

GCEP Global Climate & Energy Project

USGS Western Region Colloquium Menlo Park, California October 15, 2007

Carbon Dioxide Capture and Storage in Deep Geological Formations

Professor Sally M. Benson Energy Resources Engineering Department Executive Director, Global Climate and Energy Project Stanford University

Science and technology for a low GHG emission world.

- CCS overview
- World-wide potential and status report
- Storage security
- Long term liability
- Conclusions

CO₂ Emissions from Fossil Fuels

40.5% of global emissions come from coal... this is not expected to change any time soon.

Carbon Dioxide Capture and Geologic Storage

Capture

Options for CO₂ Capture

- Post-combustion
 - Established technology
- Pre-combustion
 - Established technology for other applications
 - Not demonstrated for power production
- Oxygen combustion
 - Not demonstrated for power production

Options for Geological Storage

- Oil and gas fields
 - Depleted fields
 - EOR, EGR
- Saline formations
- Unminable coal-seams
- Other?
 - Basalt
 - Deep ocean sediments
 - ?

From IPCC Special Report, 2005

CCS Could Make a Large Contribution to Reducing CO₂ Emissions

Expected contributions to GHG emissions with carbon prices in the range of \$20 to $100/tCO_2$ -eq.

From IPCC, 2007:WG III

Prospectivity for Storage around the World

From Bradshaw and Dance 2005

"It is likely that the technical potential for geological storage is sufficient to cover the high end of the economic potential range (2200 GtCO₂), but for specific regions, this may not be true."

- CCS Overview
- World-wide status report
- Storage security
- Long term liability
- Conclusions

World-Wide Status Report

- Three industrial-scale projects continuing successfully
 - Sleipner, Off-shore Norway
 - Weyburn, Canada
 - In Salah, Algeria
 - 21 years of collective operating experience
- Snohvit CCS project expected to begin soon
- Many announced planning studies for industrial-scale projects
- High capital costs have been a deterrent to wider application

Snohvit: Next Commercial CCS Operation Expected On-line—Fall 2007

. . . combating global warming after pledging to undertake the first large scale carbon dioxide geosequestration project in Australia... will be larger than any other geosequestration scheme currently contemplated or in production... The energy giant cleared the final stage of the approvals process for the mammoth liquefied natural gas (LNG) Gorgon project. The Age,September 7, 2007

0

0

0

CO₂ Pre-Combustion Capture Projects

o Poly-generation Pre-Combustion Capture Project (In Operation)

Technology Programme

CO₂ Injection and Storage Activities

World-Wide Status Report

- Increasing government investment in CCS R&D
 - e.g. FutureGen and Regional Sequestration Partnerships
- Cost, regulatory framework and institutional issues at the forefront
- Growing press coverage and public awareness

Otway Basin Pilot Project: Australia Start: Fall 2007

U.S. DOE Regional Sequestration Partnership Program: Pilot Tests

- CCS Overview
- World-wide status report
- Storage security
- Long term liability
- Conclusions

Expert Opinion about Storage Safety and Security

"Observations from engineered and natural analogues as well as models suggest that the fraction retained in appropriately selected and managed geological reservoirs is very likely* to exceed 99% over 100 years and is likely** to exceed 99% over 1,000 years."

"With appropriate site selection informed by available subsurface information, a monitoring program to detect problems, a regulatory system, and the appropriate use of remediation methods to stop or control CO₂ releases if they arise, the local health, safety and environment risks of geological storage would be comparable to risks of current activities such as natural gas storage, EOR, and deep underground disposal of acid gas."

* "Very likely" is a probability between 90 and 99%.

** Likely is a probability between 66 and 90%.

Evidence to Support these Conclusions

- Natural analogs
 - Oil and gas reservoirs
 - CO₂ reservoirs
- Performance of industrial analogs
 - 30+ years experience with $CO_2 EOR$
 - 100 years experience with natural gas storage
 - Acid gas disposal
- 20+ years of cumulative performance of actual CO₂ storage projects
 - Sleipner, off-shore Norway, 1996
 - Weyburn, Canada, 2000
 - In Salah, Algeria, 2004

Natural Gas Storage

- Seasonal storage to meet winter loads
- Storage formations
 - Depleted oil and gas reservoirs
 - Aquifers
 - Caverns

Sleipner Project, North Sea

- 1996 to present
- 1 Mt CO₂ injection/yr
- Seismic monitoring

Picture compliments of Statoil

Weyburn CO₂-EOR and Storage Project

- 2000 to present
- 1-2 Mt/year CO₂ injection
- CO₂ from the Dakota Gasification Plant in the U.S.

In Salah Gas Project

In Salah Gas Project - Krechba, Algeria Gas Purification - Amine Extraction 1 Mt/year CO₂ Injection Operations Commence - June, 2004

Geological Storage Safety and Security Pyramid

"With appropriate site se informed by available	lection	ction		" the fraction retained in appropriately selected and managed geological		
monitoring program to dete problems, a regulatory sys and the appropriate use of remediation methods" IPCC, 2005	tect stem, of	Financial Responsibility	re e	reservoirs exceed 99 vears "	is likely to % over 1,000	
		Regulatory Oversight Remediation		y caller	² IPCC, 2005	
		Monitoring				
		Safe Operations				
		Storage Engineering				
	ł	Site Characterization and Selection				
	F an	⁻ undamental Storage d Leakage Mechanism	าร			

Phase Diagram for Carbon Dioxide

Variation with Depth and Geothermal Regime of Carbon Dioxide Density

Storage Mechanisms

- Injected at depths of 1 km or deeper into rocks with tiny pore spaces
- Primary trapping
 - Beneath seals of low permeability rocks
- Secondary trapping
 - CO₂ dissolves in water
 - CO₂ is trapped by capillary forces
 - CO₂ converts to solid minerals
 - CO₂ adsorbs to coal

Fundamental Storage and Leakage Mechanisms

CO₂ Migration Processes and Trapping

X-ray Micro-tomography at the Advanced Light Source

Comparison to Theoretical Distribution

Measured by L. Tomutsa, LBNL

Measured Distribution

Image calculated by D. Silin, LBNL

Calculated Distribution at 40% Saturation

From Benson et al., 2006

Multi-phase Flow and Capillary Trapping

Core Holder In Scanner

High Pressure Pumps

Relative Permeability Curves

Small-scale CO₂ Saturation Variations GCEP

Sub-corescale saturation variations generally overlooked in relative permeability measurements.

CO ₂ Saturation:				
0%	25%	50%	75%	100%

Simulated CO₂ Saturations

Variable P_c Produces Small-scale CO₂ Saturation Variations

CO₂ Saturation:0%

Capillary Trapping During Water Injection

Effect of Dip Angle on Capillary trapping

From Hesse at el., 2007

Small Amounts of Dip Enhance Trapping GCEP

Horizontal 0.92 Degrees 1.8 Degrees 1.8 Degrees

Rel Perm Hysteresis, No P_c, N_{gv} = 55.6, Homogeneous

Tilting the reservoir enhances trapping efficiency (amount and rate)

From Hesse at el., 2007

Storage Capacity and Trapping Mechanisms

Geological Model

Reservoir Simulation

Sealing Active and Abandoned Wells

Safe Operations

Blowout Frequency in District 4

Monitoring Methods

Seismic Monitoring Data from Sleipner

From Andy Chadwick, 2004

An Alternative Approach: Real-Time Seismic Monitoring

An Alternative Approach: Real-Time Seismic Monitoring

An Alternative Approach: Real-Time Seismic Monitoring

Daley, et al, Geophysics, 2007.

Real-Time CO₂ Tracking

Cross Well Data Match

Surface Monitoring

- CCS Overview
- World-wide status report
- Storage security
- Long term liability
- Conclusions

- Unresolved institutional issues create investment risk for CCS
- Cost recovery for CO₂ capture
- Regulatory framework for CO₂ storage
- Pore-space ownership
- Long term financial responsibility
 - Monitoring
 - Remediation

Time since injection stops (years)

Conclusions

- CCS is an important part of the portfolio of technologies for reducing greenhouse gas emissions
- Progress on CCS proceeding on all fronts
 - Industrial-scale projects
 - Demonstration plants
 - R&D
- Technology is sufficiently mature for large scale demonstration projects
- Research is needed to support deployment at scale
 - Capture: Reduce costs and improve reliability
 - Storage: Improve confidence in storage security
- Institutional issues need to be resolved to support widespread deployment