Defects in Crystalline Solids (MATSCI 196)

Code: 
206
Thermodynamic and kinetic behaviors of 0-D (point), 1-D (line), and 2-D (interface and surface) defects in crystalline solids. Influences of these defects on the macroscopic ionic, electronic, and catalytic properties of materials, such as batteries, fuel cells, catalysts, and memory-storage devices. Prerequisite: 193/203. Undergraduates register for 196 for 4 units; graduates register for 206 for 3 units.
Subject: 
MATSCI
Academic Year: 
2015-2016

Defects in Crystalline Solids (MATSCI 206)

Code: 
196
General Education Requirement(s): 
GER:DB-EngrAppSci
Thermodynamic and kinetic behaviors of 0-D (point), 1-D (line), and 2-D (interface and surface) defects in crystalline solids. Influences of these defects on the macroscopic ionic, electronic, and catalytic properties of materials, such as batteries, fuel cells, catalysts, and memory-storage devices. Prerequisite: 193/203. Undergraduates register for 196 for 4 units; graduates register for 206 for 3 units.
Subject: 
MATSCI
Academic Year: 
2015-2016

Electronic Materials Engineering

Code: 
152
General Education Requirement(s): 
GER:DB-EngrAppSci, WAY-SMA
Materials science and engineering for electronic device applications. Kinetic molecular theory and thermally activated processes; band structure; electrical conductivity of metals and semiconductors; intrinsic and extrinsic semiconductors; elementary p-n junction theory; operating principles of light emitting diodes, solar cells, thermoelectric coolers, and transistors. Semiconductor processing including crystal growth, ion implantation, thin film deposition, etching, lithography, and nanomaterials synthesis.
Subject: 
MATSCI
Academic Year: 
2015-2016

Solid State Physics (APPPHYS 272)

Code: 
172
Introduction to the properties of solids. Crystal structures and bonding in materials. Momentum-space analysis and diffraction probes. Lattice dynamics, phonon theory and measurements, thermal properties. Electronic structure theory, classical and quantum; free, nearly-free, and tight-binding limits. Electron dynamics and basic transport properties; quantum oscillations. Properties and applications of semiconductors. Reduced-dimensional systems. Undergraduates should register for PHYSICS 172 and graduate students for APPPHYS 272. Prerequisites: PHYSICS 170 and PHYSICS 171, or equivalents.
Subject: 
PHYSICS
Academic Year: 
2015-2016
Section(s): 

Nanoscale Science, Engineering, and Technology

Code: 
316
This course covers important aspects of nanotechnology in nanomaterials synthesis and fabrication, novel property at the nanoscale, tools and applications: a variety of nanostructures including nanocrystal, nanowire, carbon nanotube, graphene, nanoporous material, block copolymer, and self-assembled monolayer; nanofabrication techniques developed over the past 20 years; thermodynamic, electronic and optical property; applications in solar cells, batteries, biosensors and electronics. Other nanotechnology topics may be explored through a group project. SCPD offering.
Subject: 
MATSCI
Academic Year: 
2015-2016
Section(s): 

Electronic and Optical Properties of Solids (MATSCI 199)

Code: 
209
The concepts of electronic energy bands and transports applied to metals, semiconductors, and insulators. The behavior of electronic and optical devices including p-n junctions, MOS-capacitors, MOSFETs, optical waveguides, quantum-well lasers, light amplifiers, and metallo-dielectric light guides. Emphasis is on relationships between structure and physical properties. Elementary quantum and statistical mechanics concepts are used. Prerequisite: 195/205 or equivalent. Undergraduates register for 199 for 4 units; graduates register for 209 for 3 units.
Subject: 
MATSCI
Academic Year: 
2015-2016
Section(s): 

Materials Chemistry (MATSCI 192)

Code: 
202
An introduction to the fundamental physical chemical principles underlying materials properties. Beginning from basic quantum chemistry, students will learn how the electronic configuration of molecules and solids impacts their structure, stability/reactivity, and spectra. Topics for the course include molecular symmetry, molecular orbital theory, solid-state chemistry, coordination compounds, and nanomaterials chemistry.
Subject: 
MATSCI
Academic Year: 
2015-2016
Section(s):