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CO, Emissions from Fossil Fuels
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40.5% of global
emissions come
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is not expected
to change any
time soon.




Carbon Dioxide Capture and —
Geologic Storage GCEP

Pipeline Undergrounad
Transport Injection




Options for CO, Capture
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Options for Geological Storage GCEP

- Oil and gas fields GelgiaSrege Opters o €O, st
— Depleted fields Do e s o bl
— EOR, EGR e

» Saline formations

 Unminable coal-seams

. Other? e
— Basalt
— Deep ocean sediments
- ?

From IPCC Special Report, 2005



CCS Could Make a Large Contribution e,
to Reducing CO, Emissions GCEP
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Expected contributions to GHG emissions with
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Prospectivity for Storage around B
the World i

Storage Prospectivity

@ Highly Prospective
Prospective

Non=prospective 7 3.000 45?
g = [ Km : :

From Bradshaw and Dance 2005

“It is likely that the technical potential for geological storage
Is sufficient to cover the high end of the economic potential

range (2200 GtCO,), but for specific regions, this may not be
true.”
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« Three industrial-scale projects
continuing successfully

— Sleipner, Off-shore Norway

— Weyburn, Canada

— In Salah, Algeria

— 21 years of collective operating

experience
« Snohvit CCS project expected to
begk1soon Credit: Eiliv Leren
« Many announced planning studies Snohvit: Next Commercial CCS
for industrial-scale projects Operation Expected On-line—Fall 2007

» High capital costs have been a
deterrent to wider application

. combating global warming after pledging to undertake the first
large scale carbon dioxide geosequestration project in Australia...
will be larger than any other geosequestration scheme currently
contemplated or i1n production... The energy giant cleared the final
stage of the approvals process for the mammoth liquefied natural gas
(LNG) Gorgon project. The Age,September 7, 2007
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CO2 Pre-Combustion Capture Projects GCEP
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e NG Pre-Combustion Capture §Refe ‘mer) Project

o Coal Pre-Combustion Capture §GCG) Project

© Coal Pre-Combustion Capture (IGCC) Project with Poly-Gen option

® Poly-generation Pre-Combustion Capture Project
_ _ _ _ Source: IEA Greenhouse Gas
o Poly-generation Pre-Combustion Capture Project (In Operation)
Technology Programme
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CO, Injection and Storage Activities  GCEP
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* Increasing government investment in
CCS R&D

— e.g. FutureGen and Regional Sequestration
Partnerships

» Cost, regulatory framework and
institutional issues at the forefront

» Growing press coverage and public
awareness

Otway Basin Pilot Project: Australia
Start: Fall 2007

Field Test Type
il bzaring

sssss L e
Coal gwan (5)

Il srose @ Gasbeainall)
. Saline Farmation (10}
S U.S. DOE Regional Sequestration

A 5 ’ | | Partnership Program: Pilot Tests
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-

Expert Opinion about Storage GCEP

Safety and Security

“ Observations from engineered and natural
analogues as well as models suggest that the
fraction retained in appropriately selected and
managed geological reservoirs is very likely* to
exceed 99% over 100 years and is likely** to
exceed 99% over 1,000 years.”

CARBON DIOXIDE
CAPTURE
AND STORAGE

“With appropriate site selection informed by
available subsurface information, a monitoring
program to detect problems, a regulatory system,
and the appropriate use of remediation methods
to stop or control CO, releases if they arise, the
local health, safety and environment risks of
geological storage would be comparable to risks
of current activities such as natural gas storage,
EOR, and deep underground disposal of acid
gas.”
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"Very likely" is a probability between 90 and 99%.
** Likely is a probability between 66 and 90%.
|



Natural analogs
— Qil and gas reservoirs
— CO, reservoirs

Performance of industrial analogs
— 30+ years experience with CO, EOR

— 100 years experience with natural
gas storage

— Acid gas disposal
20+ years of cumulative

performance of actual CO, storage
projects

— Sleipner, off-shore Norway, 1996
— Weyburn, Canada, 2000
— In Salah, Algeria, 2004

produced ol
transported
to market
€O, injection well

-CO_.—-*

i
=g

~35 Mt/yr are injected for CO,-EOR




Natural Gas Storage

@ Gas Storage Sites

& K
1000 km
Apprax. Scale at Equator

-
GCEP

« Seasonal
storage to meet
winter loads

« Storage
formations

— Depleted oll
and gas
reservoirs

— Aquifers
— Caverns




Sleipner Project, o
North Sea GCEP

= 1996 to present
=1 Mt CO, injection/yr
= Seismic monitoring

Utsira Formation
Sleipner T \
Sleipner |

Utsira formation
(800 - 1000m depth)

Sleipner East
- Production and injection wells

Sleipner East Field

Picture compliments of Statoll




Weyburn CO,-EOR and -
Storage Project GCEP

e 2000 to present

« 1-2 Mt/year CO, injection

« CO, from the Dakota
Gasification Plant in the U.S.

Wevb“rn Manitoba




In Salah Gas Project
- Krechba, Algeria
Gas Purification
- Amine Extraction
1 Mt/year CO, Injection
Operations Commence
- June, 2004

S

In Salah Gas Project GCEP

Cretaceous sandstones &
mudstones - 900 metres
thick (regional aquifer).

Carboniferous mudstones
- 950 metres thick.

Carboniferous reservoir
- 20 metres thick.

Courtesy of BP




Security Pyramid

“With appropriate site selection

informed by available

subsurface information, a _ _
monitoring program to detect Financial

problems, a regulatory system, s
and the appropriate use of Responsibility

remediation methods...”

IPCC, 2005 Regulatory Oversight

Remediation
Monitoring

Safe Operations

Storage Engineering

Site Characterization
and Selection

Fundamental Storage
and Leakage Mechanisms

Geological Storage Safety and —

GCEP

“... the fraction retained in
appropriately selected and
managed geological
reservoirs is likely to
exceed 99% over 1,000

years. IPCC, 2005




Phase Diagram —
for Carbon Dioxide

GCEP
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Variation with Depth and Geothermal
Regime of Carbon Dioxide Density GCEP

Storage at
depths

greater
than ~ 1 km

Geothermal
Gradient
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(Bachu, 2003)




Storage Mechanisms CCEP

* Injected at depths of 1 km or
deeper into rocks with tiny pore
spaces

* Primary trapping

— Beneath seals of low permeability rocks

* Secondary trapping
— CO, dissolves in water
— CO, is trapped by capillary forces
— CO, converts to solid minerals
— CO, adsorbs to coal

Fundamental Storage
and Leakage Mechanisms




CO, Migration Processes and Trapping Gcpp

Viscous and
capillary forces Heterogeneity Gravity Structure




X-ray Micro-tomography at the p—
Advanced Light Source GCEP

Micro-tomography Beamline Image of Rock with CO,

Mineral
grain

<€ 2 mm >




Comparison to Theoretical -
Distribution GCEP

Measured by L. Tomutsa, LBNL Image calculated by D. Silin, LBNL

Measured Distribution Calculated Distribution at
40% Saturation

From Benson et al., 2006




Multi-phase Flow and -
Capillary Trapping GCEP
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Small-scale CO2 Saturation VariationsGcgp

5% CO2 l 10% CO2
20% CO2 I 50% CO2

90% CO:2 100% CO:2

Sub-corescale saturation variations generally overlooked in relative

permeability measurements.

CO2 Saturation: I | I
0% 25% 50% 75% 100%

80% CO:




Simulated CO2 Saturations GCEP

“V/ariable P; Produces Small-scale CO2 Saturation Variations

Lab Data Variable @, k Simulations  Variable Pc Simulations

CO2 Saturation:0% NIRRT T T 70%

10%
CO2

90%
CO2

100%
CO2




Capillary Trapping During s

Water Injection
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Effect of Dip Angle on —
Capillary trapping GCEP

‘ 100 to 400 km :
injection well surface outcrop/leak

W saline aquifer EEE————— e

\f CO,-plume
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E _
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From Hesse at el., 2007



Small Amounts of Dip Enhance Trapping GCEP

Rel Perm Hysteresis, No P_, Ng\,r = 55.6, Homogeneous

Horizontal

-
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© 0.2} 24 — Horizontal
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-
........

0 1 2 3 4 5 6
Injection Periods

Tilting the reservoir enhances trapping efficiency (amount and rate)

From Hesse at eI.i 2007



Storage Capacity and .
Trapping Mechanisms GCEP

Facies
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1000 Km t\
Approx. Scale at Equator > s

Wells

Sealing Active and Abandoned -

GCEP

WORLDWIDE DRILLING DENSITY
Number of wells drilled per
10,000 sg km

- 300 - 1,000
. 1,000 - 4,400

Safe Operations

. 4400 - 23.400 No Wells / Data

. 23,400 - 61,000

From IPCC, 2005




blowouts/year

Well Blowouts in Region |V, California

GCEP

18

16 A

14 1

12 1

10

District 4, California

f)g 50,277 active wells
/A - 18,660 shut-in wells
7 X . 36,940 abandoned wells
!f ‘\‘ ," "\ — X — annual average
\ [ —O&—moving quadrennial average

= = = quadrennial linear fit

R%=0.9678

1991

1992 1993 1994 1985 1996 1997 1998 1999 2000 2001 2002 2003 2004 2003

2006



GCEP
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Monitoring Needs for CCS Projects GCEP

Requirements for Geologic Storage

Worker and HoieEl) Em el GHG Mitigation

: Impacts to Groundwater :
Public Safety and Ecosystems Effectiveness

Monitoring Program




Monitoring Methods GCEP

Injection

3-D Seismic
Walk Away VSP

Flux Tower

Flux Accumulation Chamber

Injection Rate
Wellhead Pressure
Annulus Pressure
Casing Logs

CO, Sensors

Cross-Well Seismic
Active Source Thermal Sensors

Pressure Transducer

Pressure Transducer




Seismic Monitoring Data —
from Sleipner

Two way time

2002

Horizontal
seismic section
not available
for 2002

From Andy Chadwick, 2004



An Alternative Approach: -
Real-Time Seismic Monitoring ~ GCEP

Receiver Well

Source Well

Receiver Well




An Alternative Approach: -
Real-Time Seismic Monitoring ~ GCEP

Receiver Well

Source Well

Receiver Well




An Alternative Approach: -
Real-Time Seismic Monitoring ~ GCEP

Receiver Well

Source Well

Receiver Well




Proof of Concept: —
Real-Time Seismic Monitoring GCEP
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Daley, et al, Geophysics, 2007.




Real-Time CO, Tracking GCEP

Cross Well Data Match
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Surface Monitoring GCEP

Detection Verification Facility
(Montana State University)

5"_-"_""_""—"!—-!—.4, 9,-

- Field Site

Hyperspectral |
Imaging of
Horizontal Vegetation
Injection Well - _—
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Unresolved institutional

Issues create investment
risk for CCS

Cost recovery for CO,
capture

Regulatory framework for
CO, storage

Pore-space ownership

Long term financial
responsibility

— Monitoring

— Remediation

-

Widespread Deployment of CCS GCEP

- IPCC, 2005
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Risk Profile for CO, Storage  gcgp
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Conclusions GCEP

CCS is an important part of the portfolio of technologies for reducing
greenhouse gas emissions
Progress on CCS proceeding on all fronts

— Industrial-scale projects

— Demonstration plants

— R&D
Technology is sufficiently mature for large scale demonstration
projects

Research is needed to support deployment at scale

— Capture: Reduce costs and improve reliability

— Storage: Improve confidence in storage security

Institutional issues need to be resolved to support widespread
deployment





