

Global Climate & Energy Project STANFORD UNIVERSITY

Simulation of Multi-phase Flow Experiments Chia-Wei Kuo, Ethan Chabora, Michael Krause, Jean-Christophe Perrin and Sally Benson Department of Energy Resources Engineering, Stanford University

Motivation

THE SEQUESTRATION LAB

The goal of the Sequestration Lab is to develop the ability to predict the spatial and temporal distribution of CO_2 saturation and trapping through an improved understanding of the pore and core scale physics over the life cycle of a sequestration project.

Focus of this work

- Model the behavior of brine displacement by injected CO2 in a series of core-scale laboratory experiments.
- Better understand the fundamental physics of sub-core scale multi-phase flow
- Tough2 MP* was used for numerical simulation (*: developed by Karsten Pruess)

Sub-core Scale Petrophysical Characterization

Porosity Map Of The Core

Raw data is from X-Ray CT Scanning. The spatial variation of porosity is due to the pore-scale structure of the rock sample.

Capillary Pressure $P_{c,i} = \sigma \sqrt{\frac{\phi_i}{k_i}} * J(S)$ $J(S) = A(\frac{1}{\lambda_1} - 1) + B(1 - S_*^{\lambda_2} - 1)^{1/\lambda_2}$ A=0.040061, B=0.992531, $S_* = \frac{S - S_P}{1 - S_P}$ $\lambda_1 = 2.183, \lambda_2 = 1.077,$ S_=0.010036, o=0.02247

Relative permeability relation

Measurement: # of pixels in y, z, x directions: 159, 159, 31 Simulation: # of grid blocks in y, z, x directions: 53, 53, 31

1st column: Different permeability relationships to the porosity 2nd column: Corresponding permeability map of whole core 3rd column: Cross-sectional view of permeability maps

Model a : Kozeny-Carman Equation

$$k_a = \frac{1}{3.28 \times 10^6} \frac{\phi^3}{(1 - \phi)^2}$$

Model b : Krause's Modified K-C Equation

 $k_b = \frac{1865}{(0.3283 \times \phi^{0.77})^2} \frac{\phi^3}{(1-\phi)^2}$

Model c :

$$k_c = \frac{1865}{(0.3283 \times \phi^{0.25})^2} \frac{\phi^{4.5}}{(1-\phi)^2}$$

• Keep the form of Krause's modified K-C equation but with different power

Model d :

$$k_d = a \times \phi^4 + b$$

 $a = 2653770, b = -539.841$

- have very similar result as Model c, almost identical

Model e :

$$k_{e} = \begin{cases} 1 & \text{if} \qquad \phi \leq 0.14 \\ 10 & \text{if} \ 0.14 < \phi \leq 0.15 \\ 30 & \text{if} \ 0.15 < \phi \leq 0.16 \\ 50 & \text{if} \ 0.16 < \phi \leq 0.17 \\ a \times \phi^{4} + b \quad elsewhere \end{cases}$$

Modified Model d to get more contrast permeability map

Model f : Best Model

$$k_{f} = \begin{cases} 1 & \text{if} \qquad \phi \leq 0.14 \\ 10 & \text{if} \ 0.14 < \phi \leq 0.15 \\ 30 & \text{if} \ 0.15 < \phi \leq 0.16 \\ 50 & \text{if} \ 0.16 < \phi \leq 0.17 \\ e^{m \times \phi^{4} + n} \quad elsewhere \\ m = 64, \ n = -6 \end{cases}$$

