

GCEP Global Climate & Energy Project

Battelle Remediation of Chlorinated and Recalcitrant Compounds Conference June 4, 2010

Experimental and Numerical Studies of CO₂-Brine Systems for CO₂ Capture and Sequestration

Michael Krause, Jean-Christophe Perrin, Chia-Wei Kuo & Sally Benson Energy Resources Engineering Department Stanford University

Science and technology for a low GHG emission world.

Motivation

Questions

- How does CO₂ behave in a subsurface porous media environment?
 - Unfavorable Mobility Ratio
- What controls the distribution of CO₂ in porous media?
- How can we use simulations to study the behavior of CO₂?
- Approaches
 - Conduct core flooding experiments at subsurface conditions
 - Simulate the experiments to validate our physical understanding
 - Test the effect of parameters on saturation distribution
 - Heterogeneity
 - Capillary pressure
 - Gravity

Beijing University – Department of Energy and Resources Engineering

Outline

- Experiment with Random Heterogeneity
 - Replicate a simple case
 - How do we simulate core flooding experiments?
 - New method for calculating sub-core scale permeability
- Experiment with Structured Heterogeneity
 - What is the influence of structured heterogeneity?
 - When is this type of heterogeneity important?

Experimental Setup

Beijing University – Department of Energy and Resources Engineering

⁵ 1 – Simulating Experiments

Measured data inputs and calculated inputs

Beijing University – Department of Energy and Resources Engineering

Simulation Input

6

Aside – Why Scaled P_c ?

7

Contraction a Simulation absolutely required to replicate the measured spatial variation in saturation

How to Calculate Permeability?

Beijing University – Department of Energy and Resources Engineering

¹⁰ 2 – Random Heterogeneity

Simple Berea core with a random distribution of minor heterogeneity

Observations – Random Heterogeneity

Lynorimontal	1 onditione

$T = 50^{\circ}C$	Image Grid = 3x1.27x1.27 (mm)	$k_{ave} = 85 \text{ md}$
P = 12.41 MPa	Core Length = 20.2 cm	φ _{ave} = 18.5 %
Brine = 6500 ppm NaCl	Core Radius = 5.08 cm	q = 3 ml/min

Beijing University – Department of Energy and Resources Engineering

P_c Method Saturation Results

12

P_c Method Results

Conclusions:

- Clear correlation between experimental measurement and numerical prediction
- Statistically significant match of both core and sub-core scale experimental measurements

Simulation	Sub-Core CO ₂ Saturation R ²	Core ∆P Error (%)	Core S _{co2} Error (%)
6	0.620	-8.87	6.03
7	0.744	-6.37	2.73
9	0.664	-8.47	5.27
10	0.731	-5.76	2.43
11	0.779	-7.08	2.68
12	0.805	0.03	-3.21

* Difference in simulations is just J-function fitting parameters A, B, λ_1 , λ_2

Beijing University – Department of Energy and Resources Engineering

14 2 – Structured Heterogeneity

Complex core from Australian Otway Basin Pilot Project Waare C Reservoir

Observations – Random Heterogeneity

Beijing University – Department of Energy and Resources Engineering

Results with Strong Heterogeneity

Beijing University – Department of Energy and Resources Engineering

Conclusions

- Porosity alone is not enough information to derive sub-core scale permeability
- Capillary pressure based method gives an excellent quantitative match to experimental result
- Method works for homogeneous and heterogeneous cores
- Leverett scaling law is important for accurately representing variable capillary pressure curves

Beijing University – Department of Energy and Resources Engineering

¹⁸ 3 – Average Saturation Effect

When does strong structured heterogeneity influence average CO₂ saturation?

Observations – Structured Heterogeneity

EVAAR		NEI ARC

$T = 50^{\circ}C$	Image Grid = 1.5x0.76x0.76 (mm)	$k_{ave} = 430 \text{ md}$
P = 11.72 Mpa	Core Length = 15.24 cm	φ _{ave} = 20.3 %
Brine = 10000 ppm NaCl	Core Radius = 5.08 cm	q = 3.6 ml/min

Beijing University – Department of Energy and Resources Engineering

Viscous Flow Regime

- Viscous flow dominated regime
- Average saturation independent of heterogeneity and density differences
- Predicted by Buckley-Leverett theory
- q > 0.6 ml/min f_{CO2} = 0.95

$$N_{cap} = \frac{u_t \mu_w}{\sigma}$$

Gravity Flow Regime

- Buoyancy difference causes a saturation rate dependency
- Average saturation decreases as flow rate decreases
- Heterogeneity has relatively small effect

q = 0.05-0.6 ml/min f_{CO2} = 0.95

Capillary Flow Regime

- Capillary forces are the dominant mechanism at low flow rates – leading edge of the plume
- Saturation is same in heterogeneous rocks with or without gravity

q < 0.05 ml/min f_{CO2} = 0.95

 $\boldsymbol{\sigma}$

Conclusions

- Saturation is dependent on flow rate, but for different reasons
- Different flow regimes have different mechanisms which control CO₂ saturation
- Presence of heterogeneity decreases the average CO₂ saturation in all flow regimes
- Heterogeneity has strongest influence in capillary dominated regime