can accelerate the growth of
ωy through modulating θ in the axial direction, we may achieve a more rapid de-
struction of the coherent vortices. Since the rate of growth of ωy will be directly
proportional to ∂θ/∂z, we can expect that the early growth will be linear in time.
This linear growth will dominate the exponential growth of an eigenmode pertur-
bation of the cooperative instability if ∂θ/∂z is sufficiently large.

With the hope of combining both the effects of temperature forcing and the
cooperative instability, we decided to modulate the temperature field with the same
wavelength that was observed to be the wavelength of the fastest growing mode
in the experiments with random initial velocity perturbations. With the idea of
implementing this kind of perturbation by heating, we chose to modulate the density
by multiplying by a factor given by (1 − sin(kθ2πz/Lz)) ∗ 0.5. With Lz = πaL,
the appropriate wavenumber kθ is 2. We performed a series of simulations with
different amplitudes for θ0 (the maximum value of the initial perturbation). For
θ0 = 1, we found that the values of |ωy|max grew to the same levels as in the random
perturbations cases but in a much shorter time. This is shown in Fig. 7 where we
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Figure 7. History of |ωy|max for the dipoles separated by b = 1.9 ,
b = 1.4 and b = 1 . The curves without symbols correspond to the
cases perturbed initially with the random velocity field, while those with circles
correspond to the cases initially perturbed with spatially-periodic density variations
(θ0 = −1).

plot the results for the same three values of the separation b as used in the previous
simulations. We also plot the results from the random velocity perturbation runs
for comparison. As before, the time scale is in τ units. Thus we see that for θ0,
levels of |ωy|max sufficient to destroy the coherence of the vortices are reached in a
period of a few τ units. Also it is encouraging that as the distance b between the
vortices increases, the time at which the peak in |ωy|max is reached decreases. To
what extent this tendency will hold up for much larger values of b will be explored
below.

That the early evolution is dominated by the buoyancy forcing can be seen by
scaling the time differently. If we scale time according to t̂ =

√
θt where t is in

advective time units, then we find that the vorticity perturbations grow nearly
linearly in t̂ at early times, and the growth rate is independent of θ0. This is shown
in Fig. 8. We display the results for three different values of θ0. This linear growth
and scaling with the buoyancy time scale and not the τ time scale indicates that
at early times the dynamics is dominated by buoyancy and not by the cooperative
instability.

In Fig. 9, we show the evolution an isosurface of vorticity magnitude of the
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Figure 8. History of a)|ûz|max and b) |ω̂y|max for different initial disturbances
( θ0 = 1., θ0 = 0.1, and θ0 = 0.01).

Figure 9. Plots of the iso-surface |ω|/ω0 = 0.64 at t∗ = 1 (left) and t∗ = 2
(right).

thermally perturbed vortex pair for the case b = 1.9, θ0 = −1. Note that since the
vortices will be drawn together where the density is lowest and since temperature is
distributed with the same phase on each vortex, the pair is forced into the varicose
mode. Recall that in the case of the random velocity perturbations, the fastest
growing mode appeared to be a sinuous mode. This suggested that it may be
possible to increase the growth rate of the instability by shifting the phase of the
temperature on one vortex relative to the other in the temperature modulation
in the axial direction. We performed two additional simulations with phase shifts
α = π/8 and π/4. The resulting graphs of the evolution of |ωy|max are shown in
Fig. 10a along with the graph for the α = 0 case. Although there does not appear
to be much difference in the growth during the early phase, which is dominated by
buoyancy forcing, ultimately the shift by π/4 does yield an increase in the peak
amplitude by a factor greater than 2. Thus it seems that the phase shift does
enhance the growth in the period of the evolution that we suppose to be dominated
by cooperative instability. Figure 10b shows the history of Γ, which is calculated
by summing all of the axial vorticity separately for y < 0. This shows that the



202 P. Orlandi, G. F. Carnevale, S. K. Lele & K. Shariff

introduction of the phase shift causes the circulation to decay earlier and more
rapidly. Unfortunately, it does not seem possible by using heating alone to force
the two vortices into the sinuous mode that previous work indicates is the fastest
growing mode.

Before proceeding to larger values of the separation, we will introduce another
perturbation strategy. Although it is possible to construct heaters or burners near
the source of trailing vortices on a wing or to inject jet exhaust directly into them,
this may be inconvenient or impractical. As an alternative, with the idea of using
jet exhaust for heating, we also considered the effect of heating in between the two
vortices. Preliminary to performing simulations in three dimensions for larger values
of b, we ran a series of two-dimensional tests. The two-dimensional simulations
can show us the early effects of the thermal forcing and provide some idea of the
resolution that will be needed in the three-dimensional simulations. In Figs. 11 and
12, we compare the results from three simulations. The left-hand panels in Fig. 11
show contour plots of ωz at two times during the evolution in which the density
distribution, with θ0 = −1, was proportional to the magnitude of the vorticity as
in our earlier simulations. The initial density distribution is shown in the upper
left panel of Fig. 12. Here we have used a separation of approximately b = 6
and Ly = 6π. With this density distribution and such a large separation, the
vortices soon roll up into roughly circularly symmetric structures, and these tend
to move toward each other by the Turner (1959) effect. In the center panels of
Figs. 11 and 12, we illustrate the evolution in a case in which the heating (i.e. low
density) is introduced in between the two vortices. The density distributions are
initially exactly the same as in the simulation illustrated in the left-hand panels,
except that the density patches are displaced a distance aL away from the center
of the vortices. In the early evolution, the gradients of density produce vorticity
according to Eq. 5. Since the vorticity generated is proportional to ∂θ/∂y (in these
figures the y direction is toward the left), two dipolar vortices are formed. These
newly generated dipoles move downward both due to self advection and due to the
advection of the nearby primary vortices. Then from each secondary dipole, the
vortex that has the same sign vorticity as the nearer primary vortex soon merges
with the primary vortex. The remaining secondary vortex is partly sheared out
around the primary vortex and partly rolled up to form a dipolar vortex with the
primary. The case with θ0 = +1 is shown in the right-hand panels in Figs. 11 and 12.
Here, the primary vortices again merge with the like signed secondary vortices, but
the surviving secondary vortices are entirely sheared out to surround the primary
vortices. Notice that in both cases, θ0 = −1 and +1, the production of thin filaments
of density that are in some places parallel to the x-axis must be accompanied by the
production of even thinner filaments of vorticity. This poses a resolution problem.
Comparing grids with resolution 128 × 384 with 192 × 512, we found that there
was not a significant difference in the evolution of the vorticity fields except on the
smallest scales. Thus we were able to proceed with three-dimensional simulations
of these ‘experiments’ with resolutions 128 × 384× 64. We were able to reduce the
number of grid points in the z direction by taking only one full wavelength for the
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Figure 10. History of a) spanwise vorticity and b) circulation for α = 0,
α = π/8 and α = π/4.

Figure 11. Contours of the vorticity in the two-dimensional simulations with
the dipole halves separated by a distance of 8b. The top/bottom panels correspond
to early/late times. The left panels correspond to the case in which the density
perturbation with peak magnitude θ0 = −1 is applied within the vortex. The middle
(right) panels correspond to the case in which the patches of density are outside the
initial vortices and are separated by 4b and have peak amplitude θ0 = −1 (θ0 = +1).

modulation of θ in that direction. This resolution is sufficient to observe the growth
of the instability and to follow the initial stages of cross diffusion, but is inadequate
to follow the evolution of fully developed turbulence. Hence, all of the runs to be
presented will end somewhat short of this stage.

In Fig. 13a, we show the growth of |ωy|max for the three-dimensional simulations
corresponding to the two-dimensional simulations just discussed. In order to make
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Figure 12. Density contours in two-dimensional simulations of the dipole with
vortices separated by a distance 6b. The panels in the left (θ0 = −1) column are
for the case with the distribution of density initially coincident with the vorticity.
In the cases represented by the center (θ0 = −1) and right (θ0 = +1) columns, the
initial density patches are separated by 4b. In each column, time advances from top
to bottom.

some comparisons with the amplitude of the perturbation vorticity |ωy| and the un-
perturbed peak value ωz0, we will use advective time units in this and subsequent
graphs. In Fig. 13a, we find that in the case with the density variation internal to
the vortices, the peak for |ωy|max is reached by time t = 2 in advective time units.
In τ units this would be approximately t∗ = 0.06, which is remarkably short. This is
much earlier than the time for the peak to be reached for smaller values of b. Thus
the trend that we observed in Fig. 7 does continue for larger separations. Unfortu-
nately, the value reached by |ωy|max is far short of the unperturbed vorticity value
ωz0, which is approximately 11.1 with advective time scaling. For smaller values of
b, the value of |ωy|max peaked above ωz0 just before all vorticity components began



DNS study of stability of trailing vortices 205

|ω
y
| m
a
x

t

-1 0 110 10 10

-1

0

1

10

10

10

(Γ
+
,Γ
−

)/
Γ

(t
=

0)

t

0 2 4
-10

-5

0

Figure 13. History of (a) |ωy|max and (b) Γ± for three cases. In both panels
the solid curve corresponds to the case in which the density perturbation with peak
amplitude θ0 = −1 is applied within the vortex, while the broken curves correspond
to the cases for which the density variations were applied in between the vortices
( θ0 = −1 and θ0 = +1). The evolution of Γ− is represented by symbols
( interior perturbation with θ0 = −1, • exterior perturbation with θ0 = −1, and

exterior perturbation with θ0 = +1). Γ± is the sum of all ± values of ωz for y > 0.

to decay rapidly (see Fig. 7). For this case with b = 6, it seems that the values of the
perturbation ω do not grow sufficiently to reach a point of strong turbulent mixing,
and hence the decay subsequent to |ωy|max reaching its peak is not strong. Also
from Fig. 13a, we learn that for the cases with b = 6 and the density perturbation
between the vortices, |ωy|max grows much more rapidly and peaks at a much higher
value than in the case with internal density perturbation. In these cases |ωy|max
does surpass ωz0. The time to peak is about 0.1 in τ units. In advective time units,
the decay of the circulation appears rather slow.

Over the course of the three simulations discussed in the previous paragraph, we
computed the total circulation for each vortex; that is, we summed ωz for all y > 0
and for y < 0 separately. The circulation for each vortex was conserved over the
time span of these simulations. Also, for y > 0, we calculated Γ+ (Γ−), which is the
sum of all values of ωz for which ωz > 0 (ωz < 0). The history of Γ+ and Γ− is shown
in Fig. 13b. For the case with internal heating, there is relatively less variation in
Γ+ and Γ− over time than for the case with external heating. For the external
heating case there is significant growth of Γ+, indicating strong deformations of the
vortex. However, the fact that in each case the sum of Γ+ and Γ− is conserved in
time tells us that the vortices are not so strongly deformed as to allow any mixing
between the two primary vortices by t = 5 in advective time units. Due to lack of
computational resources, we were not able to run these cases to much longer times,
so we do not know how much the circulation would decay on the τ time-scale. We
recall that for the cases with small b, a decay of about 25% of the circulation took
from about two to four τ units. For b = 6, τ ≈ 33 advective time units, which is
much longer than the timespan represented here. Thus it may be that the decay in
circulation has just not begun on the short timescale represented by Fig. 13.

To further compare the results for large and small separations, we plot the history
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Figure 14. History of the three vorticity components for two cases: for the case
with b = 6 with the density variation in between the vortices ( |ωx|max ,
|ωy|max , |ωx|max ), and for the case with b = 2 and density variation
in the interior of the vortices ( |ωx|max • , |ωy|max , |ωx|max ).

of all three vorticity components in Fig. 14 for both b = 6 and b = 1.9. The unit of
time for this graph is taken as the advective time units. For b = 1.9, all vorticity
components rapidly decay after the perturbation vortices surpass the axial vorticity,
while for b = 6 all component remain relatively strong after peaking.

4. Conclusions

With the first series of simulations that we presented, we were able to reproduce
the results of the laboratory studies of the short-wave cooperative instability. The
numerical simulations provide the possibility of analyzing the evolution of the veloc-
ity and vorticity fields far more accurately than is possible with current diagnostic
techniques in the laboratory. In particular, measurement of the non-axial compo-
nents of vorticity, which are key to the instability, is very difficult in the laboratory.
Here we were able to analyze the growth of the non-axial vorticity components and
show how they led to the cross diffusion of circulation between the two primary
vortices. In addition, the degree of control over initial conditions in the simulations
allows far more precise testing of hypotheses than is possible in the laboratory. The
main drawback of the numerical simulations is the problem of insufficient resolution
for simulations in which the separation is large.
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Having analyzed the basic short-wave instability, we turned to the problem of
finding a practical way of perturbing the pair of counter rotating vortices so as to
accelerate the short-wave cooperative instability. We suggested that variations of
density along the axial direction may be used to excite the cooperative instability.
These density variations result in buoyancy forcing that persists beyond the initial
addition of the perturbation. There is an initial period dominated by the thermal
forcing in which the perturbation vorticity begins to grow. If the wavelength of the
axial modulation of the density perturbation is chosen to match that of the fastest
growing cooperative instability mode, then this proves an efficient mechanism for
initiating the short wave instability.

We were able to demonstrate the effectiveness of density perturbations in initi-
ating instability and producing rapid cross diffusion for separations up to about
b/a = 2. Beyond this, problems of numerical resolution make the situation less
clear. We presented some evidence at b/a ≈ 6 that similar effect could be found,
but we were not able to simulate long enough at high enough resolution to see
whether the cross diffusion would occur on the same time scale in τ units as at
smaller b. Thus we are led to suggest that this would be a fertile area for laboratory
experimentation.

As for the practicality of using density perturbations, we can say a few words here.
We imagine that the method of producing the density variation for aircraft trailing
vortices would be by heating either within the vortices or between them. This could
be accomplished either by redirecting and modulating the existing jet exhaust or by
adding auxiliary burners in the vicinity of the points where the vortices roll up (e.g.
wing tips, and flap edges). This heating would only be required during take-offs and
landings. Consider the problem of modulating the temperature of a vortex with a
sinusoidal perturbation of wavelength about twice the vortex core radius with an
amplitude 30◦C over say a 10km span. If we take the estimates of a = 5m for the
core radius and 300km/hr for the plane speed, we calculate that the total amount
of kerosene that would need to be burned from such a perturbation would be only
about 140kg. This would seem a reasonable cost if the result were to minimize the
effect of the trailing vortices.
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