

Stanford University GCEP Global Climate & Energy Project

Google Energy Seminar October 23, 2008

> Carbon Dioxide Capture and Sequestration: Hype or Hope?

> > Professor Sally M. Benson Energy Resources Engineering Department Executive Director, Global Climate and Energy Project Stanford University

Science and technology for a low GHG emission world.

Contradicting Views About CCS CCEP

- • Hope?
	- CCS can result in 20% of needed emissions reductions over the next 100 years
	- Without CCS, were in trouble
	- All components of CCS technology are available today, we just need to put them together
	- We've been doing this for 30 years in oilfields
	- Just do it!
- • Hype?
	- CCS is extremely expensive
	- Environmental risks are unacceptably high
	- $-$ CO $_{\rm 2}$ will leak back to the surface
	- Institutional barriers are too high

Key Questions

- Is capture technically feasible?
- $\bullet\,$ Will CO $_2$ leak back to the surface?
- Will CO_2 storage create unacceptable environmental hazards?
- Is there enough storage capacity?
- Will CCS be too costly to implement?
- Will non-technical issues impede deployment?

Carbon Dioxide Capture and Geologic Storage

Options for CO_2 Capture

Comparison of Capture Options GCEP

Carbon Dioxide Capture and Geologic Storage

What Types of Rock Formations **GCEP** are Suitable for Geological Storage?

Rocks in deep sedimentary basins are suitable for CO 2 storage.

Map showing world-wide sedimentary basins ranked according to prospectivity for storage

Northern California Sedimentary Basin

Example of a sedimentary basin with alternating layers of coarse and fine textured sedimentary rocks.

Expert Opinion about Storage Safety and Security

" Observations from engineered and natural analogues as well as models suggest that the fraction retained in appropriately selected and managed geological reservoirs is very likely to exceed 99% over 100 years and is likely** to exceed 99% over 1,000 years."*

" With appropriate site selection informed by available subsurface information, a monitoring program to detect problems, a regulatory system, and the appropriate use of remediation methods to stop or control CO 2 releases if they arise, the local health, safety and environment risks of geological storage would be comparable to risks of current activities such as natural gas storage, EOR, and deep underground disposal of acid gas."

"Very likely" is a probability between 90 and 99%.

Likely is a probability between 66 and 90%.

Evidence to Support these Conclusions

- • Natural analogs
	- Oil and gas reservoirs
	- CO_2 reservoirs
- • Performance of industrial analogs
	- $\,$ 30+ years experience with CO $_{2}$ EOR
	- 100 years experience with natural gas storage
	- Acid gas disposal
- • 20+ years of cumulative performance of actual CO $_{\rm 2}$ performance of actual CO₂ storage
projects
	- Sleipner, off-shore Norway, 1996
	- Weyburn, Canada, 2000
	- In Salah, Algeria, 2004

Natural Gas Storage

- Seasonal storage to meet winter loads
- • Storage formations
	- Depleted oil and gas reservoirs
	- Aquifers
	- –Caverns

Sleipner Project, North Sea

- **-1996 to present**
- \blacksquare 1 Mt CO $_2$ injection/yr
- **Seismic monitoring**

Picture compliments of *Statoil*

Weyburn $CO₂$ -EOR and Storage Project

- 2000 to present
- •1-2 Mt/year $CO₂$ injection
- $CO₂$ from the Dakota Gasification Plant in the U.S.

In Salah Gas Project

Cretaceous sandstones &

mudstones - 900 metres

Carboniferous mudstones - 950 metres thick.

Carboniferous reservoir - 20 metres thick.

Gas Water

thick (regional aquifer)

Courtesy of BP

Processing facilities

4 gas

production

wells

3 CO.

injection

wells

In Salah Gas Project - Krechba, Algeria Gas Purification- Amine Extraction o.6 Mt/year CO $_2$ Injection Operations Commence June, 2004

Key Elements of a Geological Storage Safety and Security Strategy

Variation with Depth and Geothermal Regime of Carbon Dioxide Density

X-ray Micro-tomography at the Advanced Light Source

Micro-tomography Beamline Image of Rock with CO₂ **Mineral** grain WaterCO. A. P. P. P. 22 mm

Storage Mechanisms

- • Injected at depths of 1 km or deeper into rocks with tiny pore spaces
- • Primary trapping
	- Beneath seals of low permeability rocks
- Secondary trapping
	- $\,$ CO $_2$ dissolves in water
	- $-$ CO $_{\textrm{\tiny{2}}}$ is trapped by capillary forces
	- CO_2 converts to solid minerals
	- CO_2 adsorbs to coal

Image courtesy of ISGS and MGSC

Seal Rocks and Mechanisms

- Shale, clay, and carbonates
- Permeability barriers to CO_2 migration
- Capillary barriers to CO $_{\rm 2}$ migration

Secondary Trapping Mechanisms Increase Over Time

Time since injection stops (years)

Monitoring Methods **GCEP**

Seismic Monitoring Data from Sleipner

From Andy Chadwick, 2004

Surface Monitoring

Location of Storage Sites in North America: Saline Aquifers

First North American Carbon Sequestration Atlas, 2006

Capacity Varies Widely by Region

Theoretical capacity estimates range from 50 to over 1,000 times annual emissions (from stationary sources), depending on location.

What Could Go Wrong?

Potential Release Pathways

- \bullet Well leakage (injection and abandoned | 7. Release to atmosphere wells)
- \bullet Poor site characterization (undetected faults)
- \bullet Excessive pressure buildup damages seal

Potential Consequences

- 1. Worker safety
- 2. Groundwater quality degradation
- 3. Resource damage
- 4. Ecosystem degradation
- 5. Public safety
- 6. Structural damage
-

What about a catastrophic release, like what happened at Lake Nyos in Cameroon?

Risk Management

Regulatory Oversight Remediation**Monitoring** Safe Operations Storage Engineering Site Characterization and SelectionFundamental Storage and Leakage Mechanisms **Financial Responsibility**

Financial mechanisms and institutional approaches for long term stewardship (e.g. monitoring and remediation if needed)

Oversight for site characterization and selection, storage system operation, safety, monitoring and contingency plans Active and abandoned well repair, groundwater cleanup, and ecosystem restoration

Monitoring plume migration, pressure monitoring in the storage reservoir and above the seal, and surface releases

Well maintenance, conduct of operations, well-field monitoring and controls

Number and location of injection wells, strategies to maximize capacity and accelerate trapping, and well completion design

Site specific assessment of storage capacity, seal integrity, injectivity and brine migration

Multi-phase flow, trapping mechanisms, geochemical interactions, geomechanics, and basin-scale hydrology

Are We Ready?

State-of-the-art is well developed, scientific understanding is excellent and engineering methods are mature

Sufficient knowledge is available but practical experience is lacking, economics may be sub-optimal, scientific understanding is good

Demonstration projects are needed to advance the state-of-the art for commercial scale projects, scientific understanding is limited

Pilot projects are needed to provide proof-of-concept, scientific understanding is immature

New ideas and approaches are needed

Status of Geological Storage

Maturity Summary

•Are we ready for CCS?

Sufficient knowledge is available but practical experience is lacking, economics may be sub-optimal, scientific understanding is good

Demonstration projects are needed to advance the state-of-the art for commercial scale projects, scientific understanding is limited

Pilot projects are needed to provide proof-of-concept, scientific understanding is immature

Cost of CCS

Source: IPCC, 2005

McKinsey, 2008:

- \bullet \$77 to $\,$ \$116/tCO $_2$ avoided for early projects
- \bullet \$39 to \$58/tCO $_2$ avoided after learning lowers cost

Cost of Electricity Production with CCS

IPCC, 2005

Increase electricity production costs by 50 to 100% U.S. DOE Goal: 10% increase in cost, likely to change to 35% increase

Contradicting Views About CCS CCEP

- Hope?
	- CCS can result in 20% of needed emissions reductions over the next 100 years (yes)
	- Without CCS, were in trouble (probably)
	- All components of CCS technology are available today, we just need to put them together (not quite that simple)
	- We've been doing this for 30 years in oilfields (but more than oilfields will be needed, experience will be needed for saline aquifer storage)
	- Just do it! (yes, for large scale demonstration projects)
- • Hype?
	- CCS is extremely expensive (compared to what?)
	- Environmental risks are unacceptably high (no, not if done carefully)
	- $-$ CO $_2$ will leak back to the surface (no, not if done carefully)
	- Institutional barriers are too high (possibly, if the government and private sector do not work together quickly and effectively)

- •Policy and regulations to limit carbon emissions
- •Long term liability for stored CO_2
- •Legal framework for access to underground pore space
- • Regulations for storage: siting, monitoring, performance specifications
- •Carbon trading credits
- •Clean development mechanism (CDM)
- •Public acceptance

None is likely to be a show stopper, but all require effort to resolve.

Conclusions

- • CCS is an important part of the portfolio of technologies for reducing greenhouse gas emissions
- Progress on CCS proceeding on all fronts
	- Industrial-scale projects
	- Demonstration plants
	- R&D
- Technology is sufficiently mature for large scale demonstration projects and commercial projects with $CO₂$ -EOR
- Research is needed to support deployment at scale
	- Capture: Reduce costs and improve reliability
	- Storage: Improve storage security and avoid unintentional environmental impacts
- Institutional issues need to be resolved to support widespread deployment