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Testing of a new mixed model for
LES: the Leonard model supplemented

by a dynamic Smagorinsky term
By G. S. Winckelmans1, A. A. Wray AND O. V. Vasilyev2

A new mixed model which uses the Leonard expansion (truncated to one term)
supplemented by a purely dissipative term (dynamic Smagorinsky) has been devel-
oped and tested in actual Large Eddy Simulations (LES) of decaying homogeneous
turbulence and of channel flow. This model assumes that the LES filter is smooth in
wave space, which is the case of most filters defined in physical space (e.g., top hat,
Gaussian, discrete filters). The dynamic procedure has been extended for the mixed
model. It is used to determine the model coefficient, C, for the added Smagorinsky
term. The one-term Leonard model provides significant local backscatter while re-
maining globally dissipative. In a priori testing, its correlation with DNS is greater
than 0.9. However, when used on its own in actual LES, this model is found to
provide too little dissipation. Hence the need for added dissipation, here provided
by the dynamic Smagorinsky term. In 643 LES of decaying homogeneous turbu-
lence started from Gaussian filtered 2563 DNS at Reλ ' 90, the new mixed dynamic
model performs significantly better than the dynamic Smagorinsky model with same
Gaussian filtering; it also outperforms the dynamic Smagorinsky model with sharp
cutoff filtering: much better energy spectra, much better energy and enstrophy de-
cay. For the preliminary 483 LES runs on the channel flow at Reτ = 395 done with
smooth LES filtering (Gaussian in the homogeneous directions, top hat in the non-
homogeneous direction), the mixed dynamic model is also superior to the dynamic
Smagorinsky model. However, the dynamic Smagorinsky model with sharp cutoff
test filtering in the homogeneous directions still produces a better mean velocity
profile. This result calls for further investigations.

1. Introduction and model development
We consider incompressible flows (∂iui = 0). Upon applying a spatial filter, G,

f(x) =
∫
G(x− y) f(y) dy , (1)

to the Navier-Stokes (NS) equations written in the velocity-pressure formulation,
one obtains the evolution equation for the filtered velocity field (with ∂iui = 0):

∂tui + ∂j (ui uj) + ∂iP = ∂j
(
2ν Sij

)
− ∂jτij , (2)
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with P = p/ρ the pressure divided by the density, Sij = (∂jui + ∂iuj) /2 the sym-
metric rate of strain tensor, and τij = ui uj−ui uj the symmetric stress tensor due to
the filtering. This tensor is often called “subgrid-scales” stress tensor. This name is
misleading because the filtering above is defined independently of a numerical grid.
A better term would be “filtered-scales” stress tensor.

We here consider non-linear models of the family derived from Leonard (1974,
1997). Consider the Gaussian filter, ∆G(x) = exp

(
−x2/2∆

2
)
/
√

2π, G(k) =

exp
(
−k2 ∆

2
/2
)
. The Leonard expansion is then obtained as:

f g ' f g + ∆
2
∂xf ∂xg +

∆
4

2!
∂x∂xf ∂x∂xg +

∆
6

3!
∂x∂x∂xf ∂x∂x∂xg + . . . . (3)

This result is remarkable because, at least in principle, it provides a means of
evaluating the filter of a product of variables from the filtered variables and their
derivatives. In 3-D, the filter is taken as the product of 1-D filters. One then obtains
for the stress (Leonard, 1997):

τij = ∆
2
∂kui ∂kuj +

∆
4

2!
∂k∂lui ∂k∂luj +

∆
6

3!
∂k∂l∂mui ∂k∂l∂muj + . . . . (4)

For 3-D LES, it would be very expensive (both in terms of memory and CPU
requirements) to keep many terms in this expansion. In that respect, an already
very interesting candidate model for LES is the one corresponding to truncation of
the expansion to the first term:

τMij = ∆
2
∂kui ∂kuj . (5)

This non-linear isotropic model was not included in the LES models evaluated in
a priori tests in Clark et al. (1979), McMillan & Ferziger (1979), Bardina et al.
(1983), Lund & Novikov (1992), Salvetti & Banerjee (1995), some of which were
revisited in Winckelmans et al. (1996). It has, however, already been tested a
priori against experimental data (unfortunately, 2-D cuts) in Liu et al. (1994)
with correlation levels of about 0.7, and against DNS data in Borue & Orszag
(1998) with correlation levels between 0.83 and 0.97 (i.e., very high!) depending
on the type of smooth filter used and on the filter size. It is also argued in Liu et
al. (1994) that this model has some ties with the Bardina (1983) scale-similarity
model, τMij = Lij = uiuj − uiuj . The link also appears in an appendix in Horiuti
(1997) where we observe that the first term in the approximate expansion of Lij is
indeed the same as the first term in the exact Leonard expansion. The other terms
are, however, very different. The Leonard model (truncated to one term or more)
is thus not identical to the Bardina model. Nevertheless, we recall that, for smooth
filtering such as the Gaussian or the top hat, the Bardina model also exhibits a
high level of correlation with the exact stress: e.g., 0.8 in Liu et al. (1994), 0.7 in
Gaussian filtered DNS in Winckelmans et al. (1996), but only 0.5-0.6 in Liu et al.
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(1994) when “approximating” the Bardina model by using τMij ' Lij = ûiuj − ûiûj
where the second filter width, ∆̂, is now taken as twice the original filter width,
∆. In a priori tests with smooth filters, it thus appears that the one-term Leonard
model consistently produces higher levels of correlation than the Bardina model.

Finally, it can also be shown (Carati et al., 1998) that, for all filters that are C∞

in wave space and have non-zero second moment (that is most of the filters defined
in physical space, such as the Gaussian, the top hat, all discrete filters, etc.), there
exists a generalized Leonard expansion that always starts with

τij = ∆
2
∂kui ∂kuj + . . . . (6)

where the filter width is normalized as follows:

∆
2

=
∫ ∞
∞

x2 G(x) dx = −d
2G

dk2
|k=0 . (7)

Hence, the present investigation (theoretical and numerical) using the one-term
Leonard model is not limited to the Gaussian filter; this model is truly generic.
An important exception (because it is still used so often in spectral LES) is the
sharp cutoff “filter” applied in wave space. This “filter” has very poor properties in
physical space; it doesn’t even have a second order moment. It does not allow for
any kind of generalized Leonard expansion, or even any kind of one-term Leonard
model, because it totally removes all information beyond the sharp cutoff. We also
recall that no significant correlation with DNS data are obtained when testing the
Bardina model with the sharp cutoff filter.

It should also be noted that an original integral formulation of the one-term
Leonard model has been developed and tested by Cottet (1997a,b), following devel-
opments in vortex methods (Cottet, 1996). Its further investigation was the object
of parallel study during this Summer Program.

When used in the filtered NS equations, the one-term Leonard model behaves as
a non-linear diffusion/antidiffusion model. Indeed, it is easily seen (Leonard, 1997)
that

−∂jτMij = −∆
2
Sjk ∂j∂kui , (8)

so that Sjk plays the role of a tensorial viscosity for the filtered velocity field. This
tensor is not positive-definite. Transforming to the principal coordinates, x′, of Sjk,
one obtains (Leonard 1997):

−Sjk ∂j∂kf = − (α1 ∂1′∂1′ + α2 ∂2′∂2′ + α3 ∂3′∂3′) f . (9)

Since the eigenvalues of Sjk, (α1, α2, α3), satisfy α1 + α2 + α3 = 0, one has effec-
tively negative diffusion along the stretching direction(s). This corresponds to local
directional backscatter.

Let’s examine the energy transfer and the dissipation. One easily obtains:

∂t

(
uiui
2

)
+ ∂j

((
P +

uiui
2

)
uj + ui

(
τij − 2ν Sij

))
= −ε , (10)
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with ε = −τijSij + 2ν SijSij . The term ∂j(· · ·) represents the convective contribu-
tion to the energy flux, while ε represents the local energy flux: (1) the flux from
large (and less filtered) scales to small (and more filtered) scales: effective dissi-
pation if positive, effective backscatter if negative; and (2) the dissipation due to
the molecular viscosity: clearly always positive. For homogeneous turbulence, the
convective contribution has no net effect. We then write, for the global dissipation
rate,

dE

dt
=

d

dt
〈uiui

2
〉 = −〈ε〉 . (11)

For uniform ν, the global dissipation due to viscosity is also obtained as

〈εν〉 = ν 〈2SijSij〉 = 2ν 〈ωiωi
2
〉 = 2ν E (12)

where ωi = εijk∂juk (with εijk the permutation tensor) is the filtered vorticity field
and E is the global enstrophy.

The contribution of the Leonard model to the local energy flux (dissipation or
backscatter) is (Leonard, 1997; Borue & Orszag, 1998):

εM = −τMij Sij = −∆
2
∂kui ∂kujSij

= −∆
2 (
SkiSijSjk −RkiSijSjk

)
= ∆

2
(

1
4
ωiSijωj − tr

(
S

3
))

.

(13)

where Rij = (∂jui − ∂iuj) /2 = −εijkωk/2 is the antisymmetric rate of rotation
tensor. This contribution is not necessarily positive, hence the natural backscatter
provided by the model.

For homogeneous turbulence, the global contribution of the model is, however,
dissipative as 〈εM 〉 is proportional to the negative of the global skewness. A suffi-
cient condition to ensure global dissipation is thus that the global skewness of the
LES field remains negative (the necessary condition being that 〈εν + εM 〉 ≥ 0). The
skewness is indeed negative in homogeneous turbulence and its DNS. It should also
be negative in good LES. It was indeed found to remain negative in all LES’s of de-
caying homogeneous turbulence that we conducted during the present investigation,
these LES’s being started from a filtered DNS field and thus having a negative global
skewness initially. If one starts a DNS or a LES from a random field with Gaussian
statistics, then the skewness is initially zero. However, as the simulation proceeds,
it quickly becomes negative because the flow develops into “real” turbulence.

The one-term Leonard model could be constrained locally by putting a limiter
on the directional negative diffusion: find the eigenvalues and eigenvectors of the
local strain rate tensor, express the forcing term, −C∆

2
Sjk∂j∂kui in this system

of coordinates, and ignore (i.e., clip) the direction(s) corresponding to negative
diffusion. This certainly makes the model anisotropic. Notice that there is now a
need for a new unknown parameter C. Indeed, since this “clipping” corresponds to a
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major alteration of the original Leonard model, there is no reason to expect, a priori,
that C = 1. Of course, this clipping approach can be refined further by enforcing
that the total forcing term

(
ν∂j∂j − C∆

2
Sjk∂j∂k

)
ui be clipped in the direction(s)

corresponding to net negative diffusion. We notice, in passing, that the integral
formulation developed by Cottet (1996, 1997a,b) essentially allows for convenient
directional clipping without having to compute eigenvalues and eigenvectors.

Alternatively, one could clip the Leonard model isotropically by enforcing that
εM ≥ 0 at each point. Defining mij = ∆

2
∂kui∂kuj , the model could be written as

τMij = Cmij if −mijSij ≥ 0 ,

τMij = C

[
mij −

(
mklSkl

)(
SklSkl

) Sij] otherwise .
(14)

Again, there is a parameter C, and one can also refine this approach. For both
clipping approaches, the determination of the parameter could be done using a
dynamic procedure.

In any case, “clipping” guarantees pure dissipation (and hence numerical sta-
bility), but it isn’t justified theoretically. Here, we wish to first investigate the
unaltered model: no clipping. With good numerics, and assuming that the com-
putation doesn’t blow up, the hope is that such a model could indeed provide for
reasonable local backscatter while remaining globally sufficiently dissipative. One
could argue that, in principle, the unclipped one-term Leonard model is numerically
ill-conditioned. Our numerical experience so far (decaying homogeneous turbulence
and channel flow) is that the simulations do not blow up, confirming our hope that
LES’s with that model and without limiter (i.e., with local backscatter) can in-
deed be carried out successfully. This is very good news. This result is probably
due, in part, to the fact that the direction(s) of negative diffusion evolve in space
and time while the simulation proceeds. The negative diffusion (which is certainly
numerically unstable if applied forever) here constantly changes direction and is
counterbalanced by positive diffusion. In a way, the simulation corresponds to dy-
namic dissipation events happening together with dynamic backscatter events, the
mean remaining globally dissipative.

However, in our pseudo-spectral LES of decaying isotropic turbulence at high
Reλ, the one-term Leonard model, when used on its own, is found to provide too
little global dissipation, see Figs. 3 to 5 (even though the simulation doesn’t blow
up). This is seen even more clearly when comparing the evolution of the LES energy
spectrum with the DNS, see Figs. 7 to 9. Thus, we find that the one-term Leonard
model does not suffice in actual LES runs. Hence, it was decided to develop and
test a mixed model: add to the one-term Leonard model a purely dissipative term
such as the dynamic Smagorinsky term:

τMij = ∆
2
∂kui ∂kuj − 2C∆

2 (
2SklSkl

)1/2
Sij . (15)

This is done in the same spirit as Zang et al. (1993) for the mixed model con-
tructed by adding a dynamic Smagorinsky term to the Bardina model. See also
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Horiuti (1997) for yet another two-parameter dynamic mixed model. This mixed
model proposed here is still isotropic as opposed to non-isotropic models such as
Carati & Cabot (1996) or Cottet (1997a,b). The first term is expected to be “the
good filtered-scales model” because (1) it has some solid mathematical basis (see
above) and (2) it naturally provides for local backscatter (as LES models should,
see also Carati et al., 1995a). On its own, however, it does not provide for enough
dissipation. Conversely, the second term (with the classical Smagorinsky, 1963, 1/T
scaling,

(
2SklSkl

)1/2
, such as above; or with the Kolmogorov scaling proposed by

Carati et al., 1995b, and tested in actual LES, e.g., Dantinne et al., 1998; or with
other scalings,e.g., see a review in Winckelmans et al., 1996) has long been known
to be a poor model that always produces local dissipation (when C is constrained
to remain positive). For the proposed mixed model, we now have:

εM = −τMij Sij = −∆
2
∂kui ∂kuj Sij + C∆

2 (
2SijSij

)3/2
. (16)

When the Smagorinsky term is used on its own as a LES model together with
the dynamic procedure (Germano et al., 1991; Ghosal et al., 1992, 1995; Moin et
al., 1994), it doesn’t necessarily lead to the correct dissipation as compared to the
DNS; it very much depends on the filter used, see the results below, Figs. 3 to 5.
We here wish to stress that, in the present approach, we really consider the one-
term Leonard model as “the filtered-scales model” and the dynamic Smagorinsky
term as an added numerical aid for enhancing the local dissipation. Although there
is some similarity between the second possible clipped model presented above and
the present mixed model, there are significant differences. The formulation of the
mixed model is continuous (no “if” statement). Moreover, in the mixed model,
the added term with dynamic C is not a clipping of the first term as C does not
multiply both terms. As a consequence, the new mixed model is still isotropic, and
it still allows for local backscatter; εM is not necessarily positive. Of course, the
amount of local backscatter allowed is now less than for the pure Leonard model,
and the dissipation is now more. Notice that the first term (the “model”) still has
the known coefficient coming from the Leonard expansion with the chosen smooth
LES filter (e.g., Gaussian). In all we do here, it is with that same chosen LES filter
that we filter the DNS results in order to compare them with the LES results (or,
conversely, that we de-filter the LES results to compare them with the DNS results).

Whether the dynamically obtained C in this new mixed model will lead to the
proper amount of dissipation as compared to DN, remains to be seen (see the results
section). In that respect, for identical LES filters, it had better be that the dynamic
C obtained in the mixed model turns out to be smaller than the dynamic C obtained
when using the Smagorinsky term on its own as LES model. As mentioned above,
C is here obtained through the dynamic procedure (Germano et al., 1991; Ghosal et
al., 1992, 1995; Moin et al., 1994) by (1) applying an additional test filter, Ĝ, which
is such that the combined “LES + test” filter, Ĝ, is similar the original LES filter,
G; (2) assuming similarity of the LES models at both levels, τMij similar to TMij , with
the same C; and (3) satisfying Germano’s identity, Tij − τ̂ij = Lij = ûiuj − ûiûj , in
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the least-square sense: 〈EijEij〉, where Eij =
(
TMij − τ̂Mij

)
−Lij , is minimized, with

integration 〈. . .〉 done over the homogeneous direction(s). C is thus uniform along
the homogeneous direction(s). Moreover, along the non-homogeneous direction(s)
(if any), it is also assumed that the spatial variation of C with respect to the test
filter can be factored out, i.e., that Ĉ aij ' C âij . This requirement is trivially
satisfied if the test filter is only applied along the homogeneous direction(s), as is
often the case in practice (but then the assumed similarity between the LES and
LES+test filters is not strictly correct). Otherwise, it is only a (poor) assumption
that should be validated a posteriori (at least statistically, when averaged over
time).

Here, working in wave space, we take Ĝ(k) = exp
(
−α2 k2∆

2
/2
)
, i.e., ∆̂/∆ =

α > 1, which is indeed similar to G(k) = exp
(
−k2∆

2
/2
)
. The required test filter

is also Gaussian: Ĝ(k) = Ĝ(k)/G(k) = exp
(
−
(
α2 − 1

)
k2∆

2
/2
)
, i.e., ∆̂/∆ =

√
α2 − 1. Typically, we use α = 2. Another filter is the top hat filter: G(k) =

sin
(√

3 k∆
)
/
(√

3 k∆
)
, and thus Ĝ(k) = sin

(√
3 k∆̂

)
/
(√

3 k∆̂
)
. If we choose

α = 2, the test filter becomes Ĝ(k) = Ĝ(k)/G(k) = cos
(√

3 k∆̂
)

(Carati, 1997).
This test filter is also easily applied in physical space using only grid values as it
is the discrete “arithmetic mean”: Ĝ(x) =

(
δ
(
x+
√

3∆
)

+ δ
(
x−
√

3∆
))
/2. Of

course, one needs to choose ∆ so that
√

3∆ is a multiple of the grid size ∆.
The dynamic procedure for the mixed model is summarized here as:

mij = ∆
2
∂kui ∂kuj , aij = 2 ∆

2 (
2SklSkl

)1/2
Sij , τMij = mij −C aij ,

Mij = ∆̂
2

∂kûi ∂kûj , Aij = 2 ∆̂
2 (

2ŜklŜkl
)1/2

Ŝij , TMij = Mij − C Aij ,

pij = Lij + (m̂ij −Mij) , qij = (âij −Aij) , C =
〈pij qij〉
〈qij qij〉

. (17)

For homogeneous turbulence, all three directions are homogeneous so that C =
C(t). For the channel flow, two directions are homogeneous so that C = C(y, t).
Since the channel flow dynamical LES eventually reaches statistical equilibrium,
time averaging can also be done at some point, and one ends up with a profile,
C = C(y). Then the dynamic procedure assumption above is statistically better
verified.

Notice that the added dissipative term in the mixed model is formally of the same
order as the one-term Leonard model: both involve product of first derivatives of
the LES field. Since dynamic hyper-viscosity models such as

τMij = 2C∆
4 (

2SklSkl
)1/2

∂m∂mSij (18)

have also been used with some success in LES (e.g., Winckelmans et al., 1996, in
a priori tests; Dantinne et al., 1998, in actual LES with sharp cutoff test filtering),
we also investigated the following possibility of mixed model:

τMij = ∆
2
∂kui ∂kuj + 2C∆

4 (
2SklSkl

)1/2
∂m∂mSij , (19)
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Figure 1. Reλ(t) for the reference 2563 DNS.

where the added term now clearly involves higher order derivatives and is thus ex-
pected to only affect the high-end of the energy spectrum. When tested numerically
with Gaussian filtering, this mixed model did not dissipate enough energy.

2. Results for decaying homogeneous turbulence

For the LES tests on decaying homogeneous turbulence, the solver is a dealiased
pseudo-spectral code. The reference data is a 2563 DNS at high Reλ that was run
using the same spectral code. The DNS was started using a field with given spectra
and random phases. This initial condition then evolved into real turbulence. The
usable reference DNS data then covers the window of Reλ shown in Fig. 1. At the
begining (t = 4.17, Reλ ≈ 90), the Kolmogorov scale, η =

(
ν3/〈ε〉

)1/4, is such that
kmax η ≈ 2; the DNS is thus well-resolved. At the end (t = 13.32), kmax η ≈ 4. The
t = 4.17 DNS was Gaussian filtered using ∆ = 2

√
2∆256, and was then further

truncated to 643 (i.e., ∆ = ∆64/
√

2) to be used as an initial condition for the
LES runs. Hence, at the maximum wavenumber of the truncated set, we have
G = exp

(
−π2/4

)
= 0.085; the 643 grid used to resolve the LES thus covers well

the range where the LES filter is significant while not overkilling it. At half the
maximum wavenumber, we have G = 0.54. For the dynamic procedure, we used
the classical value α = 2. We also tried α =

√
2, but the results were consistently

slightly better with α = 2.
As a first test of the one-term Leonard model, the correlation between the model,

τMij = ∆
2
∂kui∂kuj , and the exact stress, τij, was evaluated using the filtered DNS

data. It came out very high, 0.92, in good agreement with correlations in Borue &
Orszag (1998). That is certainly a victory for the one-term Leonard model, at least
in such a priori testing. It shows that the expansion truncated to one term already
contains most of the stress.

Notice that the correlation measures the alignement between the two stresses.
It doesn’t say anything about the “best” coefficient to use in front of the model.
Since the original Leonard expansion has been truncated to one term, it is valid
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to ask if this term shouldn’t be rescaled somehow. Hence, as a second test of
the one-term Leonard model, the dynamic procedure was applied to an assumed
τMij = C∆

2
∂kui∂kuj . The result came out to be C = 1.0050, pretty close to

C = 1 indeed (difference of 0.5%). This is a double victory: one for the theoretical
developments that claim that the good value is C = 1, and one for the dynamic
procedure that indeed finds that value.

Filtering the DNS even more was also considered. With ∆ twice as large as
above, the correlation came out as 0.89 and the dynamic C came out as C = 0.9536
(difference of 5%: not as good, but still very close. This filter size is probably too
large with respect to the Kolmogorov scale of this high Reλ turbulence.
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Figure 2. Pdf of the model coefficient, C: dynamic Leonard model, Gaussian:
; Leonard model + dynamic Smagorinsky term, Gaussian: ; dynamic

Smagorinsky model, Gaussian: ; dynamic Smagorinsky model, sharp cutoff:
.
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Finally, as a third test of the one-term Leonard model, the dynamic procedure was
applied but this time locally (i.e., no averaging over the homogeneous directions).
The obtained pdf of C is given in Fig. 2. The striking result is that the pdf is
extremely sharp, with prefered value: C ≈ 1. Notice that the pdf is not symmetric;
it is skewed to the left. Notice also that there are no negative C. Again, this is
a victory of the model and of the local dynamic procedure. For comparison, we
also provide the pdf of the Smagorinsky term when used as the LES model. Two
cases are examined: Gaussian filtering and sharp cutoff filtering. In both cases,
the obtained pdf is very wide with many negative C values, confirming that the
Smagorinsky term is indeed a poor LES model.

From this a priori study, it certainly appears that there is no point in having
something other than C = 1 in front of the one-term Leonard model. This is why
the mixed model presented above only has one parameter: the one in front of the
added dynamic Smagorinsky term. Notice that Fig. 2 also provides the pdf of that
C; as expected, it is very wide, even wider than when the Smagorinsky term is
used as LES model. This is to be expected since the Leonard term in the hybrid
model is “the LES model”, the remainder dynamic Smagorinsky term being added
for enhancing dissipation with little pretention on actual LES modeling.

The results obtained when using the mixed model (Leonard model + dynamic
Smagorinsky term) with Gaussian filtering are presented in Figs. 3 to 10. They
are compared with (1) the DNS, (2) the Leonard model with Gaussian filtering,
(3) the dynamic Smagorinsky model with Gaussian filtering, and (4) the dynamic
Smagorinsky model with sharp cutoff filtering (often used in spectral LES). For fair
comparison (quality versus computational cost), all LES’s are run using the same
resolution: 643. Moreover, for the LES’s with Gaussian filtering, the quantities such
as resolved energy spectra, E(k), resolved energy, E =

∫ kmax

0 E(k) dk, and resolved
enstrophy, E =

∫ kmax

0
k2E(k) dk, are evaluated by “defiltering” the LES results, i.e.,

by using E(k) = E(k) exp
(
k2∆

2
)
. This allows for straighforward comparison with

the DNS and the sharp cutoff Smagorinsky LES. (Of course, another way would be
to Gaussian filter the DNS and the sharp cutoff LES.)

The Leonard model with Gaussian filtering, when used on its own, does not blow
up. However, it provides too little dissipation, see Figs. 3 and 5, even at the start.
Thus, although the initial correlation between τMij and τij is very high (0.92), the
global model dissipation, −〈τMij Sij〉, is substantially lower than the exact filtered-
scales dissipation, −〈τijSij〉 (here, at the start, 4.112 versus 6.773). As expected,
the global model dissipation is positive since the global skewness of the LES fields
is initially negative and remains so. The dynamic sharp cutoff Smagorinsky model
leads to too much energy dissipation from the start, see Figs. 3 and 6. The dynamic
Smagorinsky model with Gaussian filtering starts off with the correct slope, but it
then quickly underdissipates, see Figs. 3 and 5. The mixed model starts off with the
correct slope and follows well the energy decay curve, see Figs. 3 and 5. Initially, the
total dissipation of the LES, model + viscous, is (4.112+2.887)+1.5944 = 8.593, to
be compared to 8.367 for the 2563 filtered DNS: only a 2.7% difference. Notice also
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Figure 3. Resolved energy, E(t): truncated DNS: • ; Leonard model, Gaussian:
; Leonard model + dynamic Smagorinsky term, Gaussian: ; dynamic

Smagorinsky model, Gaussian: ; dynamic Smagorinsky model, sharp cutoff:
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Figure 4. Resolved enstrophy, E(t): truncated DNS: • ; Leonard model, Gaussian:
; Leonard model + dynamic Smagorinsky term, Gaussian: ; dynamic

Smagorinsky model, Gaussian: ; dynamic Smagorinsky model, sharp cutoff:
.

the significant contribution of the Leonard term to the model global dissipation;
it is larger than the contribution of the dynamic Smagorinsky term: 4.112 versus
2.887. As expected, it is positive since the global skewness of the LES fields is
initially negative and remains so.

The differences between the investigated models are even more dramatic when
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Figure 5. Dissipation of resolved energy, −dE/dt = −〈τMij Sij〉 + 2ν 〈SijSij〉:
truncated DNS, Gaussian: • ; Leonard model, Gaussian: ; Leonard model +
dynamic Smagorinsky term, Gaussian: (Leonard: (thin), Smagorinsky:

(thinner)); dynamic Smagorinsky model, Gaussian: .
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Figure 6. Dissipation of resolved energy, −dE/dt: truncated DNS, sharp cutoff:
• ; dynamic Smagorinsky model, sharp cutoff: .

considering the decay of the enstrophy (which puts more weight on the high-end of
the spectrum), see Fig. 4: the dynamic sharp cutoff Smagorinsky model badly misses
the initial slope of enstrophy decay (too much decay). Its Gaussian version also
misses the initial slope, but on the other side (not enough decay). The mixed model
performs very well not only initially, but for the whole course of the simulation; the
LES decay curve is almost identical to the DNS curve.

The energy spectra produced by the mixed model are also clearly superior, see
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Figure 7. Resolved spectrum, E(k), at t ≈ 4.5: truncated DNS: • ; Leonard
model, Gaussian: ; Leonard model + dynamic Smagorinsky term, Gaus-
sian: ; dynamic Smagorinsky model, Gaussian: ; dynamic Smagorinsky
model, sharp cutoff: .
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Figure 8. Resolved spectrum, E(k), at t ≈ 7.5: truncated DNS: • ; Leonard
model, Gaussian: ; Leonard model + dynamic Smagorinsky term, Gaus-
sian: ; dynamic Smagorinsky model, Gaussian: ; dynamic Smagorinsky
model, sharp cutoff: .
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Figure 9. Resolved spectrum, E(k), at t ≈ 9.0: truncated DNS: • ; Leonard
model, Gaussian: ; Leonard model + dynamic Smagorinsky term, Gaus-
sian: ; dynamic Smagorinsky model, Gaussian: ; dynamic Smagorinsky
model, sharp cutoff: .
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Figure 10. Model coefficient, C(t): Leonard model + dynamic Smagorinsky
term, Gaussian: ; dynamic Smagorinsky model, Gaussian: ; dynamic
Smagorinsky model, sharp cutoff: .

Figs. 7 to 9; they closely match the DNS spectra over most of the range and for the
whole course of the simulation except for the few last wavenumbers (that are here
artificially enhanced on the graph because of the “defiltering” mentioned above).
The sharp cutoff Smagorinsky model shows some discrepancy in the spectrum, start-
ing at fairly low wavenumbers. Its Gaussian version doesn’t perform significantly
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better. As to the dynamic model coefficient, Fig. 10, it is seen that the C of the
Smagorinsky term in the mixed model is indeed smaller than the C of the Smagorin-
sky model; the one-term Leonard model thus contributes significantly to the success
of the mixed model.

3. Results for the channel flow
For the channel flow investigation, the solver is a fourth order finite difference

code. The reference DNS is the AGARD database at Reτ = huτ/ν = 395 of Man-
sour et al. (1996) (see also Rodi & Mansour, 1993), where h is half the channel width
and uτ =

√
τw is the friction velocity with τw the mean wall friction. The computa-

tional domain is (Lx, Ly, Lz) = (2π, 2, 2π/3)h. The LES filter is chosen as Gaussian
in the homogeneous directions, x and z, and top hat in the non-homogeneous di-
rection, y:

G = exp
(
−k2

x∆
2

x/2
) sin

(√
3 ky∆y

)(√
3 ky∆y

) exp
(
−k2

z∆
2

z/2
)
. (20)

Hence, the mixed model here becomes

τMij = ∆
2

x ∂xui ∂xuj+∆
2

y ∂yui ∂yuj+∆
2

z ∂zui ∂zuj−2C∆
2 (

2SklSkl
)1/2

Sij , (21)

where the “effective” ∆ for the added dynamic Smagorinsky term is simply taken as(
∆x∆y ∆z

)1/3
. Notice here another nice feature of the Leonard model: as opposed

to the Smagorinsky model, there is no need to define an effective ∆. The dynamic
procedure is done with α = 2. Hence, the test filter here becomes:

Ĝ = exp
(
−3 k2

x∆
2

x/2
)

cos
(√

3 ky∆y

)
exp

(
−3 k2

z∆
2

z/2
)
. (22)

The test filter is applied in wave space in x and z and in physical space in y (using
the arithmetic mean of the two neighbor grid points as explained previously).

For the preliminary runs done so far, the ratios of LES numerical grid to LES
filter size are ∆x/∆x = 2, ∆y/∆y =

√
3 and ∆z/∆z = 2. The LES grid is 48x49x48.

Results on normalized mean profiles as a function of normalized distance to
the wall are provided in Figs. 11 to 13: velocity, model stress and model dissi-
pation. With the same smooth filtering, the mixed model outperforms the dynamic
Smagorinky model: better mean velocity profile. Notice that the contribution of
the Leonard part to the mixed model is significant; for the mean stress, it is higher
than the contribution of the dynamic Smagorinsky term; for the mean dissipation,
its contribution is higher close to the wall and slightly lower in the core flow. Notice
also that the Leonard term contribution to the mean dissipation is indeed positive
for all y although it is not necessarily positive locally because of the model backscat-
ter. It is also found that the Leonard fraction of the model stress is essentially linear
from the beginning of the log region to the channel center. This behavior is similar
to what was obtained by Domaradzki & Saiki (1997) and Domaradzki & Loh (1998)
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Figure 11. Mean velocity profile: DNS: • ; Leonard model + dynamic Smagorin-
sky term, 48x49x48, Gaussian and top hat: ; dynamic Smagorinsky model,
48x49x48, Gaussian and top hat: ; dynamic Smagorinsky model, 32x33x32,
sharp cutoff: ; dynamic Smagorinsky model, 48x49x48, sharp cutoff: .

using their LES subgrid-scale estimation model and comparing with filtered DNS
data. This behavior is different from the behavior of the dynamic Smagorinky term
(when used in the mixed model) or model (when used on its own), see Fig. 12.

However, when running a 48x49x48 LES using the Smagorinsky model with sharp
cutoff test filtering in x and z and no test-filtering in y, the obtained mean velocity
profile is closer to the DNS than for the mixed model with the smooth filtering and
filter size used so far. That doesn’t necessarily mean that the Smagorinsky model
with sharp cutoff is superior. But it certainly calls for further study of the mixed
model by investigating other ratios of numerical grid to filter size, other filters, and
the effect of the y-grid non-uniformity (see, e.g., Ghosal & Moin, 1995). It also calls
for further a priori testing of the Leonard and mixed models using DNS of channel
flows. This work is still in progress.

We provide in Fig. 14 the mean stress profile for the LES done using the mixed
model. The different terms add up to the linear profile for the total stress as
expected. Close to the wall, the main contribution is the one due to the viscous
stress. Away from the wall, the main contribution is the “Reynolds” stress: 〈u〉〈v〉−
〈uv〉. For the remainder (total stress minus Reynolds stress), the model contribution
away from the wall is significantly higher than the viscous contribution, the Leonard
contribution being itself higher than the Smagorinsky contribution. For comparison,
Fig. 15 provides the mean stress profile when using the Smagorinsky model with
same smooth filtering. Again, the model contribution is higher than the viscous
contribution in the core flow.

Figures 16 and 17 provide the mean dissipation profiles: model contribution and
viscous contribution. The viscous contribution is dominant close to the wall but is
dominated by the model in the core flow. There are significant differences between
the mixed model and the Smagorinky model as far as profiles of model versus viscous
dissipation are concerned.
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Figure 12. Mean model stress profile: Leonard model + dynamic Smagorinsky
term, 48x49x48, Gaussian and top hat (Leonard: , Smagorinsky: );
dynamic Smagorinsky model, 48x49x48, Gaussian and top hat: ; dynamic
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Figure 13. Mean model dissipation profile: Leonard model + dynamic Smagorin-
sky term, 48x49x48, Gaussian and top hat (Leonard: , Smagorinsky: );
dynamic Smagorinsky model, 48x49x48, Gaussian and top hat: ; dynamic
Smagorinsky model, 32x33x32, sharp cutoff: ; dynamic Smagorinsky model,
48x49x48, sharp cutoff: .
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Figure 14. Mean stress profile for 48x49x48 LES using the Leonard model +
dynamic Smagorinsky term, Gaussian and top hat: Leonard stress: , dynamic
Smagorinsly stress: ; Reynolds stress, (〈u〉〈v〉 − 〈uv〉) /u2
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Figure 15. Mean stress profile for 48x49x48 LES using the dynamic Smagorinky
model, Gaussian and top hat: model stress: ; Reynolds stress, (〈u〉〈v〉 − 〈u v〉) /u2

τ :
; viscous stress, 2ν 〈Sxy〉/u2

τ : ; total stress: .



A new model for LES: Leonard model + dynamic Smagorinsky term 385

−
〈τ
ij
S
ij
〉/

(u
3 τ
/h

)

y+

0 50 100 150 200 250 300 350 400
0

5

10

15

20

25

30

Figure 16. Mean dissipation profile for 48x49x48 LES using the Leonard model
+ dynamic Smagorinsky term, Gaussian and top hat: Leonard dissipation: ;
dynamic Smagorinsly dissipation: ; viscous dissipation, 2ν 〈SijSij〉/(u3
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Figure 17. Mean dissipation profile for 48x49x48 LES using the dynamic
Smagorinsky model, Gaussian and top hat: model dissipation: ; viscous
dissipation, 2ν 〈SijSij〉/(u3

τ/h): .
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4. Conclusions

A new mixed model which uses the one-term Leonard model supplemented by
a purely dissipative dynamic Smagorinsky term has been developed and tested in
LES of decaying homogeneous turbulence and of channel flow. The dynamic pro-
cedure has been used to determine the coefficient of the Smagorinsky term. The
one-term Leonard model provides for significant local backscatter while remaining
globally dissipative. In a priori testing, its correlation with DNS was greater than
0.9. However, this model was found to provide too little dissipation in actual LES
although it didn’t blow up. Hence the need for the added dissipation provided by
the dynamic Smagorinsky term in the mixed model. In 643 LES of decaying homo-
geneous turbulence started from Gaussian filtered 2563 DNS at Reλ ' 90, the new
mixed dynamic model performed significantly better than the dynamic Smagorinsky
model with same filtering; it also outperformed the dynamic Smagorinsky model
with sharp cutoff filtering: much better energy spectra, energy decay, and enstro-
phy decay. For the preliminary 483 LES runs on the channel flow at Reτ = 395,
the LES filter was Gaussian in the homogeneous directions and top hat in the non-
homogeneous direction. The mixed dynamic model also outperformed the dynamic
Smagorinsky model in that case. However, the dynamic Smagorinsky model with
sharp cutoff test filtering in the homogeneous directions and no test filtering in the
non-homogeneous direction still produced a better mean velocity profile. This result
calls for further investigations.
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