2011-2012 2012-2013 2013-2014 2014-2015 2015-2016
by subject...

31 - 40 of 81 results for: CHEMENG

CHEMENG 240: Micro and Nanoscale Fabrication Engineering (CHEMENG 140)

(Same as CHEMENG 140) Survey of fabrication and processing technologies in industrial sectors, such as semiconductor, biotechnology, and energy. Chemistry and transport of electronic and energy device fabrication. Solid state materials, electronic devices and chemical processes including crystal growth, chemical vapor deposition, etching, oxidation, doping, diffusion, thin film deposition, plasma processing. Micro and nanopatterning involving photolithography, unconventional soft lithography and self assembly. Recommended: CHEM 33, 171, and PHYSICS 55
Terms: not given this year | Units: 3 | Grading: Letter (ABCD/NP)

CHEMENG 242: Basic Principles of Heterogeneous Catalysis with Applications in Energy Transformations (CHEMENG 142)

(Formerly 124/224) Introduction to heterogeneous catalysis, including models of surface reactivity, surface equilibria, kinetics of surface reactions, electronic and geometrical effects in heterogeneous catalysis, trends in reactivity, catalyst structure and composition, electro-catalysis and photo-catalysis. Selected applications and challenges in energy transformations will be discussed. Prerequisites: CHEM 31AB or 31X, CHEM 171, CHEM 175 or CHEMENG 170 or equivalents. Recommended: CHEM 173.
Terms: Spr | Units: 3 | Grading: Letter (ABCD/NP)

CHEMENG 260: Polymer Science and Engineering (CHEMENG 160)

Interrelationships among molecular structure, morphology, and mechanical behavior of polymers. Topics include amorphous and semicrystalline polymers, glass transitions, rubber elasticity, linear viscoelasticity, and rheology. Applications of polymers in biomedical devices and microelectronics. Prerequisites: CHEME 31 A,B or CHEM 31X, CHEM 33 and 171, or equivalent.
Terms: not given this year | Units: 3 | Grading: Letter (ABCD/NP)

CHEMENG 262: Polymers for Clean Energy and Water (CHEMENG 162)

The first five weeks of this course will be devoted to the fundamental aspects of polymers necessary to understand the applications in energy and the environment. These include: polymer chain configuration, morphology of semi-crystalline and amorphous solids, thermal transition behavior, thermodynamics of polymer blends and block copolymers, and the time/temperature dependence of linear viscoelasticity. The remaining five weeks of class will be devoted to applications, with special emphasis on membrane transport, including ion transport in fuel cell exchange membranes, gas transport in hydrogen enrichment membranes, and water transport in desalination membranes. In addition, completely degradable biocomposites will be discussed. nPrerequisites: CHEM 31 A,B or CHEM 31X, CHEM 33, CHEM 171
Terms: Win | Units: 3 | Grading: Letter (ABCD/NP)

CHEMENG 274: Environmental Microbiology I (CEE 274A, CHEMENG 174)

Basics of microbiology and biochemistry. The biochemical and biophysical principles of biochemical reactions, energetics, and mechanisms of energy conservation. Diversity of microbial catabolism, flow of organic matter in nature: the carbon cycle, and biogeochemical cycles. Bacterial physiology, phylogeny, and the ecology of microbes in soil and marine sediments, bacterial adhesion, and biofilm formation. Microbes in the degradation of pollutants. Prerequisites: CHEM 33, 35, and BIOSCI 41, CHEMENG 181 (formerly 188), or equivalents.
Terms: Aut | Units: 3 | Grading: Letter or Credit/No Credit

CHEMENG 281: Biochemistry I (BIO 188, CHEM 181, CHEMENG 181)

Structure and function of major classes of biomolecules, including proteins, carbohydrates and lipids. Mechanistic analysis of properties of proteins including catalysis, signal transduction and membrane transport. Students will also learn to critically analyze data from the primary biochemical literature. Satisfies Central Menu Area 1 for Bio majors. (CHEMENG offerings formerly listed as 188/288.) Prerequisites: CHEM 33, 35, 131, and 135 or 171.
Terms: Aut | Units: 3 | Grading: Letter or Credit/No Credit

CHEMENG 283: Biochemistry II (BIO 189, CHEM 183, CHEMENG 183)

Focus on metabolic biochemistry: the study of chemical reactions that provide the cell with the energy and raw materials necessary for life. Topics include glycolysis, gluconeogenesis, the citric acid cycle, oxidative phosphorylation, photosynthesis, the pentose phosphate pathway, and the metabolism of glycogen, fatty acids, amino acids, and nucleotides as well as the macromolecular machines that synthesize RNA, DNA, and proteins. Medical relevance is emphasized throughout. Satisfies Central Menu Area 1 for Bio majors. Prerequisite: BIO 188/288 or CHEM 181 or CHEMENG 181/281 (formerly 188/288).
Terms: Win | Units: 3 | Grading: Letter or Credit/No Credit

CHEMENG 296: Creating New Ventures in Engineering and Science-based Industries (CHEM 196, CHEM 296, CHEMENG 196)

Open to seniors and graduate students interested in the creation of new ventures and entrepreneurship in engineering and science intensive industries such as chemical, energy, materials, bioengineering, environmental, clean-tech, pharmaceuticals, medical, and biotechnology. Exploration of the dynamics, complexity, and challenges that define creating new ventures, particularly in industries that require long development times, large investments, integration across a wide range of technical and non-technical disciplines, and the creation and protection of intellectual property. Covers business basics, opportunity viability, creating start-ups, entrepreneurial leadership, and entrepreneurship as a career. Teaching methods include lectures, case studies, guest speakers, and individual and team projects.
Terms: Aut | Units: 3 | Grading: Letter (ABCD/NP)

CHEMENG 300: Applied Mathematics in the Chemical and Biological Sciences (CME 330)

Mathematical solution methods via applied problems including chemical reaction sequences, mass and heat transfer in chemical reactors, quantum mechanics, fluid mechanics of reacting systems, and chromatography. Topics include generalized vector space theory, linear operator theory with eigenvalue methods, phase plane methods, perturbation theory (regular and singular), solution of parabolic and elliptic partial differential equations, and transform methods (Laplace and Fourier). Prerequisites: CME 102/ ENGR 155A and CME 104/ ENGR 155B, or equivalents.
Terms: Aut | Units: 3 | Grading: Letter (ABCD/NP)

CHEMENG 310: Microhydrodynamics (ME 451D)

Transport phenomena on small-length scales appropriate to applications in microfluidics, complex fluids, and biology. The basic equations of mass, momentum, and energy, derived for incompressible fluids and simplified to the slow-flow limit. Topics: solution techniques utilizing expansions of harmonic and Green's functions; singularity solutions; flows involving rigid particles and fluid droplets; applications to suspensions; lubrication theory for flows in confined geometries; slender body theory; and capillarity and wetting. Prerequisites: 120A,B, 300, or equivalents.
Terms: Win | Units: 3 | Grading: Letter or Credit/No Credit
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
updating results...
UG Requirements (GERs)
updating results...
updating results...
updating results...
© Stanford University | Terms of Use | Copyright Complaints