2011-2012 2012-2013 2013-2014 2014-2015 2015-2016
by subject...

1 - 10 of 146 results for: EE ; Currently searching offered courses. You can also include unoffered courses

EE 14N: Things about Stuff

Preference to freshmen. The stories behind disruptive inventions such as the telegraph, telephone, wireless, television, transistor, and chip are as important as the inventions themselves, for they elucidate broadly applicable scientific principles. Focus is on studying consumer devices; projects include building batteries, energy conversion devices and semiconductors from pocket change. Students may propose topics and projects of interest to them. The trajectory of the course is determined in large part by the students themselves.
Terms: Aut | Units: 3 | UG Reqs: GER:DB-EngrAppSci | Grading: Letter or Credit/No Credit
Instructors: Lee, T. (PI)

EE 17N: Engineering the Micro and Nano Worlds: From Chips to Genes

Preference to freshmen. The first part is hands-on micro- and nano-fabrication including the Stanford Nanofabrication Facility (SNF) and the Stanford Nanocharacterization Laboratory (SNL) and field trips to local companies and other research centers to illustrate the many applications; these include semiconductor integrated circuits ('chips'), DNA microarrays, microfluidic bio-sensors and microelectromechanical systems (MEMS). The second part is to create, design, propose and execute a project. Most of the grade will be based on the project. By the end of the course you will, of course, be able to read critically a New York Times article on nanotechnology. More importantly you will have experienced the challenge (and fun) of designing, carrying out and presenting your own experimental project. As a result you will be better equipped to choose your major. This course can complement (and differs from) the seminars offered by Profs Philip Wong and Hari Manoharan in that it emphasizes laboratory work and an experimental student-designed project. Prerequisites: high-school physics.
Terms: Spr | Units: 3 | UG Reqs: GER:DB-EngrAppSci | Grading: Letter or Credit/No Credit

EE 21N: What is Nanotechnology?

Nanotechnology is an often used word and it means many things to different people. Scientists and Engineers have some notion of what nanotechnology is, societal perception may be entirely different. In this course, we start with the classic paper by Richard Feynman ("There's Plenty of Room at the Bottom"), which laid down the challenge to the nanotechnologists. Then we discuss two classic books that offer a glimpse of what nanotechnology is: Engines of Creation: The Coming Era of Nanotechnology by Eric Drexler, and Prey by Michael Crichton. Drexler's thesis sparked the imagination of what nano machinery might do, whereas Crichton's popular novel channeled the public's attention to this subject by portraying a disastrous scenario of a technology gone astray. We will use the scientific knowledge to analyze the assumptions and predictions of these classic works. We will draw upon the latest research advances to illustrate the possibilities and impossibilities of nanotechnology.
Terms: Win | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA | Grading: Letter (ABCD/NP)
Instructors: Wong, H. (PI)

EE 22N: Medical Imaging Systems

Preference to freshmen. The technology of major imaging modalities used for disease diagnosis: x-ray, ultrasound, and magnetic resonance; their history, societal impact, and clinical applications. Field trips to a medical center and an imaging research lab. Term paper and presentation. Prerequisites: high school physics and calculus.
Terms: Win | Units: 3 | UG Reqs: GER:DB-EngrAppSci | Grading: Letter or Credit/No Credit

EE 23N: Imaging: From the Atom to the Universe

Preference to freshmen. Forms of imaging including human and animal vision systems, atomic force microscope, microscope, digital camera, holography and three-dimensional imaging, telescope, synthetic aperture radar imaging, nuclear magnetic imaging, sonar and gravitational wave imaging, and the Hubble Space telescope. Physical principles and exposure to real imaging devices and systems.
Terms: Spr | Units: 3 | UG Reqs: GER:DB-EngrAppSci | Grading: Letter (ABCD/NP)

EE 27N: Electronics Rocks

Electronics pervades our lives, yet we often feel obliged to let a device function as it was intended. This course is about not being intimidated by voiding a warranty and modding some commercial gadget and about being confident enough to build something cool from scratch. To get there, we will study the basics of "how things work" via "dissection and discussion" and discuss how to hack/mod but focus primarily how to scratch build. Students will be mentored and encouraged to work, in teams, to design and develop a substantial project based on embedded microprocessors and custom circuits as needed. Typical projects include (but are not limited to) microcontrollers such as the Arduino, LED's, sensors, wireless connections to the network or a laptop, and software/firmware as needed. Examples include programmable, color-changing wireless juggling balls, a self-healing mesh-networked hide-and-seek game, and a glowing plasma based clock built from surplus Soviet vacuum tubes and a modern microprocessor. Prerequisites: good hand-eye coordination, intelligence, teamwork skills, curiosity and humility.
Terms: Win | Units: 3 | UG Reqs: GER:DB-EngrAppSci | Grading: Letter (ABCD/NP)
Instructors: Kovacs, G. (PI)

EE 29N: Electromagnetic Sensors for the Internet of Things

Have you ever wondered how your phone know what way is up? How the traffic light know your car is there? How you can monitor your health with a smart bracelet? If so, you want to learn about electromagnetic sensors. In this course we will the electromagnetic principles that allows us to sense things and communicate with things at a distance. You will learn the fundamentals of electromagnetic sensing and build practical sensors in the laboratory.
Terms: Win | Units: 3 | Grading: Letter (ABCD/NP)

EE 46: Engineering For Good: Save the World and Have Fun Doing It

Projects that provide immediate and positive impact on the world. Focus is on global health by learning from experts in this field. Students work on real-world projects with help from members of NGOs and social entrepreneurial companies as part of the hand-on learning experience. Prerequisite: ENGR 40 or EE 122A or CS 106B or consent of instructor.
Terms: Spr | Units: 3 | Grading: Letter or Credit/No Credit
Instructors: Le, M. (PI)

EE 60N: Man versus Nature: Coping with Disasters Using Space Technology (GEOPHYS 60N)

Preference to freshman. Natural hazards, earthquakes, volcanoes, floods, hurricanes, and fires, and how they affect people and society; great disasters such as asteroid impacts that periodically obliterate many species of life. Scientific issues, political and social consequences, costs of disaster mitigation, and how scientific knowledge affects policy. How spaceborne imaging technology makes it possible to respond quickly and mitigate consequences; how it is applied to natural disasters; and remote sensing data manipulation and analysis. GER:DB-EngrAppSci
Terms: Aut | Units: 4 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA | Grading: Letter or Credit/No Credit
Instructors: Zebker, H. (PI)

EE 65: Modern Physics for Engineers

This course introduces the core ideas of modern physics that enable applications ranging from solar energy and efficient lighting to the modern electronic and optical devices and nanotechnologies that sense, process, store, communicate and display all our information. Though the ideas have broad impact, the course is widely accessible to engineering and science students with only basic linear algebra and calculus through simple ordinary differential equations as mathematics background. Topics include the quantum mechanics of electrons and photons (Schrödinger's equation, atoms, electrons, energy levels and energy bands; absorption and emission of photons; quantum confinement in nanostructures), the statistical mechanics of particles (entropy, the Boltzmann factor, thermal distributions), the thermodynamics of light (thermal radiation, limits to light concentration, spontaneous and stimulated emission), and the physics of information (Maxwell¿s demon, reversibility, entropy and noise in physics and information theory). Pre-requisite: Physics 41. Pre- or co-requisite: Math 53 or CME 102.
Terms: Spr | Units: 3 | UG Reqs: GER: DB-NatSci, GER:DB-EngrAppSci, WAY-SMA | Grading: Letter (ABCD/NP)
Instructors: Miller, D. (PI)
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
updating results...
UG Requirements (GERs)
updating results...
updating results...
updating results...
© Stanford University | Terms of Use | Copyright Complaints