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Simulation and modeling of reacting particles
in turbulent nonpremixed combustion

By N. S. A. Smith1, G. R. Ruetsch, J. Oefelein, AND J. H. Ferziger

A conditional moment closure model is proposed for reacting particles in turbulent
nonpremixed combustion. The new model for particles differs significantly from the
traditional uniform diffusivity gas-phase conditional moment closure model. The
new features of the model and its effectiveness are examined against direct numerical
simulation data for soot-like and droplet-like particles in turbulent nonpremixed
combustion. The influence of differing particle sizes and types on the effectiveness
of the model closure is examined in detail.

1. Introduction
Condensed-phase particles are frequently present in turbulent combustion systems

and can have a profound influence on the thermochemical nature of their surround-
ings. Fuel droplets and soot particles are two examples of important condensed
phase species in combustion. The evaporation of the former largely determines the
distribution of the combustible gaseous fuel/air mixture, while the presence of the
latter impacts strongly on the degree of radiant heat transfer from the system. It is
thus desirable to be able to predict the mean behavior of these particles, in a turbu-
lent combusting environment, in response to their local thermochemical conditions.

A number of difficulties surround the modeling of the mean rate of particle reac-
tions in turbulent combustion. Perhaps the most significant difficulty is associated
with determining the mean influence of carrier fluid properties such as temperature
and chemical species concentrations upon the particle population. Wherever the
local properties of the carrier fluid fluctuate due to turbulence, the variations can
couple with the non-linear particle reactions to preclude first order closure of the
mean rates with mean properties. This type of closure problem is the same as that
encountered in modeling the mean rate of purely gas phase chemical reactions using
conventional averaging techniques.

The Conditional Moment Closure (CMC) method (see Klimenko 1990, Bilger
1993) for modeling turbulent gas phase nonpremixed combustion makes use of av-
erages which are conditional upon the local value of a conserved scalar (mixture
fraction), which is indicative of the state of mixing between fuel and air masses. Con-
ditional averaging upon mixture fraction captures much of the turbulence-induced
fluctuations, and a first order conditionally averaged closure is often possible. The
success of the CMC model in predicting gas phase combustion makes it of some
interest in modeling particle reactions in turbulent flow.
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The purpose of this study was to simulate the dynamics of reactive particle mass
and motion in a turbulent combusting environment in an attempt to model the
observed mean thermochemical behavior of the reacting particles using a derivative
of the CMC method. In this report, the simulation and modeling of pseudo-soot and
pseudo-droplet particles are described. The former type of particles were smaller
than the latter, and they were subject to relatively strong processes of growth and
consumption. These processes were meant to represent soot surface growth and
oxidation. The pseudo-droplet particles were subject to an evaporative process only.
In both the simulations and modeling, particle-particle interactions were disallowed,
thus rendering the results of this study valid only for low particle mass loadings of
the gas phase.

2. Simulation conditions

Direct numerical simulations were conducted using a pseudo-spectral solution
technique for forced isotropic turbulent flow on a 32-cubed grid. The flow was
incompressible in nature, but a passive scalar (mixture fraction) field was used
in conjunction with an equilibrium temperature profile in passive scalar space to
determine a false temperature map throughout the domain. This false temperature
was computed for the purpose of determining instantaneous particle reaction rates at
every step. The passive scalar field was forced at large scales through the interaction
of turbulent motions with an imposed mean scalar gradient in the x direction in the
same manner as the simulations of Overholt and Pope (1996). Cubic spline tensor-
products as described by Yeung and Pope (1988, 1989) were employed to determine
local fluid velocities and temperatures at all particle locations. Particle properties
were advanced in time using a fourth-order Adams-Bashforth timestepping routine.

The following Lagrangian equation for particle motion was solved,

dvi
dt

=
α∗

τk
(m∗)−2/3 (ui(x)− vi) , (1)

where vi denotes the particle velocity, ui(x) denotes the local fluid velocity at the
particle location, m∗ is the nondimensional particle mass, τk is the Kolmogorov
timescale, and α∗ is the nondimensional characteristic particle rate given by,

α∗ = 18
(
ρf
ρp

)(
 Lk
d

)2

. (2)

In the above,  Lk is the Kolmogorov length scale, d is the reference particle diameter,
ρp is the particle material density, and ρf is the fluid density.

The Stokes drag expression above (Eq. 1) strictly applies only in the limit of a
purely laminar flow around the particle. This assumption is valid for the smaller
soot particles but is not as well justified for the droplets. Empirical corrections for
changes in particle drag with higher slip Reynolds numbers are available but have
not been applied in the simulations reported here.
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For droplets, the rate of change of the mass of any particle was given by

dm∗

dt
= −2

3
β

τk
(m∗)1/3 ln(1 + T ∗) , (3)

where β is a generic rate coefficient, nominally equal to α∗ for inertial particles,
and T ∗ is a nondimensional temperature equivalent to the local Spalding transfer
number. The value of the temperature varied from zero in non-reactive regions of
passive scalar space to a peak value of 3.4 at stoichiometric conditions. The peak
value corresponds to the transfer number for kerosene droplets evaporating within
enveloping flames (see Kuo 1986).

The rate of change of mass for any given soot particle was given by

dm∗

dt
=

β

τk
(m∗)1/3

(
fgr − fco (m∗)1/3

)
, (4)

where β is a rate coefficient not directly related to α∗, and fgr and fco are normalized
functions of local mixture fraction (and thus an inferred reactive gas phase com-
position) which mimic surface growth and consumption respectively. The growth
and consumption reactions were designed to embody the basic features of the soot
processes they represent, but with one notable difference. Namely, the reaction rate
profiles were defined so as to be symmetric in mixture fraction space about the
mean mixture fraction. Particle surface growth was strongest at the mean mixture
fraction, and particle consumption was strongest somewhat to the lean and rich
sides of the mean mixture fraction. This symmetry of thermochemical properties
about the mean mixture fraction allowed conditional statistics on either side of the
mean to be combined to increase statistical significance in each half-plane of mixture
fraction space.

The reference particle rates (α∗, β) differed between simulations to reflect different
sizes and reactivity of the particles, while flow and mixing conditions were the same
for all cases. The details of the simulation cases studied are given in Table I. Some
inertial particle simulations were repeated with inertia-less particles (denoted by
i-suffixed case designations in Table I) to ascertain the influence of particle slip
velocity on the reactive particle statistics.

Table I. Parameters and durations for the reactive particle simulations.

Case Type α∗ β τsim/τeddy τsim/τpop

d1 droplet 0.014 0.014 193 34.7
d1i droplet ∞ 0.014 96.1 15.0
s1 soot 0.7 2.8 3.5 0.46
s2 soot 0.7 0.7 104 23.1
s2i soot ∞ 0.7 104 23.1
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In the table, the ratios of the duration (τsim) of each case to both the large
eddy turnover time (τeddy) and the mean time for total particle population change
through injection (τpop) are given. Owing to explicit method time step limitations,
the cases with longer characteristic timescales such as the droplet and less-reactive
soot cases were less expensive to compute. These cases, therefore, could be contin-
ued for a larger number of eddy-turnover times for a given amount of real time.

In each case, 8192 particles were maintained in the domain at a constant mean
number density by continuous injection. Particle simulations commenced only after
the forcing had produced a statistically stationary flow field over a period of many
hundreds of eddy turnover times. The simulations were conducted at a Taylor
Reynolds number of ∼ 24 with a value of approximately 0.22 for the ratio of integral
length scale to domain width and 2.4 for the product of Kolmogorov lengthscale
and maximum wavenumber in the simulation.

The actual size of the soot particles used in the inertial simulations of this study
were at the upper limit of realistic soot particles. In a sense, these simulation cases
embody a worst case scenario for modeling soot. In practical applications, the
bulk of soot particles are much smaller and follow the flow field much more closely.
These smaller reacting particles were better simulated using an inertia-less particle
tracking method in conjunction with the direct numerical simulations of turbulence.

2.1 Particle injection

The imposed mean scalar gradient in the x direction of the simulation domain
required that special consideration be given to particles which crossed the domain
boundaries in this direction. In the other directions, all properties were periodic
and particles were simply returned to the domain by a periodic mapping. The
same mapping was not applied in the x direction as that would allow particles to
transfer between very lean and very rich mixture conditions in crossing the domain
boundary.

Instead, any particle which crossed an x boundary was deemed to have left the
domain permanently, and was replaced via a periodic mapping by a fresh particle
with a velocity equal to the departing particle and mass equal to the injection mass.
This type of fresh particle injection allowed a statistically stationary particle state
to be reached as a balance between the processes of particle reaction, and transport
to and from the injection boundaries occurs.

Injection across the two x-bounding planes was characterized by a relatively weak
influence on conditional mean particle statistics at very rich and lean mixture frac-
tions. The source terms for the conditional mean and variance equations for particle
mass fraction which result from these injection schemes are described in Section 3.2.

2.2 Mixing and reaction statistics

Statistical data based on particle mass fractions were measured from the sim-
ulations for comparison with model predictions. These data were recorded only
after the statistical stationarity of the particle ensemble had been established by
monitoring initial transients in the data.
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As each particle, on average, occupied four grid cells to the exclusion of other
particles, it was not possible to determine meaningful spatial gradients in particle
properties within the carrier fluid. It was possible, however, to derive conditional
statistical information from the data by binning particles in mixture fraction space
according to their local value of mixture fraction. The particle density in each bin
allowed gradients of conditional quantities in mixture fraction space to be deter-
mined for comparison with modeled terms.

Mixing statistics such as conditional mean scalar dissipation rate, conditional
mean scalar diffusion rate, and the mixture fraction probability density function
(PDF) were determined from the statistically stationary simulation data.

The mean scalar dissipation rate (Nη ≡
〈
D(∇ξ)2 | ξ(x, t) = η

〉
), conditional upon

the value (η) of the local instantaneous value of mixture fraction (ξ), was found to
be independent of mixture fraction as reported by Overholt and Pope (1996) and
Pope and Ching (1993). Thus the significant simplification,

Nη = 〈N | η〉 = 〈N〉 , (5)

was employed in the modeling described below.
The mixture fraction PDF (Pη) for the whole domain was found to agree closely

with a superposition of Gaussian PDFs with equal variance, but with mean values
varying with position in the x direction according to the imposed mean mixture
fraction gradient. Given values of mean mixture fraction on the x boundaries of ξ0
and ξ1 and a spatially uniform mixture fraction variance σ2, the mixture fraction
PDF can be written as,

Pη =
σ

ξ0 − ξ1

(
φ

(
η − ξ1
σ

)
− φ

(
η − ξ0
σ

))
, (6)

where φ(. . .) is the integral of the Gaussian distribution between the given argument
and infinity.

The conditional mean scalar diffusion rate (Mη ≡
〈
D∇2ξ | ξ(x, t) = η

〉
) is yielded

by,
∂

∂η
(PηMη) =

∂2

∂η2
(PηNη) , (7)

which holds for homogeneous mixing conditions. The simplification afforded by
Eq. 5, thus gives Mη as,

Mη =
〈N〉
Pη

∂Pη
∂η

. (8)

The conditional diffusion profile given by the equation above was found to closely
agree with the simulation data.

The forms of the mixture fraction PDF and conditional diffusion rate profiles
given by the above equations are plotted in Fig. 1. The mixture fraction PDF is
somewhat broadened around the peak compared to any single Gaussian profile with
the same mean and variance. As a result, the conditional diffusion rate profile has
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Figure 1. Profiles for mixture fraction PDF (4 ), conditional mean scalar dissi-
pation rate (� ), and conditional mean diffusion rate (◦) expected and observed in
simulation data.

a mean slope which is about 35% shallower than that of the purely linear profile
which results from a single Gaussian PDF with an equivalent mean and variance,
and equivalent conditional mean dissipation rate.

All of the simulations exhibited profiles of the nature depicted in the figure since
they all shared exactly the same mixing characteristics. The spatially uniform value
of variance of mixture fraction was equal to ∼ 0.34 in each case, with mean mixture
fractions on the x boundaries of zero and unity and an overall domain-averaged
mean mixture fraction of one half.

Notice from Fig. 1 that the quantity ξ, referred to here as mixture fraction, is
normalized to have a unit value on the rich boundary of the domain and zero value
on the lean boundary, but this does not denote pure fuel and oxidizer states. It is
possible, and indeed required in the current simulation configuration, to have values
of ξ which are greater than unity and less than zero. Pure fuel and oxidizer states
can be considered to exist only in the limits of ξ → ±∞.

3. Modeling method
Application of the CMC model for gas phase turbulent combustion to the mod-

eling of condensed-phase fields requires some consideration of the differences in
behavior between the two phases. Firstly, it was assumed that the particles were,
in the mean, small enough to follow the smallest scales of motion. This was true in
the inertia-less particle simulations, but was somewhat less justified for the inertial
(particularly droplet) simulations.

Secondly, it is clear that the particle phase does not diffuse appreciably on a
molecular level, and thus the particle phase and the gas phase-based mixture frac-
tion are transported in a completely different manner at this level. The effect of
this differential diffusion must, therefore, be incorporated into the CMC model.
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Further, at the smallest scales a distinct difference between the distribution of
gaseous species and condensed phase species is expected (see Klimenko 1990). Sig-
nificant local structure can exist in the particle field at scales where gas phase fields
have been completely smeared by molecular diffusion. The existence of such local
structure implies that instantaneous local deviations of particle mass fractions from
means, conditional upon mixture fraction, can be large.

In the present study, particle effects upon the gas phase were neglected, leaving
the effect of gas phase fluctuations on particle evolution to be examined in isolation.
In reality, however, reciprocal interactions between gaseous and condensed-phase
species is likely to be very important. In the case of droplet evaporation, it is the
addition of vaporized fuel to the continuous phase which largely determines the
way in which combustion proceeds. In the case of soot particles, the removal of
sensible enthalpy from the continuous phase occurs as a result of proximity to soot,
which can strongly effect localized combustion dynamics. In both of these instances,
large conditional variance in particle properties could lead to similarly elevated
levels of conditional variance in sympathetic gas phase species and thereby increase
the difficulty of the chemical closure problem in the gas phase. This increase in
conditional variance for gas phase species can be viewed as arising from the different
gas phase behavior, at the same mixture fraction, which will result depending on
whether a parcel of gas is adjacent to a particle or not.

It is for this reason that it is important to be able to predict the level of conditional
variance of particle mass fraction. The CMC model proposed in this study made
use of a particle-specific differential diffusion variant of the second-order conditional
moment closure proposed by Li and Bilger (1996).

3.1 Model derivation

In the following, a CMC model for particle reactions in turbulent nonpremixed
combustion is derived for general flow and mixing conditions. The spatial and
temporal simplifications afforded by the simulation conditions of the present study
are introduced in Section 3.2.

The local instantaneous equations for mixture fraction and a particle mass frac-
tion continuum form the basis for the derivation of the model. The equation for
mixture fraction ξ can be written as,

∂ξ

∂t
+ ui

∂ξ

∂xi
−D ∂

2ξ

∂x2
j

= 0 , (9)

where the flow field is assumed to be incompressible, ui is the component of carrier
fluid velocity in the i-th direction, and D is the diffusivity of mixture fraction under
a Fickian transport assumption.

The equation for local instantaneous mass fraction of the particle continuum is
given by,

∂Y

∂t
+ vi

∂Y

∂xi
−Dy

∂2Y

∂x2
j

= ω̇ , (10)
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where ω̇ is the local reaction rate of the particle continuum, Dy is the effective
diffusivity of this continuum, and vi is the velocity component in the i-th direction
of the field of particles. The particle diffusivity Dy is expected to be very much
smaller than the mixture fraction diffusivity; however, the term is retained in the
derivation for completeness. Multiplying Eq. 10 by the particle mass fraction yields,

∂Y 2

∂t
+ vi

∂Y 2

∂xi
− 2DyY

∂2Y

∂x2
j

= 2Y ω̇ , (11)

which is used in the derivation of the equation for conditional variance of particle
mass fraction.

The fine-grain probability density function (see Pope 1985) for mixture fraction
is defined as,

ψ (x, t, η) ≡ δ (ξ (x, t)− η) , (12)

and has an expectation over the statistical ensemble equal to the mixture fraction
PDF (Pη) as given by,

Pη (x, t, η) = 〈ψ〉 . (13)

The local instantaneous equation for the fine-grained PDF can be derived from the
differential properties of ψ and Eq. 9 so that,

∂ψ

∂t
+

∂

∂xi
(uiψ) +

∂

∂η

(
Dψ∇2ξ

)
= 0 . (14)

Klimenko and Bilger (1998) derived a conditional mean equation for the differen-
tial diffusion of gaseous species in turbulent combustion through the combination
of Eqs. 11 and 14 given above. Their methodology is largely followed here except
that a conditional variance equation is also derived and some significant differences
in closure assumptions are made in the final stages. In the section immediately
following, derivation of the equation for the product of the square of particle mass
fraction and the fine grain PDF is described as a prerequisite to the derivation
of the conditional variance equation for particle mass fraction. The derivation of
the corresponding equation for conditional mean mass fraction is analogous except
where noted otherwise.

3.1.1. Derivation of ψY 2 equation
The derivation proceeds by adding Eq. 11, multiplied by ψ, to Eq. 14, multiplied

by Y 2. The resultant equation is given by,

∂

∂t

(
ψY 2

)
+

∂

∂xi

(
uiψY

2
)

= (ui − vi)ψ
∂Y 2

∂xi
+ 2ψY ω̇ +Ay −Aξ , (15)

where

Ay = 2DyψY
∂2Y

∂x2
j

, Aξ = Y 2 ∂

∂η

(
ψD∇2ξ

)
,
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are convenient groupings of the D and Dy diffusive terms. The mixture fraction
diffusivity term, first expanded by using the inhomogeneous-flow form of Eq. 7, is

Aξ = Y 2

(
∂2

∂η2

(
ψD (∇ξ)2

)
−D ∂2

∂x2
j

(ψ)

)
. (16)

The latter right-hand side term appearing in Eq. 16 also appears in the full ex-
pansion of D ∂2

∂x2
j

(
Y 2ψ

)
. Substitution of the expansion into Eq. 16 yields a final

expression for Aξ,

Aξ =
∂2

∂η2

(
Y 2ψD (∇ξ)2

)
− ∂

∂η

(
Dψ ∂ξ

∂xj

∂Y 2

∂xj

)
−D ∂2

∂x2
j

(
Y 2ψ

)
+D ∂

∂xj

(
ψ
∂Y 2

∂xj

)
.

(17)
The particle diffusivity termAy, as given above in connection with Eq. 15, appears

in the full expansion of DyY ∂
∂xj

(
ψ ∂Y
∂xj

)
. Expressing Ay as the subject of this

expansion yields

Ay =
∂

∂η

(
Dyψ

∂ξ

∂xj

∂Y 2

∂xj

)
+ 2DyY

∂

∂xj

(
ψ
∂Y

∂xj

)
. (18)

Rearrangement of the latter right-hand side term of the above equation via the
chain rule gives Ay in final form,

Ay =
∂

∂η

(
Dyψ

∂ξ

∂xj

∂Y 2

∂xj

)
+Dy

∂

∂xj

(
ψ
∂Y 2

∂xj

)
− 2Dyψ

(
∂Y

∂xj

)2

, (19)

The substitution of Eqs. 7 and 19 into Eq. 15 yields,

∂

∂t

(
ψY 2

)
+

∂

∂xi

(
uiψY

2
)

= 2ψY ω̇ − 2Dyψ
(
∂Y

∂xj

)2

+
∂FY 2

∂η
+RY 2 , (20)

where the flux of squared particle mass in mixture fraction space is given by,

FY 2 = (Dy +D)ψ
∂ξ

∂xj

∂Y 2

∂xj
− ∂

∂η

(
Y 2ψD (∇ξ)2

)
, (21)

and the collected residual terms can be written as,

RY 2 = (ui − vi)ψ
∂Y 2

∂xi
+ (Dy −D)

∂

∂xj

(
ψ
∂Y 2

∂xj

)
+D ∂2

∂x2
j

(
Y 2ψ

)
. (22)

3.1.2. Averaging and closure of ψY equation
It is illustrative to average and close the simpler equation for conditional mean

particle mass fraction before employing the same approach on the conditional vari-
ance equation. The conditional mean equation is required before further derivation
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of the conditional variance equation can proceed. In this section, some of the key
closure assumptions of Klimenko and Bilger (1998) have been relaxed out of neces-
sity for the modeling of particles.

A set of equations similar to Eqs. 20-22 applies for the product of the fine-grain
PDF and particle mass fraction and can be written as,

∂

∂t
(ψY ) +

∂

∂xi
(uiψY ) = ψω̇ +

∂FY
∂η

+RY , (23)

where
FY = (Dy +D)ψ

∂ξ

∂xj

∂Y

∂xj
− ∂

∂η

(
Y ψD (∇ξ)2

)
, (24)

and

RY = (ui − vi)ψ
∂Y

∂xi
+ (Dy −D)

∂

∂xj

(
ψ
∂Y

∂xj

)
+D ∂2

∂x2
j

(Y ψ) . (25)

Averaging Eq. 23 over mixture fraction space yields the PDF-product form of the
conditional moment closure (CMC) equation for conditional mean particle mass
fraction,

∂

∂t
(PηQη) +

∂

∂xi
(〈uiY | η〉Pη) = 〈ω̇ | η〉Pη +

∂FQ
∂η

+RQ , (26)

where Qη ≡ 〈Y | η〉 = 〈Y ψ〉 /Pη, and FQ and RQ are the conditionally averaged
flux and residual terms. The averaged residual term can be written as follows,

RQ =
〈

(ui − vi)
∂Y

∂xi
| η
〉
Pη + (Dy −D)

∂

∂xj

(
Pη

〈
∂Y

∂xj
| η
〉)

+D ∂2

∂x2
j

(QPη) ,

(27)
and contains terms which are assumed to be small for high Reynolds number flow
with only small particle slip velocities. The conditional mean flux term, equal to

FQ = (Dy +D)Pη

〈
∂ξ

∂xj

∂Y

∂xj
| η
〉
− ∂

∂η

(
DPη

〈
Y (∇ξ)2 | η

〉)
, (28)

is approximated by Klimenko and Bilger (1998) after assuming that the gradient of
Y is well correlated with the gradient of mixture fraction and that there is only a
weak correlation between Y and (∇ξ)2. In the following, the latter assumption is
relaxed, so that

FQ ≈ c PηNη
∂Qη
∂η
−Qη

∂

∂η
(PηNη)−

∂

∂η
(PηCη) , (29)

where Nη ≡
〈
D (∇ξ)2 | η

〉
is the scalar dissipation rate and Cη is the covariance

between scalar dissipation rate and particle mass fraction. The symbol c denotes a
mixing mode variable which is equal to unity in the case of mixing in the absence of
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differential diffusion but is not known for the case of differentially diffusing scalars
(Klimenko & Bilger 1998). This variable is discussed in greater detail in Section
3.2.

The final form of the equation for conditional mean particle mass fraction is
obtained by substituting Eq. 29 into Eq. 26, followed by subtraction of the mixture
fraction PDF equation (averaged form of Eq. 14) and normalization by the PDF to
give,

∂Qη
∂t

+〈ui | η〉
∂Qη
∂xi

= 〈ω̇ | η〉+cNη
∂2Qη
∂η2

+(c−1)Mη
∂Qη
∂η
− 1
Pη

∂2

∂η2
(PηCη) . (30)

In the above expression, RQ has been neglected as has the conditional correlation
between velocity fluctuations and particle mass fraction. As in Eq. 7, the symbol
Mη denotes the conditional mean diffusion rate.

3.1.3. Averaging and closure of ψY 2 equation
The equation for the conditional variance of particle mass fraction, defined as

q2
η ≡

〈
y2 | η

〉
=
〈
Y 2ψ

〉
/Pη − Q2

η, can be derived from Eq. 20 through several
stages. Averaging of Eq. 20 yields a mean-square-PDF product equation,

∂

∂t

(
Pη
〈
Y 2 | η

〉)
+

∂

∂xi

(〈
uiY

2 | η
〉
Pη
)

= 2 〈Y ω̇ | η〉Pη +
∂Fq
∂η
−PηεY +Rq , (31)

where Fq denotes the flux of mean square mass in mixture fraction space, Rq is the
average of the Y 2 residual term of Eq. 22,

Rq = Pη

〈
(ui − vi)

∂Y 2

∂xi
| η
〉

+(Dy −D)
∂

∂xj

(
Pη

〈
∂Y 2

∂xj
| η
〉)

+D ∂2

∂x2
j

(
Pη
〈
Y 2 | η

〉)
,

(32)
and εY is the conditional mean square mass dissipation rate, given by

εY ≡ 2Dy
〈
(∇Y )2 | η

〉
. (33)

Following the closure argument for flux of conditional mean mass in mixture fraction
space (Eq. 29), the flux of the conditional mean square particle mass fraction,

Fq = (Dy +D)Pη

〈
∂ξ

∂xj

∂Y 2

∂xj
| η
〉
− ∂

∂η

(
Pη
〈
Y 2D (∇ξ)2 | η

〉)
, (34)

is approximated by the following, where the mixing mode variable c has a value
equal to that employed in Eq. 29,

Fq ≈ c PηNη
∂q2
η

∂η
− q2

η

∂

∂η
(PηNη) + 2c PηCη

∂Qη
∂η
− 2Qη

∂

∂η
(PηCη)

+cPηNη
∂Q2

η

∂η
−Q2

η

∂

∂η
(PηNη) . (35)
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Following the substitution of Eq. 35 into Eq. 31, the decomposition of Y into
Qη +y, and the subtraction of the equation for the conditional mean mass fraction,
the equation for the product of conditional variance and mixture fraction PDF is
derived. The decomposition of this equation via the chain rule and subtraction of
the PDF equation multiplied by q2

η yields the final form of the conditional variance
equation,

∂q2
η

∂t
+ 〈ui | η〉

∂q2
η

∂xi
= 2 〈yω̇′ | η〉+ cNη

∂2q2
η

∂η2
+ (c− 1)Mη

∂q2
η

∂η
+ Sq − εq , (36)

where Sq denotes the collected conditional source terms for particle mass fraction
variance,

Sq ≡ 2cCη
∂2Qη
∂η2

+
2
Pη

(c− 1)
∂

∂η
(PηCη)

∂Qη
∂η

+ 2
(
c− DyD

)
Nη

(
∂Qη
∂η

)2

, (37)

and εq is the dissipation rate of conditional variance,

εq ≡ 2Dy
〈
(∇y)2 | η

〉
. (38)

Note that the conditional variance equation in the form given above neglects condi-
tional covariance between velocity and mass fraction and all of the terms associated
with the difference between Rq and 2QηRQ which appear in the derivation.

The final forms of the equations for the conditional mean and variance of particle
mass fraction (Eqs. 30 and 36) contain two unclosed quantities, namely the mixing
mode variable c, which parameterizes the level of differential diffusion, and the co-
variance between scalar dissipation rate and particle mass fraction Cη. A discussion
of these two quantities is provided in the following sections.

3.2 Solution of model equations

Equations 30 and 36 of the preceding section were solved to match the simulated
conditions of spatially homogeneous, steady conditional statistics. The statistically
stationary, spatially degenerate form of the conditional mean particle mass fraction
profile is given by,

0 = 〈ω̇ | η〉+ cNη
∂2Qη
∂η2

+ (c− 1)Mη
∂Qη
∂η
− 1
Pη

∂2

∂η2
(PηCη) + IQ , (39)

where IQ is the conditional mean particle mass injection rate which results from
the injection process described in Section 2.1. The conditional variance of particle
mass fraction profile was found from,

0 = 2 〈yω̇′ | η〉+ cNη
∂2q2

η

∂η2
+ (c− 1)Mη

∂q2
η

∂η
+ Sq + Iq , (40)



Simulation and modeling of reacting particles 51

where Iq is the conditional variance source due to particle injection. Note that the
effective diffusivity of the particle field (Dy) was assumed to be identically zero, thus
the absence of the εq term given in Eq. 36 from the above equation. The conditional
particle injection source terms included in the above (IQ & Iq) are given by,

IQ =
PI
τpop

(1−Qη) (41)

Iq =
PI
τpop

(
(1−Qη)2 − q2

η

)
(42)

where PI is the PDF of particle injection mixture fraction and τpop is the time
required for the number of injections to equal the size of the particle population.
In the above it was assumed that particles were injected to replace those which
leave the system, and all freshly injected particles had unit mass as described in
Section 2.1. The form of the injection PDF consisted of the normalized sum of
two Gaussian distributions with variances equal to the domain variance and mean
mixture fraction values of zero and unity.

Chemical source terms in Eqs. 39 and 40 were determined using instantaneous
local temperature (taken from an invariant chemical equilibrium profile) and the
conditional mean and variance of particle mass fraction in truncated Taylor series
expansions of the instantaneous reaction rate expressions.

The mixing mode variable c, included in the CMC equations above, provides a
means of accounting for differential diffusion effects. In the limit where mixing is
overwhelmingly due to turbulent stirring, the mixing mode variable tends to unity.
In cases where a larger proportion of the mixing is due to molecular mass transfer,
the mixing mode variable will vary substantially from unity. The greatest allowable
deviation of c from unity is given by the ratio of the molecular diffusivity of the
species in question to that of the mixture fraction.

From a modeler’s perspective, it is highly desirable that c be independent of Qη,
q2
η, and mixture fraction. In that eventuality, one could hypothesize that the degree

of departure from mixing that is dominated by strong turbulent stirring might be
expressed as,

c = 1 +
(
Dy
D − 1

)
fmix , (43)

where fmix is a function which varies between zero and unity according to some
dependence on global properties of the flow field. One possibility for fmix is some
power of the Kolmogorov scalar scale ξk appropriately normalized by the maximum
globally realizable range in mixture fraction. The Kolmogorov scalar scale is a
measure of the characteristic size of scalar fluctuations at dissipative scales. For
mixture fraction this scale varies between zero and unity for high and low intensity
turbulent mixing respectively. As this study consists of data from a single set of
mixing conditions, it is not possible to validate any model for variation in c with
mixing conditions. It is, however, possible to examine whether a single value of c
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is appropriate independently of local values of Qη, q2
η, and mixture fraction. This

issue is examined in the next section.
It should be noted that Kronenburg and Bilger (1997) successfully account for

differential diffusion in the CMC model through the use of an alternate treatment
to that proposed above. Their methodology has much to recommend it, but when
applied to multi-component reacting systems, it requires an additional conditional
moment equation to be solved for each species. The method presented here seeks
to avoid that added cost.

It was found that the profile shape and magnitude of the conditional covariance
between particle mass fraction and scalar dissipation rate (Cη) was critical to the
transport of particles in mixture fraction space. While the form of this profile is,
in general, not known, its behavior at mixture fraction bounds is prescribed by the
integration of Eq. 26, with respect to mixture fraction, between these bounds. This
integration should yield the unconditional mean mixture fraction equation, which
implies that the bounding values of the mixture fraction flux term (Eq. 29) are zero.
It follows that the slope of the product PηCη must be zero at the bounding mixture
fractions.

Modeling of the Cη term was achieved using a simple heuristic approach to best
match the observed simulation profiles for Cη. This model took the form,

Cη =
(
aq
√

(q2
η)− aQQη + acor

)
Nη , (44)

where aq, aQ, and acor were constants determined from the goodness of fit with the
Cη profile observed from the corresponding simulation. The above fitting technique
is similar to that employed by Li and Bilger (1996) except for the inclusion of the
conditional mean value (Qη) and the zero-boundary correction term acor. It was
found that it was necessary to include these terms to match the observed simulation
data. Due to the case-specific nature of the covariance profiles, they are discussed
in turn in the following section.

4. Results
In the following, the results from the modeling of soot particles and droplets are

discussed separately.

4.1 Soot
Examining the conditional covariance between scalar dissipation rate and particle

mass fraction (Cη), the simulation data revealed the characteristic form of the
covariance profile for soot as possessing a large negative spike near the mean mixture
fraction. The location of this spike in mixture fraction space corresponded with the
location of the peak conditional mean mass fraction. Through careful selection
of the coefficients in the Cη model equation (Eq. 44), it was possible to produce
the similar profile as was observed in the simulation data while producing good
predictions for Qη and q2

η.
The profile match derived for conditional covariance in soot case s1 can be seen

in Fig. 2. Note that the observed simulation profile has been slightly smoothed



Simulation and modeling of reacting particles 53

Mixture Fraction
0.5 1.25

C
o

va
ri
a

n
ce

0.998

-0.119

-0.248
-0.338

Figure 2. Modeled and observed conditional covariance between mass fraction
and scalar dissipation rate for case s1. Symbols denote the following profiles: 4 -
prediction of covariance, and ◦ - simulated covariance.

and averaged about the symmetry point at the mean mixture fraction to facilitate
comparison with the smooth symmetric model profile. It is evident that the model
profile agrees reasonably well with the observed profile, particularly in the vicinity
of the mean mixture fraction. The model profile does not match the observed
maximum value of the covariance at mixture fractions slightly leaner and richer
than the mean value. Unfortunately, it is the first and second derivatives of the
conditional covariance which appear in the model equations. The value of the slope
and curvature of the model Cη profile are believed to reflect the general behavior
of the simulation data; however, it is difficult to make any stronger statement due
to the limited data available for statistical analysis. Future simulations with larger
particle populations will be used to better understand this behavior.

The characteristic effect on the conditional mean particle mass fraction of varying
the mixing mode variable, c, can be seen in Fig. 3 for case s1 along with the
conditional mean profile which results from chemical reactions and particle injection
alone. It can be seen that the arbitrary increase of c causes the predicted mean mass
fraction profile to simultaneously increase in peak value and decrease in minimum
value. Further, increases in c tend to decrease the value of conditional mean mass
fraction at very rich and very lean mixture fractions.

The governing conditional mean particle mass fraction equation (Eq. 39) has the
property that increased values of c tend to favor a mode of mass transfer in mixture
fraction space which is essentially diffusive in nature. Lower values of c favor the
mode associated with the drift of particle mass in mixture fraction space which
results from gas phase species diffusing at a more rapid rate in physical space than
the particles they surround. Thus c can be thought of as a measure of to what degree
particle mass diffuses against a mixture fraction coordinate instead of undergoing
an apparent convection-like process in mixture fraction space due to the differential
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Figure 3. Predicted conditional mean mass fraction profiles for case s1 with
arbitrarily varied levels of differential diffusion. Symbols denote the following pro-
files: 4 - prediction with c = 0.05, ◦ - prediction with c = 1.00, and � - chemical
equilibrium with particle injection.
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Figure 4. Predicted conditional root mean square deviation (
√

(q2
η)) mass frac-

tion profiles for case s1 with arbitrarily varied levels of differential diffusion. Sym-
bols denote the following profiles: 4 - prediction with c = 0.05, ◦ - prediction with
c = 0.50, and � - prediction with c = 1.00.

diffusion of the coordinate and mass fraction fields in physical space. The tendency
towards smoother conditional mean profiles, in Fig. 3, with increased c values is
indicative of this trend.

Variation in the predicted conditional mass fraction variance profiles with arbi-
trary variation in the mixing mode variable can be seen in Fig. 4 for case s1. It
is apparent that increasing the value of c leads to an increased peak value in the
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Figure 5. Modeled and observed conditional mean and variance of particle mass
fraction for case s1. Symbols denote the following profiles: 4 - Qη prediction, ◦ -
simulated Qη, � - qη prediction, and × - simulated qη.

conditional mean variance profiles and an increased value of variance at very rich
and lean mixture fractions. The elevated level of conditional variance in the high c
case is due to the source contribution from the last term of Sq (see Eq. 37).

A low value of c results in a dip in variance near the mean mixture fraction where
the model equations do not predict any variance production. This dip is not present
in higher c cases where diffusive transport in mixture fraction space is strong enough
to smooth out sharp changes in gradient.

The result of matching the conditional covariance profile and minimizing the
mixing mode variable to c = 0.05 (minimum numerically stable value) provided the
predicted conditional mean and variance profiles plotted in Fig. 5.

Employing the same value of c and the same constants in the model for the
mass-dissipation covariance Cη from Eq. 44 provided accurate predictions for the
conditional mean and variance of particle mass in soot case s2i. These predictions
are plotted against simulation data in Fig. 6.

It is evident that there is reasonable qualitative agreement between the predicted
and observed profiles in Figs. 5 and 6. The CMC model captures the essential
changes in profile shape in the more reactive case (Fig. 5) but appears to incor-
rectly predict rich and lean side behavior to greater extent in the less reactive case.
Good quantitative agreement is found near the mean mixture fraction in both cases;
however, the predicted profiles deviate substantially from the observed data at mix-
ture fractions away from the mean. This discrepancy may have been due to the poor
modeling of the conditional covariance term (Cη) at those same mixture fractions.
It is difficult to be sure that the model fit to Cη provided by Eq. 44 provides accu-
rate Cη gradients and curvatures as is required in the CMC equations. It is clear
that the modeling of the mass-dissipation covariance requires further attention.
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Figure 6. Modeled and observed conditional mean and variance of particle mass
fraction for case s2. Symbols denote the following profiles: 4 - Qη prediction, ◦ -
simulated Qη, � - qη prediction, and × - simulated qη.

4.1.1 Effect of particle slip velocity
Soot cases s2 and s2i were simulated to examine the effect of slip velocities be-

tween particles and their carrier fluid. The former simulated case took account
of particle inertia and the difference in local velocities which can arise from the
kinetic lag between fluid flow variations and particle response to those variations.
The latter simulation case (s2i) did not account for particle inertia and thus no slip
velocities were present.

The differences in the conditional mean and variance particle mass fraction pro-
files between these two simulation cases can be seen in Fig. 7. It is evident that the
introduction of particle inertia, all else being equal, causes the conditional mean
particle field to behave in a more diffusive manner in mixture fraction space. Si-
multaneously, a rise in conditional variance results, particularly at mixture fractions
away from the mean mixture fraction. Although not plotted, there appeared to be
little change in the Cη profiles between the simulation pair, indicating that the vee-
shaped form of the covariance profile is not a result of inertial particle transport.

Conditional source terms related to particle slip velocity appear in the neglected
residual groupings of Eqs. 39 and 40. The conditional mean equation contains the
slip transport term 〈(ui − vi) | η〉 ∂∂η (Qη), whereas the variance equation contains a
transport term 〈(u′i − v′i) | η〉 ∂∂η

(
q2
η

)
, and the source term 〈(u′i − v′i) y | η〉 ∂∂η (Qη).

The difference in behavior observed in the above simulation cases corresponds with
the expected effect of the neglected slip velocity terms in the CMC equations. It
is clear that the introduction of larger inertial particles to the model problem gives
rise to a significant increase in the difficulty of modeling particle behavior.

4.2 Droplets
Unlike the soot particles, the droplet particle simulations exhibited very weak
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Figure 7. Observed conditional mean and variance of particle mass fraction for
inertial (s2) and inertia-less (s2i) soot cases. Symbols denote the following profiles:
4 - Qη inertial, ◦ - Qη inertia-less, � - qη inertial, and × - qη inertia-less.
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Figure 8. Modeled and observed conditional mean and variance of particle mass
fraction for case d1i. Symbols denote the following profiles: 4 - Qη prediction, ◦ -
simulated Qη, � - qη prediction, and × - simulated qη.

conditional covariance between scalar dissipation rate and particle mass fraction.
This distinction between the particle types suggests that the form of the covariance
(Cη) profile is linked to the types of reactions which act upon the particles. It
would seem that strong reactions, as in the soot cases, give rise to sharp changes
in particle properties in mixture fraction space which in turn impact strongly upon
the transport statistics between adjacent mixture fractions. The weak reactions of
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Figure 9. Observed conditional mean and variance of particle mass fraction
for inertial (d1) and inertia-less (d1i) droplet cases. Symbols denote the following
profiles: 4 - Qη inertial, ◦ - Qη inertia-less, � - qη inertial, and × - qη inertia-less.

the droplet cases do not impart sharp changes in value to the conditional statistical
profiles and thus do not seem to cause strong covariance between mass fraction and
scalar dissipation rate. Further investigation of this behavior is clearly warranted.

Due to the observed behavior in the droplet cases, the covariance profile was
modeled as being zero for all mixture fractions. As with the soot cases, the value of
the mixing mode parameter, which gave best predicted agreement with the observed
mass fraction profiles, was very low (c = 0.1). The degree of agreement between the
observed and predicted profiles for the inertia-less droplet case (d1i) can be inferred
from Fig. 8. It is clear that the CMC model predicts the conditional mean and
variance of droplet mass fraction with a good degree of accuracy.

4.2.1 Effect of particle slip velocity

While it is clear that the CMC model can capture the behavior of very small
fuel droplets in the terminal stage of evaporation, the modeling of particles with
significant inertia is more problematic.

In Fig. 9, the conditional statistics from the simulation pair of d1 and d1i are
compared. It is evident that, as with the soot comparison of Fig. 7, the larger
inertial particles tend to exhibit a tendency towards conditional mean profiles which
have a lower level of curvature as though smoothed by enhanced diffusive transport.
The conditional variance profile exhibits virtually no change in slope in the case of
the inertial particles. The existence of slip velocities, larger than in the inertial
soot case, causes a great deal of conditional variance generation to occur at mixture
fractions away from the mean.

The noted inertial-particle behavior is even stronger in nature than that described
in Section 4.1.1 for smaller soot particles. This suggests that the larger the particles



Simulation and modeling of reacting particles 59

under consideration, the less effective a continuum model will be in describing their
behavior.

5. Remarks

The results of this preliminary study indicate that a tailored variant of the Condi-
tional Moment Closure (CMC) method can be applied successfully to modeling the
evolution of soot-like and droplet-like reacting particles in a turbulent combusting
environment. For the soot particle cases, a single set of constants were sufficient to
correctly predict particle evolution under for a variety of reaction intensities. This
finding suggests that it is appropriate to simultaneously model condensed and gas
phase reactions in turbulence using the CMC model within an Eulerian frame.

However, significant caveats apply to this modeling approach. Firstly, it is clear
that the conditional covariance between scalar dissipation rate and reactive scalar
mass fraction cannot, in general, be neglected. It is apparent that some species
can exhibit strong non-zero covariance profiles which play the foremost role, of
all transport terms, in transporting scalar properties in mixture fraction space. An
examination of simulation cases with different particle reactivities suggest that those
species subject to more intense reactions exhibit stronger covariance profiles. This
may be due to the establishment of large changes in scalar values and gradients
between adjacent mixture fractions, which can result from strong reactions taking
place. It was found that changes in particle inertia, while keeping all else constant,
had virtually no effect on the form of the conditional covariance profile. Further
work is obviously required to study the dependence of mixing covariance on particle
reactivity and to devise an improved model for predicting its profile shape in mixture
fraction space.

Secondly, it was found that the CMC model is not well suited to predicting the
behavior of particles with substantial levels of inertia. Relatively large particles such
as fuel droplets can develop significant slip velocities relative to their surrounding
fluid. These slip velocities appear as unclosed transport and variance production
terms in the CMC equations. They appear to enhance transport of particle proper-
ties in mixture fraction space over that exhibited by smaller particles with smaller
slip velocities but similar reactivity. Further, as one would expect, because the
larger particles are not transferred in space in the same way as gaseous mixture
fraction, the conditional variance of particle properties at any given mixture frac-
tion is higher than that for gaseous species. While it was found that the modeling of
inertial particle transport in mixture fraction space could largely be accounted for
by increasing the level of diffusive transport (through increasing c to unrealistically
high levels), the model could not account for the increased conditional variance
which was observed.

The mixing mode variable (c) approach to treating differential diffusion in the
CMC model deserves further attention. In varying the value of c between the
extreme value given by the ratio of molecular diffusivities and unity, according to
changes in global mixing conditions, the CMC equations change in a natural way
to embody differential diffusion effects to a greater or lesser degree as required.
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A single value of c was found to suffice for the prediction of particle behavior in
the cases studied here under uniform mixing conditions, but with widely different
reactive behavior. This suggests c may well be independent of local variations
in mixture fraction and particle mass fraction and a function only of global mixing
parameters. Further work is required to properly test this hypothesis and the model
for c proposed in Eq. 43.

Future work involving the CMC-particle model derived here will focus on val-
idation of the model against larger simulations which incorporate more realistic
chemistry, higher turbulence levels, and a more diverse set of mixing and reaction
conditions.
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