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Abstract

A graph G is H-saturated if G does not contain H as a subgraph, but the
addition of any edge between two nonadjacent vertices in G results in a copy
of H in G. The saturation number sat(n,H) is the smallest possible number of
edges in a n-vertex H-saturated. The values of saturation numbers for small
graphs and n are obtained computationally, and some general results for some
specific path unions are also obtained.

1 Introduction
A graph G is H-saturated if G does not contain H as a subgraph, but the addition of
any edge between two nonadjacent vertices in G results in a copy of H in G. The
saturation number sat(n,H) is the smallest possible number of edges in a n-vertex
H-saturated graph. The saturation number is closely tied to the extremal number
ex(n,H), which is the largest possible number of edges in a n-vertex H-saturated
graph. However, although the saturation and extremal numbers are closely related,
their behavior can be dramatically different. For example, while the extremal
number evaluated as a function of n is a nondecreasing function for any graph H,
the saturation number can drop for certain values of H (and for the case of H=P4,
even drop infinitely often). In addition, while there are a considerable number
of results on extremal numbers, the body of work on saturation numbers is far
less extensive. While some results on the saturation numbers for certain classes
of graphs, such as complete graphs, small cycles, and paths are known, most
other graphs’ saturation numbers are completely unknown. In this paper, some
computational results on small saturation numbers and some results on general
saturation numbers for specific path unions will be presented.
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We begin with results on small saturation numbers. Finding saturation num-
bers is a difficult problem, as currently the only known method for finding sat-
uration numbers is direct search over a set of graphs. Direct constructions have
been proposed for specific families of graphs, but as of yet no algorithm exists
for exactly deriving a minimally saturated graph. An example strategy of direct
generation, (by adding edges to a starting graph in such a way such that an un-
desired subgraph H is never formed) is not better than the method used in this
paper, as to guarantee that the saturation number has been exactly found we must
implicitly look at every graph in the set of H-free graphs. For the method explored
in this paper, each graph requires at least one subgraph isomorphism test (to see
if the graph already contains the target subgraph H), with the saturated graphs
each requiring

(n
2

)
+ 1 applications of the subgraph isomorphism algorithm. As

the number of nonisomorphic graphs is extremely large even for small numbers of
vertices, the problem of directly finding saturation numbers for arbitrary graphs is
only feasible for graphs of a small number of vertices.

To make a computer program capable of finding saturation numbers, a set of
graphs was required. For this, Brendan McKay’s tool nauty was used; graphs of
every order were generated, and with the help of some python scripts, the data was
trimmed down to just the edge set data of a graph. Now, a tool that could operate
on the graph sets and do the necessary subgraph isomorphism tests was required.
For this, we used Aric A. Hagberg, Daniel A. Schult and Pieter J. Swart’s python
module networkx. However, networkx’s implementation of VF2 only checks for
induced subgraphs. This can be worked around by using line graphs. Except in
the case of searching for claw or triangle saturation, line graphs allow one to check
for general subgraph isomorphism with only induced subgraph isomorphism. A
proof of this result is provided in the following lemma:

Lemma 1. Assume A,B do not contain disjoint components isomorphic to C3 or
K1,3. Then A⊆ B iff L(A)⊆ L(B) as an induced subgraph, where L(X) represents
the line graph of X.

Proof. We know adding edges to a graph A does not change the original graph’s
underlying structure, so if A ⊆ B then L(A) ⊆ L(B). We also know that taking a
subgraph of a line graph does not change the adjacency structure of the vertices in
subgraph, so since A,B do not contain disconnected components isomorphic to C3
or K1,3, A ⊆ B only if L(A) ⊆ L(B). Therefore, A ⊆ B iff L(A) ⊆ L(B). We now
can progress in the proof.

(⇐) By the above result, we have the left arrow case already resolved.

(⇒) Assume otherwise: A ⊆ B but L(A) * L(B) as an induced subgraph. We
know by the above result that A ⊆ B implies L(A) ⊆ L(B), so we must have that
the copy of L(A) in L(B) is not induced. So, there must be two vertices x,y in
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L(A) such that xy ∈ E(L(B)) but xy /∈ E(L(A)). This means that the edges x and
y are incident in B but not incident in A. Define u to be the endpoint shared by
both x and y in B. Since x and y are not incident in A, we must have u /∈ A. But
since x and y must have both endpoints in A if they are in A, we get that x,y /∈ A;
contradiction. This completes this direction.

With these two tools and the above lemma, a Python script was written to
find saturation numbers. All of the saturation numbers with n ≤ 9 except for the
cases K3,K1,3,2P2, and 3P2 in the following tables were verified computationally;
these other results were either taken from existing papers or verified manually.
The case 4P2 could also not be verified using the standard computer program
as its line graph consists of four disjoint vertices, which networkx treats as an
empty graph and therefore gives incorrect results. To get around this problem, a
modified version of the saturation testing script was developed for kP2-saturation
which takes the complement of the line graph and searches for Kk.

2 Results for Small Saturation Numbers
In the following tables, the saturation number sat(n,H) is found in the box cor-
responding to the n in the left column and the H in the top row. The saturation
number’s corresponding minimal graph is found in parentheses next to the actual
number. The minimal graph is expressed in standard graph notation, except for
the graphs denoted by Yk, for some k. These graphs are nonstandard and appear
in the back of this paper as an appendix. In addition, some graphs in this paper
have defined names but no concise expression in terms of common graph theory
notation. For clarity’s sake, these graphs also appear in the appendix.

n \ H P2 P3 K3 2P2 pan

2 0 (K2)
3 0 (K3) 1 (P2∪K1) 2 (P3)
4 0 (K4) 2 (2P2) 3 (K1,3) 3 (K3∪K1) 3 (K1,3)
5 0 (K5) 2 (2P2∪K1) 4 (K1,4) 3 (K3∪K2) 4 (K1,4)
6 0 (K6) 3 (3P2) 5 (K1,5) 3 (K3∪K3) 5 (K1,5)
7 0 (K7) 3 (3P2∪K1) 6 (K1,6) 3 (K3∪K4) 6 (K1,6)
8 0 (K8) 4 (4P2) 7 (K1,7) 3 (K3∪K5) 7 (K1,7)
9 0 (K9) 4 (4P2∪K1) 8 (K1,8) 3 (K3∪K6) 8 (K1,8)

10 0 (K10) 5 (5P2) 9 (K1,9) 3 (K3∪K7) 9 (K1,9)
11 0 (K11) 5 (5P2∪K1) 10 (K1,10) 3 (K3∪K8) 10 (K1,10)
12 0 (K12) 6 (6P2) 11 (K1,11) 3 (K3∪K9) 11 (K1,11)
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The graph 2P2’s saturation number was taken from [3], while K3’s saturation
number was taken from [5]. Except for the pan saturation number, none of the
results in this table are new: P2 is trivial, P3 is found in [3].

n \ H P4 C4 K4 B2 K1,3

2
3
4 2 (2P2) 4 (pan) 5 (B2) 5 (pan) 3 (K3∪K1)
5 4 (K3∪P2) 5 (bull) 7 (B3) 6 (F2) 4 (C4∪K1)
6 3 (3P2) 6 (Y1) 9 (B4) 7 (Y6) 5 (C5∪K1)
7 5 (K3∪2P2) 8 (Y2) 11 (B5) 9 (F3) 6 (C6∪K1)
8 4 (4P2) 9 (Y3) 13 (B6) 10 (Y7) 7 (C7∪K1)
9 6 (K3∪3P2) 11 (Y4) 15 (B7) 12 (F4) 8 (C8∪K1)

10 5 (5P2) 12 (Y5) 17 (B8) 9 (C9∪K1)
11 7 (K3∪4P2) 19 (B9) 10 (C10∪K1)
12 6 (6P2) 21 (B10) 11 (C11∪K1)

K4 is found in [5], and C4 is found in [Ollmann], while K1,3’s and P4’s satura-
tion number were taken from [3].

n \ H F2 B3 K1,4 chair C5

2
3
4
5 7 (Y8) 7 (Y8) 6 (K4∪K1) 4 (K1,4) 6 (F2)
6 8 (Y9) 9 (Y13) 7 (K4∪P2) 5 (K1,5) 8 (Y18)
7 9 (Y10) 11 (Y14) 9 (K4∪K3) 5 (K1,4∪P2) 9 (F3)
8 10 (Y11) 13 (Y15) 10 (Y17) 6 (K1,5∪P2) 10 (Y19)
9 11 (Y12) 15 (Y16) 12 (2K4∪K1) 7 (K1,6∪P2) 12 (F4)

10
11
12

The saturation numbers for K1,4 can be found in [3]. As far as the authors
know, no extremal results or exact results are known for any of the other graphs
in this table. Extremal values for book and cycle saturation numbers are known
and can be found in [7] and [6], respectively, but the values are known only for n
greater than what is catalogued here.
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n \ H K5 gem cricket bull W4

2
3
4
5 9 (B3,2) 6 (F2) 4 (K1,4) 5 (C5) 8 (Y22)
6 12 (B3,3) 9 (B4) 5 (K1,5) 7 (K4∪P2) 10 (Y23)
7 15 (B3,4) 9 (F3) 6 (K1,6) 8 (Y20) 12 (Y24)
8 18 (B3,5) 12 (B5) 7 (K1,7) 9 (Y21) 15 (Y25)
9 21 (B3,6) 12 (F4) 8 (K1,8) 11 (K4∪C5)

10
11
12

The saturation numbers for K5 can be found in [5]. The rest, as far as the
authors can tell, are new. The saturation number sat(9,W4) was not computed, as
the density of the graph meant that the minimal W4-saturated graph could not be
deduced efficiently with the method used here.

n \ H dart K2,3 P5 kite banner

2
3
4
5 6 (K4) 7 (gem) 4 (C4∪K1) 6 (K4∪K1) 4 (C4)
6 7 (Y6) 9 (tri f orce) 5(Y40) 7 (K4∪P2) 6 (Y1)
7 9 (F3) 11 (Y14) 6(Y41) 9 (F3) 8 (Y27)
8 10 (Y7) 13 (Y15) 6 (Y40∪K1) 11 (Y26) 9 (Y3)
9 12 (F4) 15 (Y16) 7(Y41∪K1) 12 (2K4∪K1) 11 (Y28)

10 8(Y42)
11 9(Y43)
12

The graph P5’s saturation number can be found in [3]. The saturation numbers
for K2,3 are not known directly, but are bounded from above by 2n−3 (the exact
value of the number in this table), as demonstrated in [8].
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n \ H co−banner house K1,5 4P2 2P3

2
3
4
5 4 (C3∪P2) 5 (C5)
6 6 (2C3) 8 (Y18) 10 (K5) 6 (Y1)
7 7 (Y29) 9 (F3) 11 (K5∪P2) 6 (Y1∪K1)
8 7 (2C3∪P2) 10 (Y19) 13 (Y30) 13 (K5∪K3) 7 (Y1∪P2)
9 8 (Y29∪P2) 12 (F4) 15 (Y31) 9 (3C3) 7 (Y1∪P2∪K1)

10 9 (3C3∪K1) 8 (Y1∪2P2)
11 9 (3C3∪K2)
12 9 (3C3∪K3)

The saturation numbers for K1,5 can be found in [3]. The results for 4P2 and
2P3 (except for sat(8,4P2)) were previously known and can be found in [3] and
[9].Interestingly, sat(8,4P2) is 13, while sat(9,4P2) is 9.

n \ H 3P2 2P4 3P3 P4∪P3 C6 P6

2
3
4
5
6 6 (2C3) 9 (Y36) 6 (Y1)
7 6( 2C3∪K1) 9 (Y11) 10 (Y37) 7 (Y29)
8 6( 2C3∪K2) 10 (Y32) 10 (Y12) 11 (Y38) 7 (Y1∪P2)
9 6( 2C3∪K3) 11 (Y33) 14 (Y34) 9 (3K3) 12 (Y39) 8 (Y29∪P2)

10 6( 2C3∪K4) 11* (Y35)
11 6( 2C3∪K5) 11* (Y35∪K1)
12 6( 2C3∪K6) 12 (2Y1)

The 3P2’s saturation number was taken from [3]. The saturation numbers for
P6 can be found in [3]. 3P3’s saturation number, for n ≥ 12, can be found in [9].
Everything else in this table, as far as the authors know, is new. The * in the entries
for sat(10,3P3) and sat(11,3P3) indicate that the exact value was not found, but
an upper bound for the exact value was found by hand search.
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3 The saturation number sat(n+2,Pn∪P2)

We now provide some more general results on saturation numbers for specific
classes of graphs. We begin with a partial result on the saturation number sat(n+
2,Pn∪P2): namely that sat(n+2,Pn∪P2) is within a constant of 3n/2. Before we
begin, we will need to provide some definitions.

Definition 1. Let G be a graph on 4n vertices, which are grouped into four clusters
of n vertices each. Call these clusters An, Bn, Cn, and Dn, and let xk be the kth
vertex in the cluster X. Draw edges between ak and all of bk, ck, and dk for every
k, and form a cycle of length n among the set Bn. Finally, draw a cycle of length
2n which is traversed in the following pattern: c1c2c3...cnd1d2d3...dnc1. Then G
is the flower snark Jn.

In addition, a flower snark Jk is odd if k itself is odd. We observe some basic
properties of flower snarks: they are cubic nonplanar graphs which, for odd flower
snarks, are hypohamiltonian. In addition, they possess the following property,
which will be useful in deriving our result.

Lemma 2. (Lemma 4, [10]) For any odd flower snark Jk of order at least 28, for
any edge e = xy in Jk and for any non-adjacent pair of vertices u and v, the graph
Jk ∪uv has a hamiltonian cycle containing e.

We now need one final lemma before we start our result:

Lemma 3. Any odd flower snark Jk contains a C4k−2∪P2.

Now, with the above lemmas, we can derive an upper bound of sat(n+2,Pn∪
P2).

Lemma 4. Let Jr be an odd flower snark, and let e = xy be a member of the C4r−2
in the C4r−2∪P2 in the flower snark. Now let there be two sets of vertices v1, v2,
v3, and v4 and w1, w2, ..., and ws. Add the edges xv1, xv2, xv3, xv4, v1v2, and v3v4,
and then make the subgraph induced by the vertices y,w1, w2, ..., and ws complete.
The resulting graph on 4r+4+ s vertices is P4r+2+s∪P2 saturated, and posesses
6r+6+ s(s−1)

2 edges.

Proof. Observe that the graph described above cannot possibly contain a P4r+4+s∪
P2, as the standalone P2 must then be two of the vi. However, the remaining ver-
tices of the graph cannot form a hamiltonian path among themselves, as that would
imply the existence of a hamiltonian path in Jr from x to y, creating a hamiltonian
cycle in a nonhamiltonian graph. Now, to show saturation, we will show that the
addition of any edge to the graph creates a P4r+4+s∪P2.
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We first consider adding an edge from v1,v2 to v3,v4 This forms a P4 from
v1,v2 to v3,v4. Lemma 3 says that there exists a C4r−2∪P2 inside theJr, implying
there is a P4r−2 from x to y. This forms a P4r+2+s starting from the four vi, going
to x, taking the P4r−2 to y, and then connecting through all of the wi. Since the
other two vertices of this graph are connected, this forms the desired subgraph.

We now consider adding an edge from a vi to a w j. Assume without loss of
generality that i = 1. Since Jr is hypohamiltonian, the graph Jr − x contains a
hamiltonian path exiting y. Call the endpoint of this path z. Then, a P4r+4+s is
given by xv2v1w jw j+1...wsw1w2...w j−1y...z, and since the remaining two vertices
v3 and v4 are connected, we have the desired subgraph in this graph.

If we add an edge internal to the Jr, the Jr now contains a hamiltonian cycle
through xy, so a path of length 4r+ 4+ s is given by v1v2x...yw1...ws. Since the
other two vertices v3 and v4 are connected, we have the desired subgraph in this
graph.

Now, consider adding an edge from x to wi. Assume without loss of generality
that i = 1. Now, since the Jr is hypohamiltonian, Jr − x contains a hamiltonian
path starting at y. Call the endpoint of this path z. Then, a P4r+4+s is given by
v1v2xw1...w jy...z. Since the other two vertices v3 and v4 are connected, we have
the desired subgraph in this graph.

Consider adding an edge from wi to some vertex z inside the Jr that is not x or
y. Assume without loss of generality that i = 1. If zx is not an edge in Jr, there
must be a hamiltonian path from z to x by Jr’s hamiltonian cycle saturatedness.
Then, v1v2x...zw1...ws is a P4r+4+s in the graph, and since v3 and v4 are connected
we have the desired subgraph in this graph. Therefore, we can assume that zx is
an edge of the Jr. Now, since Jr is hypohamiltonian, Jr− y is hamiltonian. Since
x has degree 2 inside Jr− y, it must be that the hamiltonian cycle of Jr− y must
use both edges connecting to x inside it, and therefore there must be a hamiltonian
path inside Jr−y connecting z and x. A P4r+4+s is then given by v1v2x...zw1...wsy,
and since the two remaining vertices v3 and v4 are connected, we have the desired
subgraph in this graph.

In the case where we add an edge connecting vi to y assume without loss of
generality that i = 1. We realize there must be a hamiltonian path inside Jr− y,
so there must be a hamiltonian path inside this subgraph starting at x and ending
at some vertex z. Then, a P4r+4+s is given by z...xv2v1yw1...ws. Since the two
remaining vertices v3 and v4 are connected, we have the desired subgraph in this
graph.

Finally we consider the case where we add an edge connecting vi to some
vertex z inside the Jr that is not x or y. Assume without loss of generality that
i = 1. If zy is not an edge in Jr, there must be a hamiltonian path from z to y by
Jr’s hamiltonian cycle saturatedness. Then ws...w1y...zv1v2 is a path of length 4r+
4+ s in the graph, and since the two remaining vertices v3 and v4 are connected,
we have the desired subgraph in this graph in this case. Therefore, we can assume
that zy is an edge of the Jr. Now since Jr is hypohamiltonian, Jr−x is hamiltonian.
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Since y has degree 2 inside Jr− x, it must be that the hamiltonian cycle of Jr−
x must use both edges connecting to y inside it, and therefore there mut be a
hamiltonian path inside Jr − x connecting z and y. A P4r+4+s is then given by
xv2v1z...yw1...ws. Since the two remaining vertices v3 and v4 are connected, we
have the desired subgraph in this graph.

Since in every possible case adding an edge to this graph forms a P4r+2+s∪P2
but the graph itself does not contain this graph, it is P4r+2+s∪P2 saturated.

In other words, the above lemma states that since s can be forced to be less
than 8 as there exists a flower snark of any number of vertices of the form 8k+4,
sat(n+2,Pn∪P2) is less than 3n/2 plus some constant factor.

We now consider the lower bound of sat(n+ 2,Pn)∪P2. Let G be Pn ∪P2
saturated on n+ 2 vertices. Now, assume G is disconnected. If G splits into two
components of order h and n−h+2 and h is not equal to 2, the graph Kh∪Kn−h+2
contains no Pn ∪P2 and all graphs G, while having more edges than the upper
bound. In the case where h=2, the component of size two must be a connected
edge, as then the graph would be contained inside the Pn ∪P2-free Kn ∪K2. This
leaves a component of size n. Since this component is disconnected from the
other component of size two, any edge internal to it must form a Pn inside of it; in
essence, the component of size n must be hamiltonian path saturated. Returning
to [10] once again, Dudek et al. show that if a graph on n vertices is hamiltonian
path saturated, it must have at least 3(n−1)

2 −2 edges, meaning that G must have at
least 3(n−1)

2 −1 edges– a constant difference from 3n/2.

Thanks to the above result, we can consider only the case in which G is con-
nected. In this case, we count degrees. Since every vertex in G is used in a Pn∪P2,
there can be at most four vertices of degree 1, as if G had any more we could
connect two vertices of degree two or greater and then we would be looking for a
spanning subgraph with four vertices of degree 1 in a graph with at least 5. Now,
we consider vertices of degree 2. We start with another lemma.

Lemma 5. If G Pn ∪P2-saturated on n+ 2 and if v is a vertex of degree 2, the
neighbors of v must be connected.

To prove this, we define u and w to be the vertices adjacent to v. Now, if w
and u are not connected to each other, we add that edge to G. This new edge wu
cannot be the P2, as if it was v would have nothing to connect to as part of the Pn.
So, this new edge must be part of the Pn. We notice that the Pk must end in either
wuv or uwv, as if the edge uw was not immediately followed by v we would have
used up both of the vertices it connects to and disconnected it from the rest of the
graph. However, we could instead end the Pk with wvu in the former case or uvw
in the latter, while keeping the rest of the Pk∪P2 from the original subgraph. This
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forms a Pk ∪P2 in G + uw that does not use uw; meaning there is a Pk ∪P2 in G;
contradiction.

We now prove another lemma:

Lemma 6. If v is a vertex of degree 2 in G, and if v has neighbors u and w, then
either u or w has degree at least 4.

To prove this, we consider what would happen if both u and w had degree 3, as
the other case (where one vertex has degree 3 and the other has degree 2) follows
by similar arguments. By the above lemma, we know u,v, and w must form a
triangle. Since w and u have degree three, they must connect to exactly one point
each. Call the point w connects to z, and call the point u connects to y. If y and z
are the same point, connect v to this point, and it is trivially easy to see that adding
this edge in cannot possibly form a Pn ∪P2 without the original G containing it.
So, we can assume y and z are not the same point. Now, add the edge vy. This
edge cannot be a part of the P2, as that would imply the existence of a Pn ending in
zwu. Keeping the Pn constant but changing the last three vertices of it to zwv forms
a Pn that skips the vertices y and u, which are connected. This forms a Pk ∪P2 in
G; contradiction. So, yv must be part of the Pn. Now, there are 4 possibilities for
what the P2 can be: it can be the edges zw, wu, z to some point other than w, or
some edge between two completely different points. Now, a routine check in each
of these cases eliminates all of them, forcing a contradiction.

Now, we consider what happens if two vertices of degree 2, u and v, connect
to the same vertex. This breaks up into three cases: (a) u, v, and some other point
form a triangle, (b), u and v have identical neighborhoods but do not themselves
connect, and (c) u and v connect to exactly one point in common, but both connect
to one other point each which are not the same. We settle these cases in order:

(a) If u and v form a triangle with some other point, called w, we define such
a triangle for brevity’s sake as a ’tag’. It is useful to see that w must have degree
at least 3, as if it had a lower degree the triangle would be disconnected from the
rest of the graph, reducing to the disconnected case analyzed above We note that
G can contain at most three such tags, as we note a Pn can enter a tag but not exit
it. This obervation means that if G contained more than three tags, we can add
an edge between two vertices that are of degree 3 or greater (which must exist,
as otherwise all of the vertices of degree 3 or greater would form a clique and
therefore G would contain too many edges to be minimally saturated) and then
realize that even if the P2 uses both of the vertices of one tag and the Pn starts at
one tag and ends at another, there would still be one tag left that cannot be used in
a Pn∪P2. Therefore, there can only be at most 6 vertices of degree of this form.

(b) In this case, we define the points that u and v connect to as a and b. We
begin by breaking this case into two subcases: case (b1), where the sum of degrees
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of the vertices a, b, u, and v is less than 12, and case (b2), where the same sum of
degrees is greater than or equal to 12. We will show that case (b1) is impossible.
We start by applying Lemma 5; this implies that a and b are connected to one
another. Now, since G is connected and it contains these four vertices, one of tehe
four must connect to the rest of the graph. Since u and v are limited to degree 2 by
assumption, the extra edge must connect to a or b. Without loss of generality, we
assume a is the vertex with the extra edge. However, while the degrees of u and v
are still both 2, the degree of b is at least 3, while the degree of a is at least 4. This
means that the sum of degrees of these four vertices is 11, meaning that in case
(b1), these edges that connect to a, b, u, and v (which must all exist) are the only
edgesthat connect to these vertices. However, if we connect u and v in case (b1),
it is clear that that the resulting graph cannot contain a Pn∪P2 without the original
G containing it as well. If the new edge uv formed a P2 in G, there must be a Pn
in G that ends in ...ab. However, we could instead use the edge ub as the P2 and
modify the original Pn by making it end in ...av instead. This forms the required
subgraph without needing the edge uv. If on the other hand the edge uv was part
of a Pn, since all of the vertices of G must be used in the Pn/cupP2, thePn must
end in ...auvb, ...avub, ...abvu, or ...abuv. In all of these cases, an alternative Pn
can be found that uses all of the same vertices yet does not use the edge uv. This
is a contradiction, and therefore case (b1) is impossible.

(c) We cannot force a nonexistence in this case, so we instead generalize it to a
graph having 2k vertices of degree 2 instead of just two. This, with some applica-
tions of Lemma 5, reduces to G having a friendship graph Fk. We first realize that
in the friendship graph Fk, one of the two outer vertices of every triangle inside
of it must connect to something, as otherwise we would reduce to case (a). This
means that the friendship graph has at least k vertices of degree 3 or greater, one
vertex of degree 2k, and at most k vertices of degree 2. Summing degrees gives
the sum of degrees of the vertices of the friendship graph as 7k, so the average
degree of the friendship graph is 7k

2k+1 . This is greater than 3 for all k greater than
2, and since k must be greater than or equal to 2, this settles all cases except for
k = 2. In this case, all that is required is to show that the friendship graph has one
more edge connecting it to the rest of the graph. To do this, we let c be the center
and have degree 4, a and b be the vertices of the friendship graph of degree 3 and
let x and y be the remaining vertices of degree 2. Now, simply connecting the edge
xy cannot create the desired subgraph in the graph, as routine checking will ver-
ify. Therefore, there must be at least one more edge connecting to the friendship
graph, increasing the average degree above 3.

We can now find a lower bound for sat(n+ 2,Pn ∪P2). The argument is by
summing of degrees. We start by looking at the friendship graphs of case (c). If
the friendship graph in question is a Fk and has j tags, the sum of degrees of the
vertices in this graph is at least 6k+ k− j = 7k− j, for k greater than 3. For k
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equal to 2, we realize by the second part of (c) that the resulting F2 must connect
at least three times to the rest of the graph, giving it a sum of degrees equal to 15
on 5 vertices, giving it no net contribution to the difference in degree from 3n/2.
We next look at case (b2). Since the average degree of the vertices involved in
case (b2) is at least 3 in every case, the addition of vertices of degree 2 as in case
(b2) causes no deviation from the required average degree. We now sum over the
rest of the graph. There can be at most 4 vertices of degree 1, and at most 6-2 j+

vertices of degree 2 of class (a), where j+ is the sum of the js in the Fks. We
also know that if there are h vertices of degree two that do not share a neighbor
with another vertex of degree 2, there are at least h vertices of degree 4 to cancel
its effect of the degree sum by Lemma 6. So, since this counts all of the possible
vertices of degree 2 or less, in the worst case where all of the other vertices have
degree 3, the sum of degrees minus 3n is Σk− 3 - 8, where Σk− 3 is the sum of
the ks in the friendship graphs which are greater than 3, minus 3. Minimizing this
gives the sum of degrees minus 3n is at least -8, so if G is connected and Pn∪P2-
saturated on n+ 2 vertices, G must have at least 3n

2 − 4 edges, a constant away
from 3n

2 . This verifies the last remaining case, and so we can conclude with

Theorem 1. sat(n+2,Pn∪P2) is within a constant of 3n
2 .

4 The saturation numbers sat(n,rP3∪ kP2)

In this section, we will prove the following theorem:

Theorem 2. For n large and k ≥ 3, sat(n,rP3∪ kP2) = 3(k+ r−1).

We begin by proving the result for r = 1; that sat(n,P3 ∪ kP2) = 3k for suffi-
ciently large n. We realize that sat(n,P3 ∪ kP2) must be less than or equal to 3k,
as the graph kK3 ∪Kn−3k is P3 ∪ kP2 saturated. Let G be P3 ∪ kP2 saturated with
fewer than 3k edges. Since G plus any edge must contain P3 ∪ kP2, G itself must
contain either (k+ 1)P2 or P3 ∪ (k− 1)P2. If G does not contain (k+ 1)P2, then
since P3 ∪ kP2 contains (k + 1)P2, G must also be (k + 1)P2 saturated. But for
n sufficiently large, sat(n,(k+ 1)P2) = 3k; a contradiction. So, G must contain
(k+1)P2. However, this implies that none of the vertices of G that are not in the
(k + 1)P2 connect to the (k + 1)P2, as then G would contain a P3 ∪ kP2. If G -
(k+ 1)P2 is the empty graph, G is contained in K2k+2 ∪Kn−2k−2, which contains
no P3 ∪ kP2, and further has more than 3k edges; this implies that G− (k+ 1)P2
contains an edge. Since adding an edge between G− (k+ 1)P2 and (k+ 1)P2 in
G forms a P3 ∪ kP2 regardless of G’s other structure, the problem is equivalent
to showing that G− (k+ 1)P2 is P3 saturated. But this means that G− (k+ 1)P2
contains at least b n−8

2 c edges, so G contains at least b n
2c edges. For n sufficiently

large, this is greater than 3k; contradiction. So sat(n,P3∪ kP2) = 3k.
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We now prove the result for r greater than 1. To begin, we need to prove that
some G is minimally rP3 ∪ kP2 saturated and contains no (r− 1)P3 ∪ (k + 1)P2.
By the above and by [9], we have this fact being true for P3∪ kP2(k ≥ 3) and for
rP3∪3P2. We now strong induct on both r and k simultaneously. Let x,y be such
that every minimally xP3 ∪ yP2 saturated G also contains (x− 1)P3 ∪ (y+ 1)P2.
We know that since the graph (x+ y− 1)K3 contains no (x− 1)P3 ∪ (y+ 1)P2,
sat(n,xP3 ∪ yP2) < 3(x+ y− 1). Now consider sat(n,(x+ 1)P3 ∪ (y− 1)P2). By
the induction hypothesis we know there exists some graph H that is (x+ 1)P3 ∪
(y−1)P2 saturated and contains no xP3∪yP2. So then, whatever H is, it must also
be saturated in xP3 ∪ yP2, since (x+ 1)P3 ∪ (y− 1)P2 contains xP3 ∪ yP2. So then
sat(n,(x+1)P3 ∪ (y−1)P2) ≤ sat(n,xP3 ∪ yP2) < 3(x+ y−1). This process can
be repeated until we get that sat(n,(x+y−3)P3∪3P2)≤ (...)≤ sat(n,(x+1)P3∪
(y− 1)P2) ≤ sat(n,xP3 ∪ yP2) < 3(x+ y− 1). But sat(n,(x+ y− 3)P3 ∪ 3P2) is
3(x+ y−1), so 3(x+ y−1)< 3(x+ y−1), a contradiction.

So, since we now know that there exists some minimally rP3 ∪ kP2 saturated
graph G that contains no (r− 1)P3 ∪ (k + 1)P2, we realize that since rP3 ∪ kP2
contains (r−1)P3∪(k+1)P2, G must also be (r−1)P3∪(k+1)P2-saturated. This
process can be repeated until we get that G must be (P3∪ (k+ r−1)P2-saturated.
But then, by above, this saturation number is just 3(r+ k− 1), and we therefore
get that sat(n,rP3∪ kP2) = 3(r+ k−1).
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6 Appendix
In this section, pictures of the Yk graphs listed above are provided.
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Y3 Y4
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Y11 Y12
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Graph
Name
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Name
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chair gem

cricket bull

dart kite

banner
co−

banner

house
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