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General Research Objective Permeability Calculation Theoretical Development
The research groups stated goal is to develop the ability to spatially and temporally predict the * Permeability can be measured at the core scale. Many equations for calculating permeability e Capillary pressure can be used to calculate permeability in the core by using Eq. 1.
distribution of CO, in a sequestration environment. Study is conducted through carefully using porosity measurements exist, but none have been thoroughly tested for use at the sub- 1 , ,
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designed experiments which measure the CO, distribution in a rock core, through numerical core scale. p2
simulations which use the fundamental physics of multiphase flow to explain observed * Since porosity is measured at the sub-core scale, porosity-based methods lend themselves * The J-Function, J(Sw) is evaluated for each grid element using the measured saturation value
phenomena, and through geological characterization of the rock core in the experiment. easily to this problem. Several different porosity-based methods have been selected with from the experiment and using the fitting parameters in Eq. 2 for each curve.
iecti i simulation results shown compared to the experimental measurement for a single slice below * Capillary pressure, P, is evaluated at the core average saturation value and using the
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Numerical simulation requires several parameters and rock properties to be used as input, some Description Slice Slice CO, Core Saturation measured.caplllary pressure data. - | B
of these properties can be measured directly, others must be extrapolated from a known set of Permeability Saturation Histogram * The resulting equation for permeability is shown in Eq. 5, where A, B, 4, and A, are empirical
data. This research focuses on testing and developing methods for representing permeability at Experimentally Perm (md) eodl fitting parameters selected to best fit the two measured capillary pressure curves (J-Fit 1 & 2).
the sub-core scale for use in numerical simulation studies. Measured Data m e | o | e U P ocosd 2
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NUMERICAL SIMULATIONS oo . Two different sets of fitting parameters are used in the J-Function in both the simulation and
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. . Simulation 11 for calculating permeability for testing sensitivity to small changes in the Pc curve
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of the experiment are then conducted using the same thermophysical conditions, with the goal { (1— ;)2 o, Suturaion .
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Capillary pressure is measured on a representative piece of pressure-based method yields much closer visual matches = e
core using a standard mercury intrusion device. The single to the experimental measurement. me
measured curve is then used to create unique sub-core scale N CONCLUSIONS AND FUTU RE WORK * The histograms show that the distribution of saturation in S 050 _
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