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Motivation
2

e Questions
e How does CO, behave in a subsurface porous media environment?
= Unfavorable Mobility Ratio
o What controls the distribution of CO, in porous media?
e How can we use simulations to study the behavior of CO,?

e Approaches
e Conduct core flooding experiments at subsurface conditions
e Simulate the experiments to validate our physical understanding
e Test the effect of parameters on saturation distribution
= Heterogeneity
= Capillary pressure
= Gravity
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Outline

s 4
e Experiment with Random Heterogeneity
e Replicate a simple case
e How do we simulate core flooding experiments?
e New method for calculating sub-core scale permeability

e Experiment with Structured Heterogeneity
e What is the influence of structured heterogeneity?
o When is this type of heterogeneity important?

Beijing University — Department of Energy and Resources

. : 6/4/2010
Engineering



Experimental Setup
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1 — Simulating Experiments

Measured data inputs and calculated inputs
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Simulation Input
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Aside — Why Scaled P_?

Copyeaienat SRS absolutely required to replicate the

mea

1 P, Curve Unique P, Curves
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spatial variation in saturation

Procedure:
1. Measure P,
2. Determine A,B, A\ ,A,

](Sw,i) :A( ! — 1)-|— B(l_ S:iz)l//lz

S
3. Scale J-Function to
all grid blocks ¢;, k
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How to Calculate Permeability?

s 4
Porosity Method Cap. Pressure Method
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Capillary Pressure (Pa)

1.0e407

1.0E+06 =

1.0E+05 =

1.0E+04

1.0E403

1.0E402

1.0e407

® Experiment Data M easure Capl I Iary
— 10E+06 £ —Curve Fit 1
< Pressure
[
3 L0E+05 ¢
8
&
2 10E+04
=
‘o
]
© 108403 |
1.0402
0.00 0.20 0.40 0.60 0.80 1.00

Normalized Brine Saturation (%)

. Experim.ent Data ; _ %Jy '- . §b
—Curve Fit 1 ;}, ‘;/~¢~" PC = ocosé@ E](Sw)
Calculate vl
Average P ﬁ"’i\/leasure Scoz,i Calculate J(S,,) Fitting
«— % Parameters A, B, A, A,
" ]

Normalized Brine Saturation (5%)

B encure 0 Calculate J(S,, ;)

1
B eoma(d sy
Calculate k;

ki = ¢ ﬁiczdn [](Sw,i)zl (o cos 6)*




2 — Random Heterogeneity

Simple Berea core with a random
distribution of minor heterogeneity
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Observations — Random Heterogeneity
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Porosity Steady State S, at 100% CO,, Injection
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Experimental Conditions

T =50°C Image Grid = 3x1.27x1.27 (mm) Kove = 85 md
P=12.41 MPa Core Length =20.2 cm $.e = 18.5 %
Brine = 6500 ppm NaCl Core Radius = 5.08 cm g =3 mli/min
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P. Method Saturation Results
L2 g

Experiment

SG
0.7
0.6
0.5
0.4
0.3
0.2
0.1

I

0.005 |-

001

~
00155-’1‘ \( - -
) ) 4~\ X

=~
=]
1

w

0,0352— » ’ |y

004F

9000
8000
7000
6000
5000
4000
3000
2000
1000

0

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95
Exp. Core CO, Saturation Distribution

0.045

“S‘ "(‘(‘A 4
00 &‘%{‘ O

O\

o=0.1564

i o
&
3
‘A.,'
L

L w

16000
14000
12000
10000
8000
6000
4000
2000
0

0.005

001F

0.015

No0.025

0035 F

0.04

0045 L

002

0.03

P. Result (12)

o=0.0974

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95
Sim Core CO, Saturation Distribution

Beijing University — Department of Energy and Resources

Engineering

6/4/2010



P. Method Results
‘g

Conclusions: Saturation Comparison for Slice 33*
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e Clear correlation between _ 0%
experimental measurement g
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and numerical prediction 8 oo |
e Statistically significant match 8 °* o
0.40 *F * Simulation
of both core and sub-core £ $Z -
. 3 F * Simulation9
scale experimental Eow 2 « Simulation’10
E Qe e Simulation 11
measurements 010 £ 3= « Simulation 12
0.00 « = t 1 1 '
0.00 0.20 0.40 0.60 0.80 1.00
Simulation Sub-Core CO, ~ CoreAP  Core Sco; Experiment CO, Saturation
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6 0.620 -8.87 6.03 * Difference in simulations is just J-
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10 0.731 -5.76 2.43
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2 — Structured Heterogenelity

Complex core from Australian Otway Basin
Pilot Project Waare C Reservoir
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Observations — Random Heterogeneity
I

Porosity Steady State S, at 100% CO,, Injection
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P=12.41 MPa Core Length = 8.3 cm $. = 18.04 %
Brine = 6500 ppm NaCl Core Radius = 5.08 cm g =3 mli/min
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Results with Strong Heterogenelty
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Conclusions

S
e Porosity alone is not enough information to
derive sub-core scale permeability

e Caplllary pressure based method gives an
excellent quantitative match to experimental
result

e Method works for homogeneous and
neterogeneous cores

e Leverett scaling law is important for accurately
representing variable capillary pressure curves
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3 — Average Saturation Effect

When does strong structured heterogeneity
influence average CO, saturation?
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Observations — Structured Heterogeneity
I

Porosity Steady State S, at 95% CO, Injection
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Experimental Conditions

T =50°C Image Grid = 1.5x0.76x0.76 (mm) K, =430 md
P=11.72 Mpa Core Length = 15.24 cm d.. = 20.3 %
Brine = 10000 ppm NaCl Core Radius =5.08 cm g = 3.6 ml/min
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Viscous Flow Regime

Average CO, Saturation
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e Viscous flow
dominated regime

e Average saturation
Independent of
heterogeneity and
density differences

e Predicted by
Buckley-Leverett
theory
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Gravity Flow Regime
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Capillary Flow Regime
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Conclusions

.2z 4
e Saturation is dependent on flow rate, but for
different reasons

e Different flow regimes have different
mechanisms which control CO, saturation

e Presence of heterogeneity decreases the
average CO, saturation in all flow regimes

e Heterogeneity has strongest influence In
capillary dominated regime
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