



Stanford University Global Climate & Energy Project

# Core- and pore-scale experimental study of relative permeability properties of CO<sub>2</sub> and brine in reservoir rocks

Jean-Christophe Perrin, Michael Krause, Chia-Wei Kuo,

Ljuba Miljkovic and Sally M. Benson

Department of Energy Resources Engineering, Stanford University

## - OVERVIEW -

- Long term motivations
- Experimental Setup Procedure
- Core flooding experiments Results
- Conclusions

## - LONG TERM MOTIVATIONS -

Perform sub-core scale experiments and simulations to:

- get an improved understanding of the pore and core-scale physics

- predict the spatial and temporal distribution of  $\mathrm{CO}_2$  saturation and trapping

Today:

- 2-phase flow experiments on reservoir rocks (drainage)
- effect of injection rate on relative permeability to brine and CO<sub>2</sub>
- influence of rock heterogeneities and gravity on CO<sub>2</sub> saturation



## - PROCEDURE -

<u>Steady state</u> relative permeability experiments at a given <u>total</u> volumetric flow rate:

- core initially saturated with brine
- CO<sub>2</sub> and brine are injected at a given fractional flow until steady state is reached

 $f_{CO2}$  = vol. flow rate of CO<sub>2</sub> / (vol. flow rate of brine + vol. flow rate of CO<sub>2</sub>)  $f_{brine}$  = 1 -  $f_{CO2}$ 

- at steady state, the pressure drop across the core is recorded and  $\mathrm{CO}_2$  saturation is determined
- $f_{CO2}$  is increased

#### - EXPERIMENTS – #1 -



#### COOPERATIVE RESEARCH CENTRE FOR GREENHOUSE GAS TECHNOLOGIES



Otway Project Well CRC-1 Otway basin, Australia

<u>Sample:</u> 5.08 cm diameter 8.5 cm long k = 50mD







#### Saturation maps at steady state for different fractional flows of CO<sub>2</sub>



T = 63 °C

P<sub>pore</sub> =1800 psi / 12.4 Mpa brine composition: 6g/L NaCl+ 0.5 g/L CaCl<sub>2</sub> Drainage at 2 mL/min





-> Strong correlation porosity / CO<sub>2</sub> saturation

- -> High residual brine saturation
- -> No visible gravity override

- EXPERIMENTS – #2 -



- non homogeneous core
- low porosity layers oriented in the diagonal of the sample





Total flow rate = 1.2 mL/min



#### Total flow rate = 2.6 mL/min

- -> saturation dependant on flow rate
- -> bottom of the core not invaded with CO2

## - Role of gravity?-

- Core initially saturated with brine

- Injection of 100% CO<sub>2</sub> in two different configurations



-> No visible gravity effect

### - Flow rate effect-



-> Saturation and relative permeability are function of flow rate

-> The higher the flow rate the higher the saturation the higher the relative permeability

## - Comparison with simulations -



-> Good qualitative match between experiment and simulation

- EXPERIMENTS - #3 -



## - CONCLUSIONS-

Core flooding drainage experiments have been carried out at steady state on different core samples.

High injection rates and / or strong heterogeneities  $\rightarrow$  capillary effect > gravity effect Low injection flow rate in an homogeneous core  $\rightarrow$  gravity override

Core saturation and  $CO_2$  spatial distribution are flow rate dependent  $\rightarrow$  relative permeability curves are flow rate dependent

TOUGH2 simulations can qualitatively reproduce the lab experiments. Improvements in correlations between porosity, saturation and capillary pressure are needed to replicate the experiments.

## - FUTURE WORK-

Describe more precisely the flow rate effect on different sample, different conditions, wider flow rate range.

Experimental investigation of imbibitions, relative permeability hysteresis and capillary trapping.

## - ACKNOWLEDGMENTS-

- **GCEP** (Global Climate and Energy Project at Stanford University)
- Michael Krause, Chia-Wei Kuo, Ljuba Miljkovic and Sally Benson, ERE Department, Stanford University
- Organizing committee of GHGT9