

\mathcal{S} ity GCEP Global Climate & Energy Project

Battelle Remediation of Chlorinated and Recalcitrant Compounds Conference June 4, 2010

Experimental and Numerical Studies of CO₂-Brine Systems for CO₂ Capture and Sequestration

Michael Krause, Jean-Christophe Perrin, Chia-Wei Kuo & Sally Benson Energy Resources Engineering Department Stanford University

Science and technology for a low GHG emission world.

Motivation

• Questions

- \bullet How does CO₂ behave in a subsurface porous media environment?
	- Unfavorable Mobility Ratio
- What controls the distribution of $CO₂$ in porous media?
- How can we use simulations to study the behavior of $CO₂$?
- Approaches
	- Conduct core flooding experiments at subsurface conditions
	- Simulate the experiments to validate our physical understanding
	- Test the effect of parameters on saturation distribution
		- **Heterogeneity**
		- **Capillary pressure**
		- **Gravity**

Outline

- **Experiment with Random Heterogeneity**
	- Replicate a simple case
	- How do we simulate core flooding experiments?
	- New method for calculating sub-core scale permeability
- **Experiment with Structured Heterogeneity**
	- What is the influence of structured heterogeneity?
	- When is this type of heterogeneity important?

Experimental Setup

1 – Simulating Experiments **5**

Measured data inputs and calculated inputs

Simulation Input

6

Aside – Why Scaled P_c ?

7

Come assignate the Computed in Policial Simulations Computer the Computer that meast bd spatial variation in saturation

Procedure:

- 1. Measure P_c
- 2. Determine A,B, λ_1, λ_2

$$
J(S_{w,i}) = A\left(\frac{1}{S_{*,i}^{\lambda_1}} - 1\right) + B\left(1 - S_{*,i}^{\lambda_2}\right)^{1/\lambda_2}
$$

3. Scale J-Function to all grid blocks $\phi_\mathrm{i},\,\mathrm{k}_\mathrm{i}$ $P_c = \sigma \cos \theta \sqrt{\frac{\phi}{k}} J(S_w)$

6/4/2010 Beijing University – Department of Energy and Resources Engineering

How to Calculate Permeability?

2 – Random Heterogeneity **10**

Simple Berea core with a random distribution of minor heterogeneity

Observations – Random Heterogeneity

P_c Method Saturation Results

12

P_c Method Results

Conclusions:

- Clear correlation between experimental measurement and numerical prediction
- Statistically significant match of both core and sub-core scale experimental measurements

* Difference in simulations is just Jfunction fitting parameters A, B, λ_1 , λ_2

2 – Structured Heterogeneity **14**

Complex core from Australian Otway Basin Pilot Project Waare C Reservoir

Observations – Random Heterogeneity

Results with Strong Heterogeneity

Beijing University – Department of Energy and Resources Engineering

6/4/2010

Conclusions

- Porosity alone is not enough information to derive sub-core scale permeability
- Capillary pressure based method gives an excellent quantitative match to experimental result
- Method works for homogeneous and heterogeneous cores
- Leverett scaling law is important for accurately representing variable capillary pressure curves

3 – Average Saturation Effect **18**

When does strong structured heterogeneity influence average $CO₂$ saturation?

Observations – Structured Heterogeneity

Experimental Conditions

Viscous Flow Regime

- Viscous flow dominated regime
- Average saturation independent of heterogeneity and density differences
- Predicted by Buckley-Leverett theory
- **q > 0.6 ml/min** $f_{CO2} = 0.95$

 σ *t* $\mu_{_W}$ *cap u* $N_{can} =$

Gravity Flow Regime

- Buoyancy difference causes a saturation rate dependency
- Average saturation decreases as flow rate decreases
- Heterogeneity has relatively small effect

q = 0.05-0.6 ml/min $f_{CO2} = 0.95$

 σ *t* $\mu_{_W}$ *cap u* $N_{can} =$

Capillary Flow Regime

- Capillary forces are the dominant mechanism at low flow rates – leading edge of the plume
- Saturation is same in heterogeneous rocks with or without gravity

q < 0.05 ml/min $f_{CO2} = 0.95$

 σ *t* $\mu_{_W}$ *cap u* $N_{can} =$

Conclusions

- Saturation is dependent on flow rate, but for different reasons
- Different flow regimes have different mechanisms which control $CO₂$ saturation
- **Presence of heterogeneity decreases the** average $CO₂$ saturation in all flow regimes
- Heterogeneity has strongest influence in capillary dominated regime