Send to

Choose Destination
Cancer Res. 1996 Oct 1;56(19):4315-9.

Modulation of c-Myc activity and apoptosis in vivo.

Author information

Department of Radiation Oncology, Stanford University School of Medicine, California 94305, USA.


We have developed an animal tumor model system to study the effects of c-Myc activation on apoptosis induction in vivo. Tumors were generated in SCID mice from Rat-1 fibroblasts that constitutively express an inactive c-Myc-estrogen receptor fusion protein (T.D. Littlewood et al, Nucleic Acids Res., 23: 1686 -1690, 1995), which is activated in vivo by the administration of 4-hydroxytamoxifen in time release pellets. We demonstrate that activation of c-Myc results in a substantial increase in the number of apoptotic tumor cells and that this apoptosis is predominant in regions of tumor hypoxia. c-Myc-induced apoptosis of hypoxic cells is inhibited in tumors that overexpress the human Bcl-2 protein. Bcl-2, however, does not prevent p53 protein accumulation or the down-regulation of the cyclin-cdk inhibitor p27 protein following c-Myc activation by 4-hydroxytamoxifen. This result suggests that Bcl-2 does not affect c-Myc function directly but acts downstream of c-Myc to inhibit apoptosis. We propose that the ability of activated c-Myc to enhance cellular proliferation might contribute to the genesis of early neoplasms that are held in check by the alternate ability of c-Myc to induce apoptosis of cells that have outgrown their supply of oxygen or other factors associated with hypoxic regions of solid tumors. Secondary genetic lesions downstream of c-Myc that suppress the apoptotic potential of tumor cells, such as Bcl-2 overexpression, might play an important role in the malignant progression of these tumors because they would disrupt the balance between apoptosis and proliferation initiated by c-Myc deregulation.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center