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Core-scale multiphase flow
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Experimental conditions

-Brine composition = 10g/L NaCl

Procedure

-drainage at 2.6, 1.2 and 0.5 mL/min
-the fractional flow of CO, is progressively

-steady state is achieved for each step

The rock is very
heterogeneous with a

structure composed of
successive layers that are
not parallel to the main axis
of the cylinder.

Contrarily to the commonly
accepted theory, the CO,
saturation is a function of
the total flow rate. As a
consequence, the relative

Brine Saturation

permeability varies with
flow rate.

The higher the flow rate, the
higher the CO, saturation
and the lower the relative
permeability at a given

24% saturation.

Effect on Relative Permeability
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INTRODUCTION / BACKGROUND . 02
Relative permeabllity is a key concept for carbon dioxide storage. Defined in multi- =02 I 014
phase flow in porous media as the ratio of effective permeability of a particular 200
fluid at a particular saturation to absolute permeability of that fluid at
total saturation, relative permeability controls the majority of the phenomena « Inlet | 1.2
that are met when two (or more) fluids are flowing through rocks. E;ferr%(;;?e\gelg S
Stu_dylng t_he rel_atlve permeabllity proper’qes of the COz-b_rlne system in dee_p | | | broad distribution of pore
S_ahne aqt_ufers Is fundamental to answer important questions that are met in the 21.80% LA 22.63% size. The structure is clearly S -
field. For instance: 1 visible in the porosity map. e
- What should be the pressure in the injection zone? | | | | | | There is a strong correlation
- How big the plume is going to be? 0s e B AR Rl i porosity / CO, saturation o
.. 08 . . . |
- How fast would CO, leak up a fault under buoyancy? 05 = with a high cO, saturation
- How to maximize sweep efficiency (storage capacity)? 5 S 06| corresponing to a high
oW P y g pacity): % 04 Y4 \ § ' porosity. There is no visible
_ N _ _ o S s % i gravity override.
In the laboratory, relative permeability experiments associated with fine rock & g | 2% 11%
characterizations are performed in order to address more fundamental issues. For 3 * 2 o2
Instance: Effect on CO, saturation
-What are the trapping mechanisms? 0 ' for different fractional flow

- How do the external factors influence relative permeability (pressure,
temperature, injection rates, rock properties/structure)?
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@ SEPARATOR
e Used to separate the two fluids after they
flow through the core.

@) AN ALUMINUM COREHOLDER
CONTAINS THE CORE

e Aluminum 1/2 inch thick

¢ Rated to 3000 psi, 100°C

e For use with core up to 8 in.

long (2 in. diameter)

e Fluids are distributed at the

inlet and outlet ends by concentric
grooves machined into the aluminum.
e Heaters keep fluid inside the core-
holder at reservoir temperature.

@ PUMPS INJECT HIGH-PRESSURE CO, AND BRINE

e A system of dual-pumps (A & B) using electric valves
injects fluids continuously and refills automatically.

e Max Pressure: 3750 psi.

e Flow rate: 1puL/min - 200mL/min

e Pump D applies confining pressure around the core
to mimic reservoir conditions.

e Pump C creates back-pressure after separator. Also
serves as a buffer container between separator and
Injection pumps.
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The sample is very
homogeneous with very little

sS TR s U Ol o R e R variations of porosity along the
3654%  3g19% core and no visible structure.
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derived from these images. Procedure

e Images are taken in real time

during injection experiments. -drainage at ImL/min

© A DATA LOGGER RECORDS: -the fractional flow of CO, is progressively
e Temperature and confining Increased

pressure inside the coreholder.

e Flow rate, pressure, delivered
volume at each pump.

e Pressure drop across the core.

-steady state is achieved for each step

Once injected slowly into the
core, CO, Is rising up under the
iInfluence of gravity.

/ CONCLUSIONS \

Studying relative permeability properties of CO,
and brine in reservoir rocks is of major importance
for carbon sequestration.

In the lab, we see that:

-When the core is structured, the heterogeneities
are controlling the spatial distribution of CO, at
steady state. The less porous layers are hardly
iInvaded.

-When the sample is homogeneous and the
Injection flow rate is low enough, gravity effects
become important and the CO, invades
preferentially the top part of the core.

-CO, saturation and relative permeability are seen
to be flow rate dependant. At higher flow rate, CO,
saturation is higher and relative permeability lower.
- Numerical simulations are underway to validate
these observations (see Chia-Wei Kuo’s poster) as
well as sub-core scale analysis (see Michael
Krause’s poster).




