Bio

Bio


Dr. Iagaru is an Associate Professor of Radiology - Nuclear Medicine and the Chief of the Division of Nuclear Medicine and Molecular Imaging at Stanford Health Care. He completed medical school at Carol Davila University of Medicine, Bucharest, Romania, and an internship at Drexel University College of Medicine, Graduate Hospital, in the Department of Medicine in Philadelphia. He began his residency at the University of Southern California (USC) Keck School of Medicine, Los Angeles, in the Division of Nuclear Medicine, where he was the chief resident. Dr. Iagaru finished his residency and completed a PET/CT fellowship at Stanford University's School of Medicine in the Division of Nuclear Medicine. His research interests include PET/MRI and PET/CT for early cancer detection; clinical translation of novel PET radiopharmaceuticals; peptide-based diagnostic imaging and therapy; and radioimmunotherapy.

Since joining the faculty at Stanford in 2007, Dr. Iagaru has received several awards including the Society of Nuclear Medicine (SNM) 2009 Image of the Year Award; American College of Nuclear Medicine (ACNM) Mid-Winter Conference 2010 Best Essay Award; 2009, 2014 and 2015Western Regional SNM Scientist Award; 2011 SNM Nuclear Oncology Council Young Investigator Award; and a Stanford Cancer Center 2009 Developmental Cancer Research Award in Translational Science. Dr. Iagaru presented more than 100 abstracts at national and international meetings and published more than 100 papers in peer-reviewed journals, as well as 7 book chapters.

Clinical Focus


  • Nuclear Medicine
  • Positron-Emission Tomography

Academic Appointments


Administrative Appointments


  • Member, Scientific Review Committee, Stanford Cancer Institute (2012 - Present)
  • Member, Clinical Radiation Safety Committee (2009 - Present)
  • Member, Department of Radiology Education Committee (2009 - Present)
  • Program Director, Nuclear Medicine Residency Program (2011 - Present)

Honors & Awards


  • Travel Grant, American College of Nuclear Physicians (2007)
  • Alavi-Mandell Award, Society of Nuclear Medicine and Molecular Imaging (2008)
  • Best Essay Award, American College of Nuclear Physicians (2008)
  • Clinician Educator of the Year Award, Stanford Radiology Residency Program (2008)
  • Alavi-Mandell Award, Society of Nuclear Medicine and Molecular Imaging (2009)
  • Developmental Cancer Research Award, Stanford Cancer Center (2009)
  • Image of the Year, Society of Nuclear Medicine and Molecular Imaging (2009)
  • Norman D. Poe Memorial Scholarship Award, Western Regional Society of Nuclear Medicine (2009)
  • Alavi-Mandell Award, Society of Nuclear Medicine and Molecular Imaging (2010)
  • Best Essay Award, American College of Nuclear Medicine (2010)
  • Best Essay Award, American College of Nuclear Medicine (2011)
  • Nuclear Oncology Council Young Investigator Award - Second Place, Society of Nuclear Medicine and Molecular Imaging (2011)
  • Radiopharmaceutical Sciences Council Travel Grant, Society of Nuclear Medicine and Molecular Imaging (2011)
  • Young Professionals Tournament - First Place, SNMMI & Chinese Society of Nuclear Medicine Joint Meeting (2011)
  • Fellow Award, American College of Nuclear Medicine (2013)
  • Norman D. Poe Memorial Scholarship Award, Western Regional Society of Nuclear Medicine (2014)
  • Norman D. Poe Memorial Scholarship Award, Western Regional Society of Nuclear Medicine (2015)

Boards, Advisory Committees, Professional Organizations


  • Board of Directors, American Board of Nuclear Medicine (2016 - Present)
  • Member, National Comprehensive Cancer Network Thyroid Cancer Panel (2013 - Present)
  • Board of Directors, PET Center of Excellence, Society of Nuclear Medicine and Molecular Imaging (2013 - 2015)
  • Chair, Targeted Radionuclide Therapy Working Group, Society of Nuclear Medicine and Molecular Imaging (2012 - 2016)
  • Co-Chair, Outreach Committee, Society of Nuclear Medicine and Molecular Imaging (2011 - 2016)
  • Co-Chair, PET/MRI Task Force, Society of Nuclear Medicine and Molecular Imaging (2013 - 2015)
  • Co-Chair, Oncology Working Group, Society of Nuclear Medicine and Molecular Imaging (2013 - 2014)

Professional Education


  • Residency:Stanford University Medical Center (2006) CA
  • Fellowship:Stanford University Medical Center (2007) CA
  • Board Certification: Nuclear Medicine, American Board of Nuclear Medicine (2006)
  • Residency:USC - Keck School of Medicine (2005) CA
  • Internship:Graduate Hospital (2004) PA
  • Medical Education:Carol Davila University of Medicine (2000) Romania

Research & Scholarship

Current Research and Scholarly Interests


Current research projects include:
1) PET/MRI and PET/CT for Early Cancer Detection
2) Targeted Radionuclide Therapy
3) Clinical Translation of Novel PET Radiopharmaceuticals;

Clinical Trials


  • 18F-FDOPA PET/CT or PET/MRI in Measuring Tumors in Patients With Newly-Diagnosed or Recurrent Gliomas Not Recruiting

    To evaluate 18F-FDOPA PET obtained from PET/CT or PET/MRI imaging in patients with newly diagnosed or recurrent gliomas.

    Stanford is currently not accepting patients for this trial. For more information, please contact Andrei Iagaru, 650-736-2859.

    View full details

  • A Study Comparing Treatment With 177Lu-DOTA0-Tyr3-Octreotate to Octreotide LAR in Patients With Inoperable, Progressive, Somatostatin Receptor Positive Midgut Carcinoid Tumours Not Recruiting

    The purpose of this study is to - compare Progression Free Survival (PFS) after treatment with 177Lu-DOTA0-Tyr3-Octreotate plus best supportive care (30 mg Octreotide LAR) to treatment with high dose (60 mg) Octreotide LAR in patients with inoperable, progressive (as determined by Response Evaluation Criteria in Solid Tumors [RECIST] Criteria), somatostatin receptor positive, well-differentiated neuroendocrine tumours of the small bowel (midgut carcinoid tumours). - compare the Objective Response Rate (ORR) between the two study arms - compare the Overall Survival (OS) between the two study arms - compare the Time to Tumour Progression (TTP) between the two study arms - evaluate the safety and tolerability of 177Lu-DOTA0-Tyr3-Octreotate - evaluate the health related quality of life (QoL) as measured by the European Organization for Research and Treatment of Cancer (EORTC) QLQ-G.I.NET21 questionnaire - explore the correlation of toxicity outcomes and administered radiation doses corrected for body weight and body surface area - explore the correlation of clinical efficacy outcomes with the levels of the biomarkers Chromogranin-A (CgA) in the serum and 5-Hydroxyindoleacetic acid (5-HIAA) in the urine - evaluate dosimetry, pharmacokinetics (PK) and ECG in a subset of 20 patients - explore the correlation of clinical efficacy outcomes with OctreoScan® tumour uptake score - explore the correlation of clinical outcomes with serum levels of Alkaline Phosphatase (AP)

    Stanford is currently not accepting patients for this trial. For more information, please contact Flordeliza Mendoza, 650-724-2056.

    View full details

  • Exploration of Tumor Accumulation of BAY94-9392 in Patients With Cancer Not Recruiting

    The study will be conducted as an open label, single-dose, explorative study with patients with histologically proven cancer and, preferably, tumor positive lesions in previously performed nuclear medicine imaging examinations. The investigational drug will be given as a single administration in a dose of </= 0.1 mg BAY94-9392 (300 MBq, +/- 10%). The total duration of the study for each patient will be approximately 8 days.

    Stanford is currently not accepting patients for this trial. For more information, please contact Lindee Burton, (650) 725 - 4712.

    View full details

  • 18F FPPRGD2 PET/CT or PET/MRI in Predicting Early Response in Patients With Cancer Receiving Anti-Angiogenesis Therapy Not Recruiting

    The purpose of the study is to conduct research of a new PET radiopharmaceutical in cancer patients. We will assess the uptake of this novel radiopharmaceutical in subjects with breast cancer, lung cancer, glioblastoma multiforme (GBM) and other cancers requiring antiangiogenesis treatment.

    Stanford is currently not accepting patients for this trial. For more information, please contact CCTO, 650-498-7061.

    View full details

  • 18F-FSPG PET/CT for Cancer Patients on Therapy Not Recruiting

    The goal of this Phase II clinical trial is to further evaluate the ability of 18F-FSPG to diagnose, prognosticate, and evaluate response to therapy in patients with a wide variety of metastatic cancers.

    Stanford is currently not accepting patients for this trial. For more information, please contact Phuong Pham, 650-725-9810.

    View full details

  • Yttrium Y 90 Glass Microspheres PET/CT in Imaging Patients With Liver Tumors Recruiting

    This clinical trial studies how well yttrium Y 90 glass microspheres positron emission tomography (PET)/computed tomography (CT) works in imaging patients with liver tumors. Images produced by PET/CT may provide better information about the distribution of particles, such as yttrium Y 90 glass microspheres, delivered for selective internal radiation therapy (SIRT) compared to the technetium Tc-99m albumin aggregated single photon emission computed tomography (SPECT)/CT images.

    View full details

  • Quantitative 13N-Ammonia Cardiac Rest/Stress Digital PET/CT Recruiting

    Accurate measurements from a non-invasive test like myocardial perfusion positron emission tomography/ computed tomography (PET/CT) may decrease the need for invasive procedures such as cardiac catheterization.The investigators wish to see if the measurements from cardiac catheterization can be predicted using a non-invasive 13N-NH3 digital PET/CT scan.

    View full details

  • Standard PET/CT vs. Digital PET/CT Recruiting

    The investigators wish to determine if standard and digital PET/CT scanners provide equivalent results for disease detection and diagnosis.

    View full details

  • PET/MRI Imaging of Cardiac Sarcoidosis Recruiting

    The investigators will evaluate the detection of cardiac sarcoidosis or inflammation using 18F-FSPG PET/MRI.

    View full details

  • Study for Women With Platinum Resistant Ovarian Cancer Evaluating EC145 in Combination With Doxil® (PROCEED) Not Recruiting

    The purpose of this study is to compare progression-free survival (PFS) (based upon investigator assessment using RECIST v1.1) in participants with platinum-resistant ovarian cancer who receive combination therapy with EC145 and pegylated liposomal doxorubicin (EC145+PLD) with that in participants who receive PLD and placebo.

    Stanford is currently not accepting patients for this trial. For more information, please contact Sharanya Ramasubramanian, 650-723-0622.

    View full details

  • 68Ga DOTA-TATE PET/CT in Somatostatin Receptor Positive Tumors Recruiting

    The primary objective of the study is to evaluate 68Ga-DOTA TATE PET/CT for staging and monitoring response to chemotherapy in patients with carcinoid, neuroendocrine tumors, medullary thyroid cancer and other cancers expressing somatostatin receptors.

    View full details

  • Assessing Response to Treatment in Non-Hodgkin's Lymphoma Patients Using 64Cu-DOTA-Rituximab PET/CT Not Recruiting

    Rituximab is an antibody targeted against the CD20 antigen found primarily on B-cells. Therefore, an imaging agent targeting CD20 expression may provide a more accurate evaluation of extent of disease and response to therapy than the current standard of care, F-18 FDG PET/CT. The main purpose of the study is to investigate a new PET/CT imaging probe for detection and follow up of lymphoma. Following are the 3 aims of the study: a) Phase I testing in lymphoma patients of Cu-64 labelled Rituxan for defining normal tracer biodistribution, stability, pharmacokinetics and radiation dosimetry; b) comparison of Cu-64 Rituxan and F-18 FDG PET/CT in lymphoma patients; c) evaluation of changes in uptake of Cu-64 Rituxan in response to rituximab-based treatment in CD20-positive B-cell NHL

    Stanford is currently not accepting patients for this trial. For more information, please contact Elizabeth Chitouras, (650) 498 - 0623.

    View full details

  • Comparison of PET/CT vs. PET/MRI Not Recruiting

    This clinical trial studies how well positron emission tomography (PET)/computed tomography (CT) works compared to PET/magnetic resonance imaging (MRI) in evaluating patients with cancer. PET/CT and PET/MRI may determine which scanner is best for the patient's type of cancer and other types of cancers.

    Stanford is currently not accepting patients for this trial.

    View full details

  • EAP 177Lu-DOTA0-Tyr3-Octreotate for Inoperable, SSR+, NETs, Progressive Under SSA Tx Not Recruiting

    Advanced Accelerator Applications is currently pursuing marketing approval for 177Lu-DOTA0-Tyr3-Octreotate (Lutathera). This expanded access therapeutic protocol aims to allow patients suffering from inoperable, somatostatin receptor positive, neuroendocrine tumors, progressive under somatostatin analogue therapy to access the investigational product, 177Lu-DOTA0-Tyr3-Octreotate (Lutathera), prior to its commercial availability.

    Stanford is currently not accepting patients for this trial. For more information, please contact Cancer Clinical Trials Office (CCTO), 650-498-7061.

    View full details

  • Combined F-18 NaF and F-18 FDG PET/CT for Evaluation of Malignancy Not Recruiting

    Fluorine-18 Fluorodeoxyglucose (F-18 FDG) PET/CT is established as a powerful imaging tool for cancer detection and monitoring response to therapy. Sodium Fluorine-18 (F-18) was used in the 1970s for bone scanning and can be used as a skeletal tracer in current PET/CT scanners. The combined administration of F-18 and F-18 FDG in a single PET/CT scan for cancer detection was not attempted to date. We hope to learn what is the best approach for detection of cancer and thus to improve cancer treatment.

    Stanford is currently not accepting patients for this trial. For more information, please contact Andrei Iagaru, 650-736-2859.

    View full details

  • Integrin Alpha-v-Beta and [18F]-R01-MG-F2 PET/CT in Measuring Response in Patients With Pancreatic Cancer and Healthy Volunteers Recruiting

    This pilot clinical trial studies the use of integrin alpha-v-beta [18F]-R01-MG-F2 Positron Emission Tomography/Computed Tomography (PET/CT) and Positron Emission Tomography-Magnetic Resonance Imaging in (PET/MRI) in measuring response in patients with pancreatic cancer and healthy volunteers. Integrins, such as integrin alpha-v-beta-6 (avb6), are a family of membrane receptors that are overexpressed on the cell surface of pancreatic cancers. [18F]-R01-MG-F2 targets avb6, which may improve early detection of and better stratify treatment options for patients with pancreatic cancer.

    View full details

  • Radium-223 Dichloride (BAY88-8223) in Castration-Resistant (Hormone-Refractory) Prostate Cancer Patients With Bone Metastases Not Recruiting

    This study is a prospective, interventional, open-label, multi-center early access program for the use of Ra-223 Cl2 in HRPC/CRPC patients diagnosed with symptomatic bone metastasis and to collect additional short and long term safety data on the product.

    Stanford is currently not accepting patients for this trial. For more information, please contact Elizabeth Chitouras, 650-498-0623.

    View full details

  • 68Ga-PSMA PET/CT or PET/MRI in Evaluating Patients With Recurrent Prostate Cancer Not Recruiting

    This clinical trial studies gallium-68 (68Ga)-prostate specific membrane antigen (PSMA) (gallium Ga 68-labeled PSMA ligand Glu-urea-Lys[Ahx]) positron emission tomography (PET)/computed tomography (CT) or PET/magnetic resonance imaging (MRI) in identifying prostate cancer that may have returned after a period of improvement (biochemical recurrence). 68Ga-PSMA is a radiopharmaceutical that localizes to a specific prostate cancer receptor, which can then be imaged by the PET/CT or PET/MRI scanner.

    Stanford is currently not accepting patients for this trial. For more information, please contact Pamela Gallant, 650-736-8965.

    View full details

  • Combined 18F NaF/18F FDG PET/MRI for Detection of Skeletal Metastases Not Recruiting

    This clinical trial studies sodium fluorine-18 (18F NaF)/fluorine-18 (18F) fluorodeoxyglucose (FDG) positron emission tomography (PET)/magnetic resonance imaging (MRI) in detecting skeletal metastases in patients with stage III-IV breast cancer or stage II-IV prostate cancer. 18F NaF and 18F FDG are radioactive substances that are absorbed by cancerous cells and allow for the cancer to be found using diagnostic procedures such as PET/MRI. PET/MRI is a procedure that combines detailed pictures of areas inside the body from PET and MRI scans and may help find and diagnose skeletal metastases in patients with breast or prostate cancer. It is not yet known whether 18F NaF/18F FDG PET/MRI is better than standard imaging methods in detecting skeletal metastases.

    Stanford is currently not accepting patients for this trial. For more information, please contact Risa Jiron, 650-736-1598.

    View full details

  • 68Ga-RM2 PET/MRI in Biochemically Recurrent Prostate Cancer Recruiting

    This phase II/III trial studies how well gallium (Ga) 68-labeled gastrin-releasing peptide receptor (GRPR) antagonist BAY86-7548 (68Ga-RM2) positron emission tomography (PET)/magnetic resonance imaging (MRI) works in detecting prostate cancer in patients with negative computed tomography (CT) scan and elevated prostate-specific antigen levels after treatment with surgery or radiation. PET/MRI scans take both PET and MRI images at the same time and combine them into a single picture and is used to describe information regarding the function, as well as location and size of a tumor. 68Ga-RM2, a compound made of a radioactive agent linked to a pharmacological substance that is strongly attracted by a substance made by tumor cells, to detect prostate cancer. 68Ga-RM2 PET/MRI may be able to see smaller tumors than the standard of care contrast-enhanced CT or MRI scan

    View full details

  • 68Ga-PSMA PET/MRI in Finding Tumors in Patients With Intermediate or High-Risk Prostate Cancer Undergoing Surgery Recruiting

    This phase II/III trial studies gallium 68 Ga (68Ga)-prostate-specific membrane antigen (PSMA) positron emission tomography/magnetic resonance imaging (PET/MRI) in finding tumors in patients with prostate cancer undergoing surgery that tend to spread quickly (intermediate-risk) or is likely to come back or spread (high-risk). Diagnostic procedures, such as PET/MRI, may help find and diagnose prostate cancer and find out how far the disease has spread. Radioactive drugs, such as gallium Ga 68-PSMA, binds to tumor cells that have specific receptors, and may allow doctors to see smaller tumors than the standard of care contrast-enhanced computed tomography (CT) or MRI scan.

    View full details

  • NaF/FDG PET/MRI in Measuring Response to Radium Ra 223 Dichloride in Patients With Metastatic Hormone-Resistant Prostate Cancer Not Recruiting

    This pilot clinical trial studies combined fluorine F 18 sodium fluoride (NaF)/ fludeoxyglucose F 18 (FDG) positron emission tomography (PET) and magnetic resonance imaging (MRI) in measuring response to a drug, radium Ra 223 dichloride (Ra-223), in treating patients with prostate cancer that has not responded to hormone therapy and has spread to other parts of the body. Combining NaF/FDG in a simultaneous PET/MRI scan may help doctors accurately measure how well patients respond to treatment with radium Ra 223 dichloride.

    Stanford is currently not accepting patients for this trial. For more information, please contact Omar Rutledge, 650-721-4089.

    View full details

  • 68Ga-PSMA PET/CT in Detecting Prostate Cancer Recurrence in Patients With Elevated PSA After Initial Treatment Not Recruiting

    This trial studies how well gallium Ga 68-labeled PSMA ligand Glu-urea-Lys(Ahx)-HBED-CC (68Ga-PSMA) positron emission tomography (PET)/computed tomography (CT) works in detecting prostate cancer that may have come back in patients with elevated prostate-specific antigen (PSA) after initial treatment. A rise in blood level of PSA, a protein made by the prostate, after treatment with surgery or radiation in patients without symptoms indicates that the cancer may have come back (recurrence). PSA however cannot determine whether the disease is located only in the prostate or other places in the body. 68Ga-PSMA is a radioactive tracer that targets and specifically binds to tumor cells expressing PSA making them lighting up. PET and CT make computerizing pictures of areas inside the body where the radioactive substance is lighting up. 68Ga-PSMA PET/CT may be able to see smaller tumors than standard imaging and may help determine whether prostate cancer has come back and where it is in the body.

    Stanford is currently not accepting patients for this trial. For more information, please contact Omar Rutledge, 650-721-4089.

    View full details

  • 68Ga-RM2 PET/CT in Detecting Regional Nodal and Distant Metastases in Patients With Intermediate or High-Risk Prostate Cancer Recruiting

    This phase II trial studies how well gallium Ga 68-labeled gastrin-releasing peptide receptor (GRPR) antagonist BAY86-7548 (68Ga-RM2) positron emission tomography (PET)/computed tomography (CT) works in detecting regional nodal and distant metastases in patients with intermediate or high-risk prostate cancer. 68Ga-RM2 PET/CT scan may be able to see smaller tumors than the standard of care CT or magnetic resonance imaging scan.

    View full details

  • F18 DCFPyL PET/CT in Imaging Participants With Recurrent Prostate Cancer Recruiting

    This study provides fluorine F 18 DCFPyL positron emission tomography/computed tomography (PET/CT) to participants with prostate cancer that has come back. Diagnostic procedures, such as fluorine F 18 DCFPyL PET/CT, may help find and diagnose prostate cancer and find out how far the disease has spread.

    View full details

  • Phase I Pilot Study to Evaluate the Prognostic Value of Perfusion CT for Primary Cervical Cancer Not Recruiting

    The investigators hope to learn whether perfusion CT is a useful way to assess primary cervical tumor microenvironment and whether there is a relationship between pretreatment perfusion CT measurements and primary cervical tumor size, lymph node involvement (as assessed by standard of care pretreatment fludeoxyglucose Positron emission tomography/CT (FDG-PET/CT)), and treatment response (as assessed by standard of care 3-month post-therapy FDG-PET/CT).

    Stanford is currently not accepting patients for this trial. For more information, please contact Melissa Usoz, 650-723-8843.

    View full details

  • 68Ga-DOTA-Bombesin PET/MRI in Imaging Patients With Prostate Cancer Not Recruiting

    This clinical trial studies the use of gallium-68 (68Ga)-DOTA-Bombesin as the imaging agent for positron emission tomography (PET)/magnetic resonance imaging (MRI), collectively PET-MRI, in patients with prostate cancer. PET uses a radioactive substance called 68Ga-DOTA-Bombesin, which attaches to tumor cells with specific receptors on their surfaces. The PET scanner takes pictures that capture where the radioactive drug is "lighting up" and attaching to tumor cells, which may help doctors recognize differences between tumor and healthy prostate tissue. MRI uses radio waves and a magnet to make a picture of areas inside the body. Using 68Ga-DOTA-Bombesin in diagnostic procedures, such as PET/MRI, may allow doctors to identify smaller tumors than standard imaging.

    Stanford is currently not accepting patients for this trial. For more information, please contact Phuong Pham, 650-725-9810.

    View full details

Teaching

2018-19 Courses


Stanford Advisees


Publications

All Publications


  • Clinical Evaluation of Ga-68-PSMA-Iota Iota and Ga-68-RM2 PET Images Reconstructed With an Improved Scatter Correction Algorithm AMERICAN JOURNAL OF ROENTGENOLOGY Wangerin, K. A., Baratto, L., Khalighi, M., Hope, T. A., Gulaka, P. K., Deller, T. W., Iagaru, A. H. 2018; 211 (3): 655–60

    Abstract

    Gallium-68-labeled radiopharmaceuticals pose a challenge for scatter estimation because their targeted nature can produce high contrast in these regions of the kidneys and bladder. Even small errors in the scatter estimate can result in washout artifacts. Administration of diuretics can reduce these artifacts, but they may result in adverse events. Here, we investigated the ability of algorithmic modifications to mitigate washout artifacts and eliminate the need for diuretics or other interventions.The model-based scatter algorithm was modified to account for PET/MRI scanner geometry and challenges of non-FDG tracers. Fifty-three clinical 68Ga-RM2 and 68Ga-PSMA-11 whole-body images were reconstructed using the baseline scatter algorithm. For comparison, reconstruction was also processed with modified sampling in the single-scatter estimation and with an offset in the scatter tail-scaling process. None of the patients received furosemide to attempt to decrease the accumulation of radiopharmaceuticals in the bladder. The images were scored independently by three blinded reviewers using the 5-point Likert scale.The scatter algorithm improvements significantly decreased or completely eliminated the washout artifacts. When comparing the baseline and most improved algorithm, the image quality increased and image artifacts were reduced for both 68Ga-RM2 and for 68Ga-PSMA-11 in the kidneys and bladder regions.Image reconstruction with the improved scatter correction algorithm mitigated washout artifacts and recovered diagnostic image quality in 68Ga PET, indicating that the use of diuretics may be avoided.

    View details for DOI 10.2214/AJR.17.19356

    View details for Web of Science ID 000442411600033

    View details for PubMedID 29873506

  • Prostate Cancer Theranostics Targeting Gastrin-Releasing Peptide Receptors. Molecular imaging and biology : MIB : the official publication of the Academy of Molecular Imaging Baratto, L., Jadvar, H., Iagaru, A. 2018; 20 (4): 501–9

    Abstract

    Gastrin-releasing peptide receptors (GRPRs), part of the bombesin (BBN) family, are aberrantly overexpressed in many cancers, including those of the breast, prostate, pancreas, and lung, and therefore present an attractive target for cancer diagnosis and therapy. Different bombesin analogs have been radiolabeled and used for imaging diagnosis, staging, evaluation of biochemical recurrence, and assessment of metastatic disease in patients with prostate cancer. Recently, interest has shifted from BBN-like receptor agonists to antagonists, because the latter does not induce adverse effects and demonstrate superior in vivo pharmacokinetics. We review the preclinical and clinical literatures on the use of GRPRs as targets for imaging and therapy of prostate cancer, with a focus on the newer developments and theranostic potential of GRPR peptides.

    View details for DOI 10.1007/s11307-017-1151-1

    View details for PubMedID 29256046

  • Combined 68Ga-NOTA-PRGD2 and 18F-FDG PET/CT Can Discriminate Uncommon Meningioma Mimicking High-Grade Glioma. Clinical nuclear medicine Li, D., Zhang, J., Ji, N., Zhao, X., Zheng, K., Qiao, Z., Li, F., Lang, L., Iagaru, A., Niu, G., Zhu, Z., Chen, X. 2018

    Abstract

    OBJECTIVES: Uncommon pathological subtypes of meningioma may present with severe peritumoral brain edema and mimic high-grade glioma (HGG). In a prospective cohort study of Ga-NOTA-PRGD2 PET/CT to evaluate glioma, we occasionally observed that a combination of Ga-NOTA-PRGD2 and F-FDG was able to differentiate these 2 lesion types.METHODS: From 2013 to 2016, 21 patients suspected of HGG by MRI were recruited for evaluation using Ga-NOTA-PRGD2 PET/CT. Brain F-FDG PET/CT was performed within 3 days for comparison, and the tumor was surgically removed. The PET results were compared with integrin alphavbeta3 expression and microvascular density quantification of tumor samples.RESULTS: Of the 21 recruited patients, 5 patients were finally pathologically diagnosed as uncommon meningioma with severe peritumoral brain edema, including chordoid meningioma (n = 1), angiomatous meningioma (n = 1), and mixed angiomatous and microcystic meningioma (n = 3). Sixteen were diagnosed as HGG. All the meningioma lesions (n = 5) exhibited intense and homogeneous Ga-NOTA-PRGD2 uptake with higher SUVmax on Ga-NOTA-PRGD2 PET (1.64-7.86; mean ± SD, 4.23 ± 2.48) than the HGG lesions (0.81-2.99; mean ± SD, 1.57 ± 0.33; P = 0.0047). Moreover, the uptake ratios of Ga-NOTA-PRGD2 over F-FDG, normalized as lg100 * SUVmax (RGD / FDG), in the uncommon meningiomas were significantly higher than those in HGG (1.87 ± 1.36 vs 1.04 ± 0.87, P = 0.0001). A cutoff value of 1.58 was able to discriminate between these lesion types. There were positive correlations among the expression level of integrin alphavbeta3, microvascular density, and the tumor-to-background ratio derived from Ga-NOTA-PRGD2 PET (P < 0.05).CONCLUSIONS: This study reveals a specific imaging pattern of uncommon meningioma mimicking HGG, in which Ga-NOTA-PRGD2 PET provided added value to F-FDG PET.

    View details for DOI 10.1097/RLU.0000000000002233

    View details for PubMedID 30052597

  • 18F-florbetaben whole-body PET/MRI for evaluation of systemic amyloid deposition. EJNMMI research Baratto, L., Park, S. Y., Hatami, N., Gulaka, P., Vasanawala, S., Yohannan, T. K., Herfkens, R., Witteles, R., Iagaru, A. 2018; 8 (1): 66

    Abstract

    BACKGROUND: Florbetaben, a 18F-labeled stilbene derivative (Neuraceq, formerly known as BAY-949172), is a diagnostic radiopharmaceutical developed to visualize beta-amyloid plaques in the brain. Here, we report a pilot study evaluating patients with suspected cardiac amyloidosis for systemic extent of disease.METHODS: We prospectively enrolled nine patients, 61-86year old (mean±SD 69.4±8.6), referred from the cardiac amyloid clinic. First, dynamic imaging of the heart was acquired immediately after injection of 222-318.2MBq (mean±SD 270.1±33.3) of 18F-florbetaben using the GE SIGNA PET/MRI. This was followed by a whole-body PET/MRI scan 60-146.4min (mean±SD 98±33.4) after injection. Cardiac MRI sequences included ECG-triggered cine SSFP, T2-weighted, and late gadolinium-enhanced imaging. Whole-body MRI sequences included MRAC and axial T1-weighted imaging.RESULTS: High early uptake and delayed high uptake in the left ventricle correlated with amyloid deposition in five patients, while low uptake on early and delayed cardiac imaging was noted in four patients. Cardiac function measurements were successfully obtained in all participants. Areas of increased abnormal 18F-florbetaben accumulation were noted on delayed whole-body imaging in the bone marrow (seven patients), stomach (diffuse in five patients and focal in one patient), brain (five patients), salivary glands (three patients), tongue (three patients), spleen (three patients), skeletal muscles (three patients), ocular muscles (two patients), thyroid (two patients), pleura (two patients), kidneys (two patients), and lungs (two patients).CONCLUSIONS: Whole-body 18F-florbetaben PET/MRI is promising for localization of systemic amyloid deposition. This technique may provide important structural and functional information regarding the organs involved by disease, with potential to guide biopsy and evaluate response to treatment.TRIAL REGISTRATION: Clinicaltrials.gov registration: NCT03119558 .

    View details for DOI 10.1186/s13550-018-0425-1

    View details for PubMedID 30043115

  • Nuclear Medicine Imaging Techniques for Detection of Skeletal Metastases in Breast Cancer PET CLINICS Iagaru, A., Minamimoto, R. 2018; 13 (3): 383-+
  • Gallium 68 PSMA-11 PET/MR Imaging in Patients with Intermediate- or High-Risk Prostate Cancer. Radiology Park, S. Y., Zacharias, C., Harrison, C., Fan, R. E., Kunder, C., Hatami, N., Giesel, F., Ghanouni, P., Daniel, B., Loening, A. M., Sonn, G. A., Iagaru, A. 2018: 172232

    Abstract

    Purpose To report the results of dual-time-point gallium 68 (68Ga) prostate-specific membrane antigen (PSMA)-11 positron emission tomography (PET)/magnetic resonance (MR) imaging prior to prostatectomy in patients with intermediate- or high-risk cancer. Materials and Methods Thirty-three men who underwent conventional imaging as clinically indicated and who were scheduled for radical prostatectomy with pelvic lymph node dissection were recruited for this study. A mean dose of 4.1 mCi ± 0.7 (151.7 MBq ± 25.9) of 68Ga-PSMA-11 was administered. Whole-body images were acquired starting 41-61 minutes after injection by using a GE SIGNA PET/MR imaging unit, followed by an additional pelvic PET/MR imaging acquisition at 87-125 minutes after injection. PET/MR imaging findings were compared with findings at multiparametric MR imaging (including diffusion-weighted imaging, T2-weighted imaging, and dynamic contrast material-enhanced imaging) and were correlated with results of final whole-mount pathologic examination and pelvic nodal dissection to yield sensitivity and specificity. Dual-time-point metabolic parameters (eg, maximum standardized uptake value [SUVmax]) were compared by using a paired t test and were correlated with clinical and histopathologic variables including prostate-specific antigen level, Gleason score, and tumor volume. Results Prostate cancer was seen at 68Ga-PSMA-11 PET in all 33 patients, whereas multiparametric MR imaging depicted Prostate Imaging Reporting and Data System (PI-RADS) 4 or 5 lesions in 26 patients and PI-RADS 3 lesions in four patients. Focal uptake was seen in the pelvic lymph nodes in five patients. Pathologic examination confirmed prostate cancer in all patients, as well as nodal metastasis in three. All patients with normal pelvic nodes in PET/MR imaging had no metastases at pathologic examination. The accumulation of 68Ga-PSMA-11 increased at later acquisition times, with higher mean SUVmax (15.3 vs 12.3, P < .001). One additional prostate cancer was identified only at delayed imaging. Conclusion This study found that 68Ga-PSMA-11 PET can be used to identify prostate cancer, while MR imaging provides detailed anatomic guidance. Hence, 68Ga-PSMA-11 PET/MR imaging provides valuable diagnostic information and may inform the need for and extent of pelvic node dissection.

    View details for DOI 10.1148/radiol.2018172232

    View details for PubMedID 29786490

  • Initial experience with a SiPM-based PET/CT scanner: influence of acquisition time on image quality EJNMMI PHYSICS Sonni, I., Baratto, L., Park, S., Hatami, N., Srinivas, S., Davidzon, G., Gambhir, S., Iagaru, A. 2018; 5: 9

    Abstract

    A newly introduced PET/CT scanner (Discovery Meaningful Insights-DMI, GE Healthcare) includes the silicon photomultiplier (SiPM) with time-of-flight (TOF) technology first used in the GE SIGNA PET/MRI. In this study, we investigated the impact of various acquisition times on image quality using this SiPM-based PET/CT.We reviewed data from 58 participants with cancer who were scanned using the DMI PET/CT scanner. The administered dosages ranged 295.3-429.9 MBq (mean ± SD 356.3 ± 37.4) and imaging started at 71-142 min (mean ± SD 101.41 ± 17.52) after administration of the radiopharmaceutical. The patients' BMI ranged 19.79-46.16 (mean ± SD 26.55 ± 5.53). We retrospectively reconstructed the raw TOF data at 30, 60, 90, and 120 s/bed and at the standard image acquisition time per clinical protocol (180 or 210 s/bed depending on BMI). Each reconstruction was reviewed blindly by two nuclear medicine physicians and scored 1-5 (1-poor, 5-excellent quality). The liver signal-to-noise ratio (SNR) was used as a quantitative measure of image quality.The average scores ± SD of the readers were 2.61 ± 0.83, 3.70 ± 0.92, 4.36 ± 0.82, 4.82 ± 0.39, and 4.91 ± 0.91 for the 30, 60, 90, and 120 s/bed and at standard acquisition time, respectively. Inter-reader agreement on image quality assessment was good, with a weighted kappa of 0.80 (95% CI 0.72-0.81). In the evaluation of the effects of time per bed acquisition on semi-quantitative measurements, we found that the only time point significantly different from the standard time were 30 and 60 s (both with P < 0.001). The effects of dose and BMI were not statistically significant (P = 0.195 and 0.098, respectively). There was a significant positive effect of time on SNR (P < 0.001), as well as a significant negative effect of weight (P < 0.001).Our results suggest that despite significant delays from injection to imaging (due to comparison with standard PET/CT) compared to standard clinical operations and even in a population with average BMI > 25, images can be acquired as fast as 90 s/bed using the SiPM PET/CT and still result in very good image quality (average score > 4).

    View details for DOI 10.1186/s40658-018-0207-x

    View details for Web of Science ID 000430571900001

    View details for PubMedID 29666972

    View details for PubMedCentralID PMC5904089

  • Radium-223 Safety, Efficacy, and Concurrent Use with Abiraterone or Enzalutamide: First US Experience from an Expanded Access Program ONCOLOGIST Sartor, O., Vogelzang, N. J., Sweeney, C., Fernandez, D. C., Almeida, F., Iagaru, A., Brown, A., Smith, M. R., Agrawal, M., Dicker, A. P., Garcia, J. A., Lutzky, J., Wong, Y., Petrenciuc, O., Gratt, J., Shore, N. D., Morris, M. J., US Expanded Access Program Investi 2018; 23 (2): 193–202

    Abstract

    In the phase III ALSYMPCA trial, metastatic castration-resistant prostate cancer (mCRPC) patients had few prior life-prolonging therapies. Following ALSYMPCA, which demonstrated radium-223 survival benefit, and before radium-223 U.S. commercial availability, an expanded access program (EAP) providing early-access radium-223 allowed life-prolonging therapies in current use.This phase II, open-label, single-arm, multicenter U.S. EAP (NCT01516762) enrolled patients with symptomatic mCRPC, ≥2 bone metastases, and no lung, liver, or brain metastases. Patients received radium-223 55 kBq/kg intravenously every 4 weeks × 6. Primary outcomes were acute and long-term safety. Additional analyses were done by number of radium-223 injections, and prior or concomitant abiraterone or enzalutamide use.Of 252 patients, 184 received radium-223: 165/184 (90%) had Eastern Cooperative Oncology Group (ECOG) performance status 0-1; 183 (99%) had prior systemic anticancer therapy. Treatment-related adverse events occurred in 93/184 (51%) patients during treatment and 11 (6%) during follow-up. Median overall survival was 17 months, with 134/184 (73%) patients censored because of short follow-up due to radium-223 approval. In post hoc analyses, patients with ≥3 prior anticancer medications, baseline ECOG performance status ≥2, and lower baseline hemoglobin were less likely to receive 5-6 radium-223 injections and unlikely to benefit from radium-223. Radium-223 was well tolerated regardless of concurrent or prior abiraterone or enzalutamide.Radium-223 was well tolerated, with no new safety concerns; safety was maintained with abiraterone or enzalutamide. Patients with more advanced disease were less likely to benefit from radium-223. Clinicians should consider baseline characteristics and therapy sequence for greatest clinical value.In this phase II U.S. expanded access program, radium-223 was well tolerated, with a median overall survival of 17 months in metastatic castration-resistant prostate cancer patients. In post hoc analyses, radium-223 was safe regardless of concurrent abiraterone or enzalutamide, and median overall survival appeared longer when radium-223 was used earlier in patients with less prior treatment. Patients with more advanced disease were less likely to benefit from radium-223. Clinicians should consider baseline clinical characteristics and therapy sequence to provide the greatest clinical value to patients.

    View details for DOI 10.1634/theoncologist.2017-0413

    View details for Web of Science ID 000425135900012

    View details for PubMedID 29183960

    View details for PubMedCentralID PMC5813754

  • Quantitative imaging of bone-cartilage interactions in ACL-injured patients with PET-MRI. Osteoarthritis and cartilage Kogan, F., Fan, A. P., Monu, U., Iagaru, A., Hargreaves, B. A., Gold, G. E. 2018

    Abstract

    To investigate changes in bone metabolism by positron emission tomography (PET), as well as spatial relationships between bone metabolism and magnetic resonance imaging (MRI) quantitative markers of early cartilage degradation, in anterior cruciate ligament (ACL)-reconstructed knees.Both knees of 15 participants with unilateral reconstructed ACL tears and unaffected contralateral knees were scanned using a simultaneous 3.0T PET-MRI system following injection of 18F-sodium fluoride (18F-NaF). The maximum pixel standardized uptake value (SUVmax) in the subchondral bone and the average T2 relaxation time in cartilage were measured in each knee in eight knee compartments. We tested differences in SUVmax and cartilage T2 relaxation times between the ACL-injured knee and the contralateral control knee as well as spatial relationships between these bone and cartilage changes.Significantly increased subchondral bone 18F-NaF SUVmax and cartilage T2 times were observed in the ACL-reconstructed knees (median [inter-quartile-range (IQR)]: 5.0 [5.8], 36.8 [3.6] ms) compared to the contralateral knees (median [IQR]: 1.9 [1.4], 34.4 [3.8] ms). A spatial relationship between the two markers was also seen. Using the contralateral knee as a control, we observed a significant correlation of r = 0.59 between the difference in subchondral bone SUVmax (between injured and contralateral knees) and the adjacent cartilage T2 (between the two knees) [P < 0.001], with a slope of 0.49 ms/a.u. This correlation and slope were higher in deep layers (r = 0.73, slope = 0.60 ms/a.u.) of cartilage compared to superficial layers (r = 0.40, slope = 0.43 ms/a.u.).18F-NaF PET-MR imaging enables detection of increased subchondral bone metabolism in ACL-reconstructed knees and may serve as an important marker of early osteoarthritis (OA) progression. Spatial relationships observed between early OA changes across bone and cartilage support the need to study whole-joint disease mechanisms in OA.

    View details for DOI 10.1016/j.joca.2018.04.001

    View details for PubMedID 29656143

  • Comparison Between Different PET and CT-Based Imaging Interpretation Criteria at Interim Imaging in Patients With Diffuse Large B-Cell Lymphoma CLINICAL NUCLEAR MEDICINE Baratto, L., Davidzon, G. A., Moghbel, M., Hatami, N., Iagaru, A., Mittra, E. S. 2018; 43 (1): 1–8

    Abstract

    To evaluate the predictive value of interim PET (iPET) in diffuse large B-cell lymphoma (DLBCL) using 5 different imaging interpretation criteria: Deauville 5-point scale criteria, International Harmonization Project (IHP) criteria, Response Evaluation Criteria In Solid Tumors (RECIST) 1.1, European Organization for Research and Treatment of Cancer, and PET Response Criteria in Solid Tumors (PERCIST) 1.0.We retrospectively reviewed records from 38 patients with DLBCL who underwent baseline and iPET at our institution. Imaging was interpreted according to the previously mentioned criteria. Results were correlated with end-of-treatment response, based on reports at the end of treatment radiological examinations, overall survival (OS), and progression-free survival (PFS) to assess and compare the predictive value of iPET according to each criterion. We also evaluated the concordance between different criteria.The Deauville and PERCIST criteria were the most reliable for predicting end-of-treatment response, reporting an accuracy of 81.6%. They also correlated with OS and PFS (P = 0.0004 and P = 0.0001, and P = 0.0007 and P = 0.0002, for Deauville and PERCIST, respectively). Interim PET according to European Organization for Research and Treatment of Cancer also predicted the end-of-treatment response with an accuracy of 73.7% and had a significant correlation with OS (P = 0.007) and PFS (P = 0.007). In contrast, the IHP criteria and RECIST did not predict outcomes: the accuracy for end-of-treatment response was 34.2% and 36.8%, respectively, with no significant correlation with OS or PFS (P = 0.182 and P = 0.357, and P = 0.341 and P = 0.215, for OS and PFS, respectively).The predictive value of iPET in DLBCL patients is most reliable using the Deauville and PERCIST criteria. Criteria that rely on anatomical characteristics, namely, RECIST and IHP criteria, are less accurate in predicting patient outcomes in DLBCL.

    View details for DOI 10.1097/RLU.0000000000001880

    View details for Web of Science ID 000418319900001

    View details for PubMedID 29076913

  • Standard OSEM vs. regularized PET image reconstruction: qualitative and quantitative comparison using phantom data and various clinical radiopharmaceuticals AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING Lantos, J., Mittra, E. S., Levin, C. S., Iagaru, A. 2018; 8 (2): 110–18

    Abstract

    We investigated the block sequential regularized expectation maximization (BSREM) algorithm. ACR phantom measurements with different count statistics and 60 PET/CT research scans from the GE Discovery 600 and 690 scanners were reconstructed using BSREM and the standard-of-care OSEM algorithm. Hot concentration recovery and cold contrast recovery were measured from the phantom data. Two experienced nuclear medicine physicians reviewed the clinical images blindly. Liver SNR liver and SUVmax of the smallest lesion detected in each patient were also measured. The relationship between the maximum and mean hot concentration recovery remained monotonic below 1.5 maximum concentration recovery. The mean cold contrast recovery remained stable even for decreasing statistics with a highest absolute difference of 4% in air and 2% in bone for each reconstruction method. The D600 images resulted in an average 30% higher SNR than the D690 data for BSREM; there was no difference in SNR results between the two scanners with OSEM. The small lesion SUVmax values on the BSREM images with β of 250, 350 and 450, respectively were on average 80%, 60% and 43% (D690) and 42%, 29%, and 21% (D600) higher than in the case of OSEM. In conclusion, BSREM can outperform OSEM in terms of contrast recovery and organ uniformity over a range of PET tracers, but a task dependent regularization strength parameter (beta) selection may be necessary. To avoid image noise and artifacts, our results suggest that using higher beta values (at least 350) may be appropriate, especially if the data has low count statistics.

    View details for Web of Science ID 000431597200004

    View details for PubMedID 29755844

    View details for PubMedCentralID PMC5944826

  • Anaplastic Thyroid Cancer With Extensive Skeletal Muscle Metastases on 18F-FDG PET/CT. Clinical nuclear medicine Yurkiewicz, I. R., Ganjoo, K. N., Iagaru, A. 2018

    Abstract

    A 61-year-old woman with newly diagnosed anaplastic thyroid cancer and known metastases to the brain, lungs, and adrenal glands complained of groin muscle pain. F-FDG PET/CT was performed to assess for extent of disease and showed extensive hypermetabolic lesions throughout the skeletal musculature concerning for metastatic disease. As this would be a very rare presentation for anaplastic thyroid carcinoma, a biopsy of the left gluteal muscle was conducted. Pathology demonstrated anaplastic thyroid carcinoma, metastatic to skeletal muscle.

    View details for DOI 10.1097/RLU.0000000000001968

    View details for PubMedID 29356736

  • Incidental extra-cardiac findings on (NH3)-N-13 myocardial perfusion PET/CT JOURNAL OF NUCLEAR CARDIOLOGY Iagaru, A. 2017; 24 (6): 1869–70

    View details for DOI 10.1007/s12350-017-0879-y

    View details for Web of Science ID 000416345300010

    View details for PubMedID 28390040

  • Ga-68-PSMA-11 PET/CT in Newly Diagnosed Carcinoma of the Prostate: Correlation of Intraprostatic PSMA Uptake with Several Clinical Parameters JOURNAL OF NUCLEAR MEDICINE Koerber, S. A., Utzinger, M. T., Kratochwil, C., Kesch, C., Haefner, M. F., Katayama, S., Mier, W., Iagaru, A. H., Herfarth, K., Haberkorn, U., Debus, J., Giesel, F. L. 2017; 58 (12): 1943–48

    Abstract

    68Ga-prostate-specific membrane antigen (PSMA) PET/CT is a promising diagnostic tool for patients with prostate cancer. Our study evaluates SUVs in benign prostate tissue and malignant, intraprostatic tumor lesions and correlates results with several clinical parameters. Methods: One hundred four men with newly diagnosed prostate carcinoma and no previous therapy were included in this study. SUVmax was measured and correlated with biopsy findings and MRI. Afterward, data were compared with current prostate-specific antigen (PSA) values, Gleason score (GS), and d'Amico risk classification. Results: In this investigation a mean SUVmax of 1.88 ± 0.44 in healthy prostate tissue compared with 10.77 ± 8.45 in malignant prostate lesions (P < 0.001) was observed. Patients with higher PSA, higher GS, and higher d'Amico risk score had statistically significant higher PSMA uptake on PET/CT (P < 0.001 each). Conclusion: PSMA PET/CT is well suited for detecting the intraprostatic malignant lesion in patients with newly diagnosed prostate cancer. Our findings indicate a significant correlation of PSMA uptake with PSA, GS, and risk classification according to the d'Amico scale.

    View details for DOI 10.2967/jnumed.117.190314

    View details for Web of Science ID 000416804900022

    View details for PubMedID 28619734

  • Carcinoid Syndrome Complicating a Pancreatic Neuroendocrine Tumor A Case Report PANCREAS Gerson, J. N., Witteles, R. M., Chang, D. T., Beygui, R. E., Iagaru, A. H., Kunz, P. L. 2017; 46 (10): 1381–85

    Abstract

    Neuroendocrine tumors (NETs) comprise a heterogeneous group of neoplasms. These tumors can produce a wide variety of hormones that can lead to syndromes of hormone excess, such as carcinoid syndrome. We present the case of a 47-year-old man who presented with right upper quadrant abdominal pain and emesis. He was found to have metastatic pancreatic NET and was treated with systemic chemotherapy. He subsequently developed dyspnea on exertion and was found to have severe right-sided heart disease secondary to elevated levels of serum serotonin. He was successfully treated with surgical tricuspid and pulmonic valve replacement. True carcinoid syndrome with pancreatic NETs is rare, but, as a treatable complication of the disease, is an important entity for which oncologists should be familiar.

    View details for DOI 10.1097/MPA.0000000000000932

    View details for Web of Science ID 000414520800023

    View details for PubMedID 29040196

  • Semiquantitative Assessment of F-18-FDG Uptake in the Normal Skeleton: Comparison Between PET/CT and Time-of-Flight Simultaneous PET/MRI AMERICAN JOURNAL OF ROENTGENOLOGY Minamimoto, R., Xu, G., Jamali, M., Holley, D., Barkhodari, A., Zaharchuk, G., lagaru, A. 2017; 209 (5): 1136–42

    Abstract

    Differences in the attenuation correction methods used in PET/CT scanners versus the newly introduced whole-body simultaneous PET/MRI reportedly result in differences in standardized uptake values (SUVs) in the normal skeleton. The aim of the study was to compare the semiquantitative FDG uptake in the normal skeleton using time-of-flight (TOF) PET/MRI versus PET/CT with and without TOF.Participants received a single FDG injection and underwent non-TOF and TOF PET/CT (n = 23) or non-TOF PET/CT and TOF PET/MRI (n = 50). Mean SUV (SUVmean) and maximum SUV (SUVmax) were measured from all PET scans for nine normal regions of the skeleton. Pearson correlation coefficients (r) were used to evaluate the SUVmax and SUVmean of normal skeleton between non-TOF and TOF PET/CT, as well as between non-TOF PET/CT and TOF PET/MRI. In addition, percentage differences in SUVmax and SUVmean of the normal skeleton between non-TOF and TOF PET/CT and between non-TOF PET/CT and TOF PET/MRI were evaluated.The SUVmax and SUVmean in the normal skeleton significantly increased between non-TOF and TOF PET/CT, but they significantly decreased between non-TOF PET/CT and TOF PET/MRI. The SUVmax and SUVmean in normal skeleton showed good correlation between non-TOF PET/CT and TOF PET/MRI (SUVmax, r = 0.88; SUVmean, r = 0.91) and showed a similar trend between non-TOF and TOF PET/CT (SUVmax, r = 0.88; SUVmean, r = 0.94).In the normal skeleton, SUVmax and SUVmean showed high correlations between PET/MRI and PET/CT. The MRI attenuation correction used in TOF PET/MRI provides reliable semiquantitative measurements in the normal skeleton.

    View details for DOI 10.2214/AJR.17.18044

    View details for Web of Science ID 000413811300039

    View details for PubMedID 28777652

  • Dual-Integrin alpha(v)beta(3)-and Gastrin-Releasing Peptide Receptor-Targeting PET Radiotracer (Ga-68-BBN-RGD) JOURNAL OF NUCLEAR MEDICINE Iagaru, A. 2017; 58 (10): 1706

    View details for DOI 10.2967/jnumed.117.191478

    View details for Web of Science ID 000411985900032

    View details for PubMedID 28280224

  • Will GRPR Compete with PSMA as a Target in Prostate Cancer? Journal of nuclear medicine : official publication, Society of Nuclear Medicine Iagaru, A. 2017

    View details for DOI 10.2967/jnumed.117.198192

    View details for PubMedID 28970333

  • Initial Experience With Simultaneous 18F-FDG PET/MRI in the Evaluation of Cardiac Sarcoidosis and Myocarditis. Clinical nuclear medicine Hanneman, K., Kadoch, M., Guo, H. H., Jamali, M., Quon, A., Iagaru, A., Herfkens, R. 2017; 42 (7): e328-e334

    Abstract

    The purpose of this study was to compare combined PET/MRI with PET/CT and cardiac MRI in the evaluation of cardiac sarcoidosis and myocarditis.Ten patients (4 men and 6 women; 56.1 ± 9.6 years old) were prospectively enrolled for evaluation of suspected cardiac sarcoidosis or myocarditis. Written informed consent was obtained. Following administration of 9.9 ± 0.9 mCi F-FDG, patients underwent standard cardiac PET/CT followed by combined PET/MRI using a simultaneous 3-T scanner. Cardiac MRI sequences included ECG-triggered cine SSFP, T2-weighted, and late gadolinium-enhanced imaging. Myocardial involvement was assessed with separate analysis of combined PET/MRI, PET/CT, and cardiac MRI data using dedicated postprocessing software. Estimates of radiation dose were derived from the applied doses of F-FDG and CT protocol parameters.Imaging was acquired with a delay from F-FDG injection of 90.2 ± 27.4 minutes for PET/CT and 207.7 ± 40.3 minutes for PET/MRI. Total scan time for PET/MRI was significantly longer than for PET/CT (81.4 ± 14.8 vs 12.0 minutes, P < 0.001). Total effective radiation dose was significantly lower for PET/MRI compared with PET/CT (6.9 ± 0.6 vs 8.2 ± 1.1 mSv, P = 0.007). There was no significant difference in the number of positive cases identified between combined PET/MRI (n = 10 [100%]), PET/CT (n = 6 [60%]), and cardiac MRI (n = 8 [80%]), P = 0.091.Simultaneous cardiac PET/MRI is feasible in the evaluation of cardiac sarcoidosis and myocarditis achieving diagnostic image quality.

    View details for DOI 10.1097/RLU.0000000000001669

    View details for PubMedID 28418949

  • Clinical evaluation of TOF versus non-TOF on PET artifacts in simultaneous PET/MR: a dual centre experience. European journal of nuclear medicine and molecular imaging Ter Voert, E. E., Veit-Haibach, P., Ahn, S., Wiesinger, F., Khalighi, M. M., Levin, C. S., Iagaru, A. H., Zaharchuk, G., Huellner, M., Delso, G. 2017; 44 (7): 1223-1233

    Abstract

    Our objective was to determine clinically the value of time-of-flight (TOF) information in reducing PET artifacts and improving PET image quality and accuracy in simultaneous TOF PET/MR scanning.A total 65 patients who underwent a comparative scan in a simultaneous TOF PET/MR scanner were included. TOF and non-TOF PET images were reconstructed, clinically examined, compared and scored. PET imaging artifacts were categorized as large or small implant-related artifacts, as dental implant-related artifacts, and as implant-unrelated artifacts. Differences in image quality, especially those related to (implant) artifacts, were assessed using a scale ranging from 0 (no artifact) to 4 (severe artifact).A total of 87 image artifacts were found and evaluated. Four patients had large and eight patients small implant-related artifacts, 27 patients had dental implants/fillings, and 48 patients had implant-unrelated artifacts. The average score was 1.14 ± 0.82 for non-TOF PET images and 0.53 ± 0.66 for TOF images (p < 0.01) indicating that artifacts were less noticeable when TOF information was included.Our study indicates that PET image artifacts are significantly mitigated with integration of TOF information in simultaneous PET/MR. The impact is predominantly seen in patients with significant artifacts due to metal implants.

    View details for DOI 10.1007/s00259-017-3619-2

    View details for PubMedID 28124091

  • Intragastric meal distribution during routine gastric emptying scintigraphy: Validation of visual qualitative and semi-automated quantitative analysis Yu, D., Orthey, P., Ramsey, F., Bennett, P., Diaz, J., Fragomeni, R., Iagaru, A., Parkman, H., Maurer, A. SOC NUCLEAR MEDICINE INC. 2017
  • Ga-68 PSMA 11 PET/MRI in Patients with Newly Diagnosed Intermediate and High-Risk Prostate Cancers Zacharias, C., Harrison, C., Ghanouni, P., Sonn, G., Iagaru, A. SOC NUCLEAR MEDICINE INC. 2017
  • Imaging of Prostate Cancer Using Gallium-68-Labeled Bombesin. PET clinics Sonni, I., Baratto, L., Iagaru, A. 2017; 12 (2): 159-171

    Abstract

    Nuclear medicine can play an important role in evaluating prostate cancer combining anatomical and functional information with hybrid techniques. Various PET radiopharmaceuticals have been used for targeting specific biological markers in prostate cancer. Research is ideally oriented towards the development of radiopharmaceuticals targeting antigens overexpressed in prostate cancer, as opposed to normal prostate tissue. In this regard, gastrin-releasing peptide receptors (GRPR) are excellent candidates. Bombesin analogues targeting the GRPR have been investigated. Gallium-68 ((68)Ga) is an interesting PET radioisotope due to several advantages, such as availability, ease of radiochemistry, half-life, and costs. The focus of this review is on (68)Ga-labeled bombesin analogues in prostate cancer.

    View details for DOI 10.1016/j.cpet.2016.11.003

    View details for PubMedID 28267450

  • Assessment of skeletal tumour burden on F-18-NaF PET/CT using a new quantitative method NUCLEAR MEDICINE COMMUNICATIONS Lapa, P., Marques, M., Costa, G., Iagaru, A., de Lima, J. P. 2017; 38 (4): 325-332

    Abstract

    The purpose of this study was to test a method of quantifying skeletal tumour burden with F-NaF PET/CT.We retrospectively reviewed the charts of 117 patients who underwent F-NaF PET/CT for the detection of bone metastases, 68 women and 49 men, 16-82 years old (mean±SD: 62.9±10.7 years). Mean standardized uptake values (SUVmean) were measured in five anatomic sites to evaluate normal skeleton activity. The influence of sex and age was investigated. Skeletal tumour burden was calculated in 69 exams positive for bone metastases using volumetric data and SUVmean values. Intraobserver and interobserver reproducibility was tested. In 10 patients with breast cancer, skeletal tumour burden in pretreatment and post-treatment F-NaF PET/CT was compared with tumour marker and clinical evolution.The range of normal skeleton SUVmean for the 410 volume of interests analysed was 2.2-5.9 (mean±SD: 4.4±1.5). A threshold of 10 was chosen to exclude F-NaF normal skeleton uptake. An inverse relationship was found between normal skeleton SUVmean and age (r=-0.237; P=0.032). Our results show excellent intraobserver and interobserver reproducibility, with intraclass correlation values of 0.995 and 0.997, respectively. The percentage change in the skeletal tumour burden in response to therapy shows a moderate direct correlation with the percentage variation of the tumour marker (r=0.668; P=0.035).The methodology that we used to quantify skeletal tumour burden is easy to perform, highly reproducible and allows for the evaluation of bone tumour response to therapy in a subgroup of breast cancer patients. The possibility of skeletal tumour burden quantification is another advantage of F-NaF PET/CT over the visual and subjective interpretation of bone scintigraphy.

    View details for DOI 10.1097/MNM.0000000000000654

    View details for Web of Science ID 000398205600008

  • Cisplatin and Etoposide or Temozolomide and Capecitabine in Treating Patients With Neuroendocrine Carcinoma of the Gastrointestinal Tract or Pancreas That Is Metastatic or Cannot Be Removed by Surgery Eads, J. R., Catalano, P., Fisher, G. A., Klimstra, D., Zhang, Z., Rubin, D., Iagaru, A., Wong, T. Z., O'Dwyer, P. LIPPINCOTT WILLIAMS & WILKINS. 2017: 451
  • Assessment of skeletal tumour burden on 18F-NaF PET/CT using a new quantitative method. Nuclear medicine communications Lapa, P., Marques, M., Costa, G., Iagaru, A., Pedroso de Lima, J. 2017

    Abstract

    The purpose of this study was to test a method of quantifying skeletal tumour burden with F-NaF PET/CT.We retrospectively reviewed the charts of 117 patients who underwent F-NaF PET/CT for the detection of bone metastases, 68 women and 49 men, 16-82 years old (mean±SD: 62.9±10.7 years). Mean standardized uptake values (SUVmean) were measured in five anatomic sites to evaluate normal skeleton activity. The influence of sex and age was investigated. Skeletal tumour burden was calculated in 69 exams positive for bone metastases using volumetric data and SUVmean values. Intraobserver and interobserver reproducibility was tested. In 10 patients with breast cancer, skeletal tumour burden in pretreatment and post-treatment F-NaF PET/CT was compared with tumour marker and clinical evolution.The range of normal skeleton SUVmean for the 410 volume of interests analysed was 2.2-5.9 (mean±SD: 4.4±1.5). A threshold of 10 was chosen to exclude F-NaF normal skeleton uptake. An inverse relationship was found between normal skeleton SUVmean and age (r=-0.237; P=0.032). Our results show excellent intraobserver and interobserver reproducibility, with intraclass correlation values of 0.995 and 0.997, respectively. The percentage change in the skeletal tumour burden in response to therapy shows a moderate direct correlation with the percentage variation of the tumour marker (r=0.668; P=0.035).The methodology that we used to quantify skeletal tumour burden is easy to perform, highly reproducible and allows for the evaluation of bone tumour response to therapy in a subgroup of breast cancer patients. The possibility of skeletal tumour burden quantification is another advantage of F-NaF PET/CT over the visual and subjective interpretation of bone scintigraphy.

    View details for DOI 10.1097/MNM.0000000000000654

    View details for PubMedID 28230714

  • Conspicuity of Malignant Lesions on PET/CT and Simultaneous Time-Of-Flight PET/MRI PLOS ONE Minamimoto, R., Iagaru, A., Jamali, M., Holley, D., Barkhodari, A., Vasanawala, S., Zaharchuk, G. 2017; 12 (1)

    Abstract

    To compare the conspicuity of malignant lesions between FDG PET/CT and a new simultaneous, time-of-flight (TOF) enabled PET/MRI scanner.All patients underwent a single-injection of FDG, followed by a dual imaging protocol consisting of PET/CT followed by TOF PET/MRI. PET/CT and PET/MRI images were evaluated by two readers independently for areas of FDG uptake compatible with malignancy, and then categorized into 5 groups (1: PET/MRI and PET/CT positive; 2: PET/MRI positive, PET/CT positive in retrospect; 3: PET/CT positive, PET/MRI positive in retrospect; 4: PET/MRI positive, PET/CT negative; 5: PET/MRI negative, PET/CT positive) by consensus. Patients with no lesions on either study or greater than 10 lesions based on either modality were excluded from the study.Fifty-two patients (mean±SD age: 58±14 years) underwent the dual imaging protocol; of these, 29 patients with a total of 93 FDG-avid lesions met the inclusion criteria. The majority of lesions (56%) were recorded prospectively in the same location on PET/CT and PET/MRI. About an equal small fraction of lesions were seen on PET/CT but only retrospectively on PET/MRI (9%) and vice versa (12%). More lesions were identified only on PET/MRI but not on PET/CT, even in retrospect (96% vs. 81%, respectively; p = 0.003). Discrepant lesions had lower maximum standardized uptake value (SUVmax) than concordant lesions on both modalities (p<0.001).While most lesions were identified prospectively on both modalities, significantly more lesions were identified with PET/MRI than with PET/CT.

    View details for DOI 10.1371/journal.pone.0167262

    View details for Web of Science ID 000392381100001

    View details for PubMedID 28103230

    View details for PubMedCentralID PMC5245859

  • 18F-FDG silicon photomultiplier PET/CT: A pilot study comparing semi-quantitative measurements with standard PET/CT. PloS one Baratto, L., Park, S. Y., Hatami, N., Davidzon, G., Srinivas, S., Gambhir, S. S., Iagaru, A. 2017; 12 (6)

    Abstract

    To evaluate if the new Discovery Molecular Insights (DMI) PET/CT scanner provides equivalent results compared to the standard of care PET/CT scanners (GE Discovery 600 or GE Discovery 690) used in our clinic and to explore any possible differences in semi-quantitative measurements.The local Institutional Review Board approved the protocol and written informed consent was obtained from each patient. Between September and November 2016, 50 patients underwent a single 18F-FDG injection and two scans: the clinical standard PET/CT followed immediately by the DMI PET/CT scan. We measured SUVmax and SUVmean of different background organs and up to four lesions per patient from data acquired using both scanners.DMI PET/CT identified all the 107 lesions detected by standard PET/CT scanners, as well as additional 37 areas of focal increased 18F-FDG uptake. The SUVmax values for all 107 lesions ranged 1.2 to 14.6 (mean ± SD: 2.8 ± 2.8), higher on DMI PET/CT compared with standard of care PET/CT. The mean lesion:aortic arch SUVmax ratio and mean lesion:liver SUVmax ratio were 0.2-15.2 (mean ± SD: 3.2 ± 2.6) and 0.2-8.5 (mean ± SD: 1.9 ± 1.4) respectively, higher on DMI PET/CT than standard PET/CT. These differences were statistically significant (P value < 0.0001) and not correlated to the delay in acquisition of DMI PET data (P < 0.0001).Our study shows high performance of the new DMI PET/CT scanner. This may have a significant role in diagnosing and staging disease, as well as for assessing and monitoring responses to therapies.

    View details for DOI 10.1371/journal.pone.0178936

    View details for PubMedID 28582472

  • Prospective Evaluation of 68Ga-RM2 PET/MRI in Patients with Biochemical Recurrence of Prostate Cancer and Negative Conventional Imaging. Journal of nuclear medicine : official publication, Society of Nuclear Medicine Minamimoto, R., Sonni, I., Hancock, S., Vasanawala, S., Loening, A., Gambhir, S. S., Iagaru, A. 2017

    Abstract

    Purpose:68Ga-labeled DOTA-4-amino-1-carboxymethyl-piperidine-D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2 (68Ga-RM2) is a synthetic bombesin receptor antagonist that targets gastrin-releasing peptide receptors (GRPr). GRPr proteins are highly overexpressed in several human tumors, including prostate cancer. We present data from the use of 68Ga-RM2 in patients with biochemical recurrence (BCR) of prostate cancer (PC) and negative conventional imaging (CI). Methods: We enrolled 32 men with BCR PC, 59-83 year-old (mean±standard deviation (SD): 68.7±6.4). Imaging started at 40-69 minutes (mean±SD: 50.5±6.8) after injection of 133.2-151.7 MBq (mean±SD: 140.6±7.4) of 68Ga-RM2 using a time-of-flight (TOF)-enabled simultaneous positron emission tomography (PET) / magnetic resonance imaging (MRI) scanner. T1-weighted (T1w), T2-weighted (T2w) and diffusion-weighted images (DWI) were acquired. Results: All patients had rising prostate specific antigen (PSA) (range: 0.3-119.0 ng/mL; mean±SD: 10.1 ± 21.3) and negative CI (CT or MRI, and 99mTc MDP bone scan) prior to enrollment. The observed 68Ga-RM2 PET detection rate was 71.8%. 68Ga-RM2 PET identified recurrent prostate cancer in 23 of the 32 participants, while the simultaneous MRI scan identified findings compatible with recurrent prostate cancer in 11 of the 32 patients. PSA velocity (PSAv) values were 0.32±0.59 ng/ml/year (range: 0.04-1.9) in patients with negative PET scans and 2.51±2.16 ng/ml/year (range: 0.13-8.68) in patients with positive PET scans (P: 0.006). Conclusion:68Ga-RM2 PET can be used for assessment of GRPr expression in patients with BCR PC. High uptake in multiple areas compatible with cancer lesions suggests that 68Ga-RM2 is a promising PET radiopharmaceutical for localization of disease in participants with BCR PC and negative CI.

    View details for DOI 10.2967/jnumed.117.197624

    View details for PubMedID 29084827

  • Relative value of three whole-body MR approaches for PET-MR, including gadofosveset-enhanced MR, in comparison to PET-CT. Clinical imaging Obara, P., Loening, A., Taviani, V., Iagaru, A., Hargreaves, B. A., Vasanawala, S. 2017; 48: 62–68

    Abstract

    Evaluate MR protocol for PET-MR including coronal DWI (cDWI), fat-suppressed T2 (T2w), and gadofosveset-enhanced T1 (CE).18 patients underwent same-day PET-CT and PET-MR. Image quality and performance of each sequence, and combination of all three sequences, was evaluated with respect to PET-CT.Lesion conspicuity was best on cDWI, while delineation was best on CE. Considering all three sequences combined, both readers showed good sensitivity and specificity (>80%). Relative sensitivity was highest on CE and lowest on T2w.Whole-body MR performed well in detecting malignant lesions compared to PET-CT. CE showed overall highest performance.

    View details for DOI 10.1016/j.clinimag.2017.09.016

    View details for PubMedID 29031209

  • Treatment and Outcomes in Classical Hodgkin Lymphoma Post-Transplant Lymphoproliferative Disorder in Children Twist, C., Hiniker, S., Gratzinger, D., Iagaru, A., Link, M., Donaldson, S. WILEY-BLACKWELL. 2016: S180
  • Bombesin-Targeted PET of Prostate Cancer JOURNAL OF NUCLEAR MEDICINE Mansi, R., Minamimoto, R., Macke, H., Iagaru, A. H. 2016; 57: 67S-72S

    Abstract

    Imaging plays an important role in prostate cancer (PC), including accurate evaluation of the extent of disease, assessment of sites of recurrent disease, and monitoring of response to treatment. Molecular imaging techniques are among the novel developments related to the imaging of PC, and various SPECT and PET radiopharmaceuticals are now available in clinical trials or commercially. Here we describe the preclinical and clinical use of gastrin-releasing peptide receptors as targets for the imaging of PC, with a focus on the development of PET tracers for the imaging of gastrin-releasing peptide receptor-positive tumors.

    View details for DOI 10.2967/jnumed.115.170977

    View details for Web of Science ID 000384962100013

    View details for PubMedID 27694175

  • Imaging patients with breast and prostate cancers using combined 18F-NaF/18F-FDG and TOF simultaneous PET/MRI Sonni, I., Minamimoto, R., Taviani, V., Loening, A., Gambhir, S. S., Vasanawala, S., Iagaru, A. SPRINGER. 2016: S152
  • Bone-Targeted Imaging and Radionuclide Therapy in Prostate Cancer JOURNAL OF NUCLEAR MEDICINE Iagaru, A. H., Mittra, E., Colletti, P. M., Jadvar, H. 2016; 57: 19S-24S

    Abstract

    Although selective metabolic and receptor-based molecular agents will surely be included in the future of prostate cancer diagnosis and therapy, currently available inorganic compounds-such as (18)F-NaF for the diagnosis of bony disease and (223)RaCl2 for the therapy of bone metastases-were recently shown to be superior to standard (99m)Tc-phosphonates for diagnosis and (153)Sm-ethylenediaminetetramethylene phosphonate or (89)SrCl2 for therapy. The advantages of (18)F-NaF include improved lesion detection and, when used in combination with CT, improved diagnostic confidence and specificity. In addition to being the first approved α-emitter, (223)RaCl2 is the first radiopharmaceutical to show an increase in overall survival, a decrease in skeletal events, palliation of bone pain, and a low profile of adverse reactions (which are mild and manageable). The management of metastatic bone disease with (223)RaCl2 is uniquely satisfying, as patients can be monitored directly during their monthly treatment visits.

    View details for DOI 10.2967/jnumed.115.170746

    View details for Web of Science ID 000384962100005

    View details for PubMedID 27694165

  • Improvements in PET Image Quality in Time of Flight (TOF) Simultaneous PET/MRI. Molecular imaging and biology Minamimoto, R., Levin, C., Jamali, M., Holley, D., Barkhodari, A., Zaharchuk, G., Iagaru, A. 2016; 18 (5): 776-781

    Abstract

    An integrated positron emission tomography (PET)/magnetic resonance imaging (MRI) scanner with time of flight (TOF) technology is now available for clinical use. The aim of this study is to evaluate the potential of TOF PET in PET/MRI to reduce artifacts in PET images when compared to non-TOF PET/MRI, TOF PET/X-ray computed tomography (CT), and non-TOF PET/CT.All patients underwent a single 2-deoxy-2-[(18)F]fluoro-D-glucose ([(18)F]FDG) injection, followed first by PET/CT, and subsequently by PET/MRI. PET/CT exams were requested as standard-of-care for oncological indications. Using the PET acquisitions datasets, 4 series of images (TOF PET/CT, non-TOF PET/CT, TOF PET/MRI, and non-TOF PET/MRI) were reconstructed. These image series were visually evaluated for: (1) dental metal artifacts, (2) breathing artifacts, and (3) pelvic artifacts due to scatter correction errors from high bladder [(18)F]FDG concentration. PET image quality was assessed by a 3-point scale (1-clinically significant artifact, 2-non clinically significant artifact, and 3-no artifact).Twenty-five patients (mean ± SD age: 56 ± 13 years old; female: 10, male: 15) were enrolled. TOF PET/MRI, non-TOF PET/MRI, TOF PET/CT, and non-TOF PET/CT scores 2.8, 2.5, 2.4, and 2.3, respectively for the presence of dental artifacts, 2.8, 2.5, 2.2, and 1.9, respectively, for the presence of breathing artifacts, and 2.7, 1.7, 2.0, and 1.3, respectively, for the presence of pelvic artifacts TOF PET/MRI images showed the highest image quality scores among the 4 datasets of PET images.The superior timing resolution and resulting TOF capability of the new PET/MRI scanner improved PET image quality in this cohort by reducing artifacts compared to non-TOF PET/MRI, TOF PET/CT, and non-TOF PET/CT.

    View details for DOI 10.1007/s11307-016-0939-8

    View details for PubMedID 26884058

  • Clinical significance of extraskeletal computed tomography findings on 18F-NaF PET/CT performed for osseous metastatic disease evaluation. Nuclear medicine communications Guo, H. H., Moradi, F., Iagaru, A. 2016; 37 (9): 975-982

    Abstract

    Extraskeletal findings detected on whole-body low-dose unenhanced computed tomography (CT) as a part of F-NaF PET/CT scans can be numerous and present challenges for further management. Here, we investigate the frequency and clinical significance of extraskeletal findings among 130 consecutive patients undergoing F-NaF PET/CT for osseous metastatic disease.F-NaF PET/CT performed on 130 patients (101 men and 29 women; mean age: 61.4 years) with biopsy-proven malignancies were reviewed independently. Incidental soft tissue findings detected on unenhanced low-dose CT portions of the scans were compiled and categorized by clinical significance.A total of 275 incidental extraskeletal CT findings were observed in 114 out of 130 patients (87.7%). Seven patients (5.4%) showed clinically significant findings. One patient developed new lung nodules that were resected and proven to be metastases. Two patients showed new hypodense hepatic lesions that were highly suspicious for liver metastases. One patient with prostate cancer was found to have previously unknown retroperitoneal lymphadenopathy. Three patients showed indeterminate renal and adrenal lesions that necessitated further correlative imaging.Although CT indicated a large number of incidental extraskeletal lesions in the majority of patients undergoing F-NaF PET/CT, clinically significant incidental findings requiring further evaluation were relatively infrequently observed in 5.4% of patients. Thus, the low-dose unenhanced CT in F-NaF PET/CT performed for oncologic evaluation may indicate unexpected soft tissue lesions that can impact patient management and therefore should be interpreted by physicians skilled in CT reading, with correlation to available imaging, and familiar with established guidelines for work-up of incidental findings.

    View details for DOI 10.1097/MNM.0000000000000531

    View details for PubMedID 27111100

  • Systemic Radioligand Therapy with Lu-177 Labeled Prostate Specific Membrane Antigen Ligand for Imaging and Therapy in Patients with Metastatic Castration Resistant Prostate Cancer EDITORIAL COMMENT JOURNAL OF UROLOGY Iagaru, A. 2016; 196 (2): 390

    View details for DOI 10.1016/j.juro.2016.02.2999

    View details for Web of Science ID 000379266400036

    View details for PubMedID 27207377

  • Glioblastoma Multiforme Recurrence: An Exploratory Study of (18)F FPPRGD2 PET/CT. Radiology Iagaru, A., Mosci, C., Mittra, E., Zaharchuk, G., Fischbein, N., Harsh, G., Li, G., Nagpal, S., Recht, L., Gambhir, S. S. 2016; 280 (1): 328-?

    View details for DOI 10.1148/radiol.2016164020

    View details for PubMedID 27322985

  • PET Imaging Toward Individualized Management of Urologic and Gynecologic Malignancies. PET clinics Sonni, I., Iagaru, A. 2016; 11 (3): 261-272

    Abstract

    Advances in the understanding of cellular and molecular basis of tumor progression have spurred interest in the development of new targeted agents that are changing the therapeutic management of patients with cancer. In parallel to progression in the therapeutic area, new PET radiopharmaceuticals are being developed to guide the use of such targeted therapies. This article aims to give an overview on the role of PET imaging in the individualized management of patients affected by urologic and gynecologic malignancies, focusing on the most promising targets for therapies and for molecular imaging using PET.

    View details for DOI 10.1016/j.cpet.2016.02.007

    View details for PubMedID 27321030

  • A Prospective, Matched Comparison Study of SUV Measurements From Time-of-Flight Versus Non-Time-of-Flight PET/CT Scanners CLINICAL NUCLEAR MEDICINE Thompson, H. M., Minamimoto, R., Jamali, M., Barkhodari, A., von Eyben, R., Iagaru, A. 2016; 41 (7): E323-E326

    Abstract

    As quantitative F-FDG PET numbers and pooling of results from different PET/CT scanners become more influential in the management of patients, it becomes imperative that we fully interrogate differences between scanners to fully understand the degree of scanner bias on the statistical power of studies.Participants with body mass index (BMI) greater than 25, scheduled on a time-of-flight (TOF)-capable PET/CT scanner, had a consecutive scan on a non-TOF-capable PET/CT scanner and vice versa. SUVmean in various tissues and SUVmax of malignant lesions were measured from both scans, matched to each subject. Data were analyzed using a mixed-effects model, and statistical significance was determined using equivalence testing, with P < 0.05 being significant.Equivalence was established in all baseline organs, except the cerebellum, matched per patient between scanner types. Mixed-effects method analysis of lesions, repeated between scan types and matched per patient, demonstrated good concordance between scanner types.Patients could be scanned on either a TOF or non-TOF-capable PET/CT scanner without clinical compromise to quantitative SUV measurements.

    View details for DOI 10.1097/RLU.0000000000001170

    View details for Web of Science ID 000377695800002

    View details for PubMedID 26914563

  • Pilot prospective evaluation of F-18-FPPRGD(2) PET/CT in patients with cervical and ovarian cancer EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING Minamimoto, R., Karam, A., Jamali, M., Barkhodari, A., Gambhir, S. S., Dorigo, O., Iagaru, A. 2016; 43 (6): 1047-1055

    Abstract

    We report the effect of antiangiogenic therapy on the biodistribution of (18)F-FPPRGD2 (a surrogate biomarker of integrin αvβ3 expression), and the potential of (18)F-FPPRGD2 to predict the prognosis in patients with cervical cancer and ovarian cancer in this clinical scenario.Data from six women, age range 30 - 59 years (mean ± SD 44.0 ± 12.5 years), who had undergone a (18)F-FPPRGD2 PET/CT scan and bevacizumab-containing therapy were prospectively collected and analyzed. We compared baseline (18)F-FPPRGD2 and (18)F-FDG uptake in the lesions and tumor-to-background (T/B) ratios. The maximum and mean (18)F-FPPRGD2 standardized uptake values (SUVmax and SUVmean) were recorded for 13 normal organs, as well as in all the identified malignant lesions on the pretreatment scan and the 1-week post-treatment scan. We also measured changes in (18)F-FPPRGD2 uptake from before to 1 week after treatment, and compared them to the changes in (18)F-FDG uptake from before to 6 weeks after treatment. Treatment outcomes were correlated with these changes.The uptake in lesions and T/B ratio of (18)F-FPPRGD2 were lower than those of (18)F-FDG (SUVmax 3.7 ± 1.3 vs. 6.0 ± 1.8, P < 0.001; SUVmean 2.6 ± 0.7 vs. 4.2 ± 1.3, P < 0.001; T/B ratio based on SUVmax 2.4 ± 1.0 vs. 2.6 ± 1.0, P < 0.04; T/B ratio based on SUVmean 1.9 ± 0.6 vs. 2.4 ± 1.0, P < 0.003). One patient did not return for the follow-up scan and in another patient no lesions were identified on the pretreatment scan. (18)F-FPPRGD2 uptake in lesions in the remaining four patients had significantly changed 1 week after treatment (SUVmean 3.3 ± 1.0 vs. 2.7 ± 1.0, P < 0.001), while uptake in all normal tissues analyzed was not affected by treatment. One patient with clinical disease progression had a decrease in lesional (18)F-FPPRGD2 SUVmean of 1.6 % and in (18)F-FDG SUVmean of 9.4 %. Two patients with a clinical complete response to treatment had decreases in lesional (18)F-FPPRGD2 SUVmean of 25.2 % and 25.0 % and in (18)F-FDG SUVmean of 6.1 % and 71.8 %. One patient with a clinical partial response had a decrease in lesional (18)F-FPPRGD2 SUVmean of 7.9 % and in (18)F-FDG SUVmean of 76.4 %.This pilot study showed that (18)F-FPPRGD2 and (18)F-FDG provide independent information about the biology of ovarian and cervical cancers. Bevacizumab-containing therapy does not affect (18)F-FPPRGD2 uptake in normal organs, but does result in statistically significant changes in lesions. In addition, (18)F-FPPRGD2 may have potential for early prediction of response to such treatments. These preliminary findings have to be confirmed in larger studies.

    View details for DOI 10.1007/s00259-015-3263-7

    View details for Web of Science ID 000374972900008

    View details for PubMedID 26611425

  • Spectrum of Ga-68-DOTA TATE Uptake in Patients With Neuroendocrine Tumors CLINICAL NUCLEAR MEDICINE Moradi, F., Jamali, M., Barkhodari, A., Schneider, B., Chin, F., Quon, A., Mittra, E. S., Iagaru, A. 2016; 41 (6): E281-E287

    Abstract

    To analyze the biodistribution of Ga-DOTA-TATE in the normal tissues and uptake in benign, indeterminate, and malignant lesions in a population of patients with known neuroendocrine tumors (NET) using semiquantitative standardized uptake values (SUV) measurements.One hundred four consecutively scanned patients (51 men and 53 women; mean age, 56.4 years) with confirmed diagnosis of NET underwent PET/CT 1 hour after administration of Ga-DOTA-TATE. SUVmean, and SUVmax were measured in 37 normal anatomical structures for each patient. Abnormal uptake was divided into benign, indeterminate, and malignant categories based on imaging characteristic, clinical follow-up, and pathology.High physiologic uptake (SUVmax > 7) was observed in spleen, renal parenchyma, adrenal glands, pituitary gland, stomach, and liver (in decreasing order). Moderate uptake (3.5-7) was present in the prostate, jejunum, pancreas, ileum, and salivary glands. Mild uptake (2-3.5) was present in the uterus, colon, thyroid, rectum, and skeleton. A total of 678 lesions (limited to 5 lesions with highest uptake per organ) were included in the analysis, including 127 benign and 54 indeterminate lesions. Uptake was significantly higher in malignant lesions than in benign lesions, but an overlap was noted between the groups.Ga-DOTA TATE uptake in normal and abnormal structures is highly variable in patients with NET. SUV is a useful measure for characterizing benign versus malignant lesions. Anatomical and clinical correlation may be necessary to characterize foci of intermediate uptake.

    View details for DOI 10.1097/RLU.0000000000001100

    View details for Web of Science ID 000376886800003

    View details for PubMedID 26673240

  • Pilot Comparison of Ga-68-RM2 PET and Ga-68-PSMA-11 PET in Patients with Biochemically Recurrent Prostate Cancer JOURNAL OF NUCLEAR MEDICINE Minamimoto, R., Hancock, S., Schneider, B., Chin, F. T., Jamali, M., Loening, A., Vasanawala, S., Gambhir, S. S., Iagaru, A. 2016; 57 (4): 557-562

    Abstract

    Glu-NH-CO-NH-Lys-(Ahx)-[(68)Ga(HBED-CC)] ((68)Ga-PSMA-11) is a PET tracer that can detect prostate cancer relapses and metastases by binding to the extracellular domain of PSMA.(68)Ga-labeled DOTA-4-amino-1-carboxymethyl-piperidine-d-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2 ((68)Ga-RM2) is a synthetic bombesin receptor antagonist that targets gastrin-releasing peptide receptors. We present pilot data on the biodistribution of these PET tracers in a small cohort of patients with biochemically recurrent prostate cancer.Seven men (mean age ± SD, 74.3 ± 5.9 y) with biochemically recurrent prostate cancer underwent both(68)Ga-PSMA-11 PET/CT and(68)Ga-RM2 PET/MRI scans. SUVmaxand SUVmeanwere recorded for normal tissues and areas of uptake outside the expected physiologic biodistribution.All patients had a rising level of prostate-specific antigen (mean ± SD, 13.5 ± 11.5) and noncontributory results on conventional imaging.(68)Ga-PSMA-11 had the highest physiologic uptake in the salivary glands and small bowel, with hepatobiliary and renal clearance noted, whereas(68)Ga-RM2 had the highest physiologic uptake in the pancreas, with renal clearance noted. Uptake outside the expected physiologic biodistribution did not significantly differ between(68)Ga-PSMA-11 and(68)Ga-RM2; however,(68)Ga-PSMA-11 localized in a lymph node and seminal vesicle in a patient with no abnormal(68)Ga-RM2 uptake. Abdominal periaortic lymph nodes were more easily visualized by(68)Ga-RM2 in two patients because of lack of interference by radioactivity in the small intestine.(68)Ga-PSMA-11 and(68)Ga-RM2 had distinct biodistributions in this small cohort of patients with biochemically recurrent prostate cancer. Additional work is needed to understand the expression of PSMA and gastrin-releasing peptide receptors in different types of prostate cancer.

    View details for DOI 10.2967/jnumed.115.168393

    View details for Web of Science ID 000373627800022

    View details for PubMedID 26659347

  • Evaluation of a new motion correction algorithm in PET/CT: combining the entire acquired PET data to create a single three-dimensional motion-corrected PET/CT image NUCLEAR MEDICINE COMMUNICATIONS Minamimoto, R., Mitsumoto, T., Miyata, Y., Sunaoka, F., Morooka, M., Okasaki, M., Iagaru, A., Kubota, K. 2016; 37 (2): 162-170

    Abstract

    This study evaluated the potential of Q.Freeze algorithm for reducing motion artifacts, in comparison with ungated imaging (UG) and respiratory-gated imaging (RG).Twenty-nine patients with 53 lesions who had undergone RG F-FDG PET/CT were included in this study. Using PET list mode data, five series of PET images [UG, RG, and QF images with an acquisition duration of 3 min (QF3), 5 min (QF5), and 10 min (QF10)] were reconstructed retrospectively. The image quality was evaluated first. Next, quantitative metrics [maximum standardized uptake value (SUVmax), mean standardized uptake value (SUVmean), SD, metabolic tumor volume, signal to noise ratio, or lesion to background ratio] were calculated for the liver, background, and each lesion, and the results were compared across the series.QF10 and QF5 showed better image quality compared with all other images. SUVmax in the liver, background, and lesions was lower with QF10 and QF5 than with the others, but there were no statistically significant differences in SUVmean and the lesion to background ratios. The SD with UG and RG was significantly higher than that with QF5 and QF10. The metabolic tumor volume in QF3 and QF5 was significantly lower than that in UG.The Q.Freeze algorithm can improve the quality of PET imaging compared with RG and UG.

    View details for DOI 10.1097/MNM.0000000000000423

    View details for Web of Science ID 000373508500009

    View details for PubMedID 26513056

  • Ga-68-DOTA-Bombesin (Ga-68-RM2 or Ga-68-Bombesin) PET versus Ga-68-PSMA PET: A pilot prospective evaluation in patients with biochemical recurrence of prostate cancer. Iagaru, A., Minamimoto, R., Hancock, S., Mittra, E., Loening, A., Vasanawala, S. AMER SOC CLINICAL ONCOLOGY. 2016
  • Pilot Preclinical and Clinical Evaluation of (4S)-4-(3-[18F]Fluoropropyl)-L-Glutamate (18F-FSPG) for PET/CT Imaging of Intracranial Malignancies. PloS one Mittra, E. S., Koglin, N., Mosci, C., Kumar, M., Hoehne, A., Keu, K. V., Iagaru, A. H., Mueller, A., Berndt, M., Bullich, S., Friebe, M., Schmitt-Willich, H., Gekeler, V., Fels, L. M., Bacher-Stier, C., Moon, D. H., Chin, F. T., Stephens, A. W., Dinkelborg, L. M., Gambhir, S. S. 2016; 11 (2)

    Abstract

    (S)-4-(3-[18F]Fluoropropyl)-L-glutamic acid (18F-FSPG) is a novel radiopharmaceutical for Positron Emission Tomography (PET) imaging. It is a glutamate analogue that can be used to measure xC- transporter activity. This study was performed to assess the feasibility of 18F-FSPG for imaging orthotopic brain tumors in small animals and the translation of this approach in human subjects with intracranial malignancies.For the small animal study, GS9L glioblastoma cells were implanted into brains of Fischer rats and studied with 18F-FSPG, the 18F-labeled glucose derivative 18F-FDG and with the 18F-labeled amino acid derivative 18F-FET. For the human study, five subjects with either primary or metastatic brain cancer were recruited (mean age 50.4 years). After injection of 300 MBq of 18F-FSPG, 3 whole-body PET/Computed Tomography (CT) scans were obtained and safety parameters were measured. The three subjects with brain metastases also had an 18F-FDG PET/CT scan. Quantitative and qualitative comparison of the scans was performed to assess kinetics, biodistribution, and relative efficacy of the tracers.In the small animals, the orthotopic brain tumors were visualized well with 18F-FSPG. The high tumor uptake of 18F-FSPG in the GS9L model and the absence of background signal led to good tumor visualization with high contrast (tumor/brain ratio: 32.7). 18F-FDG and 18F-FET showed T/B ratios of 1.7 and 2.8, respectively. In the human pilot study, 18F-FSPG was well tolerated and there was similar distribution in all patients. All malignant lesions were positive with 18F-FSPG except for one low-grade primary brain tumor. In the 18F-FSPG-PET-positive tumors a similar T/B ratio was observed as in the animal model.18F-FSPG is a novel PET radiopharmaceutical that demonstrates good uptake in both small animal and human studies of intracranial malignancies. Future studies on larger numbers of subjects and a wider array of brain tumors are planned.ClinicalTrials.gov NCT01186601.

    View details for DOI 10.1371/journal.pone.0148628

    View details for PubMedID 26890637

    View details for PubMedCentralID PMC4758607

  • Prospective Comparison of 99mTc-MDP Scintigraphy, Combined 18F-NaF and 18F-FDG PET/CT, and Whole-Body MRI in Patients with Breast and Prostate Cancer. Journal of nuclear medicine Minamimoto, R., Loening, A., Jamali, M., Barkhodari, A., Mosci, C., Jackson, T., Obara, P., Taviani, V., Gambhir, S. S., Vasanawala, S., Iagaru, A. 2015; 56 (12): 1862-1868

    Abstract

    We prospectively evaluated the combined (18)F-NaF/(18)F-FDG PET/CT in patients with breast and prostate cancers, and compared the results to (99m)Tc MDP bone scintigraphy (BS) and whole-body MRI (WBMRI).30 patients (15 women with breast cancer and 15 men with prostate cancer) referred for standard of care BS were prospectively enrolled in this study. (18)F-NaF/(18)F-FDG PET/CT and WBMRI were performed following BS. WBMRI protocol consisted of both non-contrast enhanced and contrast enhanced sequences. Lesions detected with each test were tabulated and the results were compared.For extra skeletal lesions, (18)F-/(18)F-FDG PET/CT and WBMRI had no statistically significant differences in sensitivity (92.9% vs 92.9%, P = 1.00), PPV (81.3% vs 86.7%, P = 0.68) and accuracy (76.5% vs 82.4%, P = 0.56). However, (18)F-/(18)F-FDG PET/CT showed significantly higher sensitivity and accuracy than WBMRI (96.2% vs 81.4%, P<0.001, 89.8% vs 74.7%, P = 0.01) and BS (96.2% vs 64.6%, P<0.001, 89.8% vs 65.9%, P<0.001) for the detection of skeletal lesions. Overall, (18)F-/(18)F-FDG PET/CT showed higher sensitivity and accuracy than WBMRI (95.7% vs 83.3%, P<0.002, 87.6% vs 76.0%, P< 0.02), but not statistically significant when compared to a combination of WBMRI and BS (95.7% vs 91.6%, P = 0.17, 87.6% vs 83.0%, P = 0.53). (18)F-/(18)F-FDG PET/CT showed no significant difference with a combination of (18)F-/(18)F-FDG PET/CT and WBMRI. No statistically significant differences in PPV were noted among the 3 examinations.The (18)F NaF/(18)F FDG PET/CT is superior to WBMRI and (99m)Tc-MDP scintigraphy for evaluation of skeletal disease extent. Further, (18)F NaF/(18)F FDG PET/CT and WBMRI detected extra-skeletal disease that may change the management of these patients. The (18)F NaF/(18)F FDG PET/CT provide similar diagnostic ability with combination of WBMRI and BS in patients with breast and prostate cancers. Larger cohorts are needed in order to confirm these preliminary findings, ideally using the newly introduced simultaneous PET/MRI scanners.

    View details for DOI 10.2967/jnumed.115.162610

    View details for PubMedID 26405167

  • Dynamic brain PET/MR using TOF reconstruction. EJNMMI physics Khalighi, M. M., Delso, G., Tohme, M., Iagaru, A., Zaharchuk, G. 2015; 2: A60-?

    View details for DOI 10.1186/2197-7364-2-S1-A60

    View details for PubMedID 26956320

  • The potential of TOF PET-MRI for reducing artifacts in PET images. EJNMMI physics Iagaru, A., Minamimoto, R., Levin, C., Barkhodari, A., Jamali, M., Holley, D., Greg, Z. 2015; 2: A77-?

    View details for DOI 10.1186/2197-7364-2-S1-A77

    View details for PubMedID 26956338

    View details for PubMedCentralID PMC4798707

  • Whole-body simultaneous time-of-flight PET-MRI: early experience with clinical studies. EJNMMI physics Minamimoto, R., Iagaru, A., Jamali, M., Barkodhodari, A., Holley, D., Vasanawala, S., Zaharchuk, G. 2015; 2: A64-?

    View details for DOI 10.1186/2197-7364-2-S1-A64

    View details for PubMedID 26956324

    View details for PubMedCentralID PMC4798693

  • Imaging patients with breast and prostate cancers using combined 18F NaF/18F FDG and TOF simultaneous PET/ MRI. EJNMMI physics Iagaru, A., Minamimoto, R., Jamali, M., Barkodhodari, A., Gambhir, S. S., Vasanawala, S. 2015; 2: A65-?

    View details for DOI 10.1186/2197-7364-2-S1-A65

    View details for PubMedID 26956325

    View details for PubMedCentralID PMC4798635

  • Glioblastoma Multiforme Recurrence: An Exploratory Study of F-18 FPPRGD(2) PET/CT1 RADIOLOGY Iagaru, A., Mosci, C., Mittra, E., Zaharchuk, G., Fischbein, N., Harsh, G., Li, G., Nagpal, S., Recht, L., Gambhir, S. S. 2015; 277 (2): 497-506

    Abstract

    Purpose To prospectively evaluate fluorine 18 ((18)F) 2-fluoropropionyl-labeled PEGylated dimeric arginine-glycine-aspartic acid (RGD) peptide (PEG3-E[c{RGDyk}]2) (FPPRGD2) positron emission tomography (PET) in patients with glioblastoma multiforme (GBM). Materials and Methods The institutional review board approved this HIPAA-compliant protocol. Written informed consent was obtained from each patient. (18)F FPPRGD2 uptake was measured semiquantitatively in the form of maximum standardized uptake values (SUVmax) and uptake volumes before and after treatment with bevacizumab. Vital signs and laboratory results were collected before, during, and after the examinations. A nonparametric version of multivariate analysis of variance was used to assess safety outcome measures simultaneously across time points. A paired two-sample t test was performed to compare SUVmax. Results A total of 17 participants (eight men, nine women; age range, 25-65 years) were enrolled prospectively. (18)F FPPRGD2 PET/computed tomography (CT), (18)F fluorodeoxyglucose (FDG) PET/CT, and brain magnetic resonance (MR) imaging were performed within 3 weeks, prior to the start of bevacizumab therapy. In eight of the 17 patients (47%), (18)F FPPRGD2 PET/CT was repeated 1 week after the start of bevacizumab therapy; six patients (35%) underwent (18)F FPPRGD2 PET/CT a third time 6 weeks after starting bevacizumab therapy. There were no changes in vital signs, electrocardiographic findings, or laboratory values that qualified as adverse events. One patient (6%) had recurrent GBM identified only on (18)F FPPRGD2 PET images, and subsequent MR images enabled confirmation of recurrence. Of the 17 patients, 14 (82%) had recurrent GBM identified on (18)F FPPRGD2 PET and brain MR images, while (18)F FDG PET enabled identification of recurrence in 13 (76%) patients. Two patients (12%) had no recurrent GBM. Conclusion (18)F FPPRGD2 is a safe PET radiopharmaceutical that has increased uptake in GBM lesions. Larger cohorts are required to confirm these preliminary findings. (©) RSNA, 2015 Online supplemental material is available for this article.

    View details for DOI 10.1148/radiol.2015141550

    View details for Web of Science ID 000368435100026

  • Biodistribution of the (18)F-FPPRGD2 PET radiopharmaceutical in cancer patients: an atlas of SUV measurements. European journal of nuclear medicine and molecular imaging Minamimoto, R., Jamali, M., Barkhodari, A., Mosci, C., Mittra, E., Shen, B., Chin, F., Gambhir, S. S., Iagaru, A. 2015; 42 (12): 1850-1858

    Abstract

    The aim of this study was to investigate the biodistribution of 2-fluoropropionyl-labeled PEGylated dimeric arginine-glycine-aspartic acid (RGD) peptide (PEG3-E[c{RGDyk}]2) ((18)F-FPPRGD2) in cancer patients and to compare its uptake in malignant lesions with (18)F-FDG uptake.A total of 35 patients (11 men, 24 women, mean age 52.1 ± 10.8 years) were enrolled prospectively and had (18)F-FPPRGD2 PET/CT prior to treatment. Maximum standardized uptake values (SUVmax) and mean SUV (SUVmean) were measured in 23 normal tissues in each patient, as well as in known or suspected cancer lesions. Differences between (18)F-FPPRGD2 uptake and (18)F-FDG uptake were also evaluated in 28 of the 35 patients.Areas of high (18)F-FPPRGD2 accumulation (SUVmax range 8.9 - 94.4, SUVmean range 7.1 - 64.4) included the bladder and kidneys. Moderate uptake (SUVmax range 2.1 - 6.3, SUVmean range 1.1 - 4.5) was found in the choroid plexus, salivary glands, thyroid, liver, spleen, pancreas, small bowel and skeleton. Compared with (18)F-FDG, (18)F-FPPRGD2 showed higher tumor-to-background ratio in brain lesions (13.4 ± 8.5 vs. 1.1 ± 0.5, P < 0.001), but no significant difference in body lesions (3.2 ± 1.9 vs. 4.4 ± 4.2, P = 0.10). There was no significant correlation between the uptake values (SUVmax and SUVmean) for (18)F FPPRGD2 and those for (18)F-FDG.The biodistribution of (18)F-FPPRGD2 in cancer patients is similar to that of other RGD dimer peptides and it is suitable for clinical use. The lack of significant correlation between (18)F-FPPRGD2 and (18)F-FDG uptake confirms that the information provided by each PET tracer is different.

    View details for DOI 10.1007/s00259-015-3096-4

    View details for PubMedID 26062933

  • Incorporation of TOF information reduces artifacts in simultaneous TOF PET/MR scanning ter Voert, E., Davison, H., Barbosa, F., Huellner, M., Ahn, S., Wiesinger, F., Levin, C., Iagaru, A., Zaharchuk, G., Delso, G., Veit-Haibach, P. SPRINGER. 2015: S437–S438
  • Standard OSEM vs. Regularized PET Image Reconstruction: Qualitative and Semi-Quantitative Comparison Iagaru, A., Lantos, J., Mittra, E., Levin, C. SPRINGER. 2015: S354
  • F-18-Fluoride PET in the Assessment of Malignant Bone Disease JOURNAL OF NUCLEAR MEDICINE Iagaru, A. 2015; 56 (10): 1476–77

    View details for DOI 10.2967/jnumed.115.162784

    View details for Web of Science ID 000362388600005

    View details for PubMedID 26294299

  • Semi-quantitative assessment of 18F FDG uptake in the normal skeleton using simultaneous PET/MRI: initial comparison to PET/CT in 50 patients Xu, G., Minamimoto, R., Quon, A., Mittra, E., Iagaru, A. SPRINGER. 2015: S18
  • Combined 18F NaF/18F FDG and TOF simultaneous PET/MRI: One-Stop Shop Staging of Patients with Breast and Prostate Cancers Minamimoto, R., Loening, A., Obara, P., Taviani, V., Gambhir, S. S., Vasanawala, S., Iagaru, A. SPRINGER. 2015: S438–S439
  • Improvements in PET Image quality from TOF PET/MRI Minamimoto, R., Jamali, M., Barkhodari, A., Holley, D., Zaharchuk, G., Levin, C., Iagaru, A. SPRINGER. 2015: S19
  • Combined F-18-NaF and F-18-FDG PET/CT in the Evaluation of Sarcoma Patients CLINICAL NUCLEAR MEDICINE Jackson, T., Mosci, C., von Eyben, R., Mittra, E., Ganjoo, K., Biswal, S., Gambhir, S. S., Iagaru, A. 2015; 40 (9): 720-724

    Abstract

    The combined administration of F-NaF and F-FDG in a single PET/CT scan has the potential to improve patient convenience and cancer detection. Here we report the use of this approach for patients with sarcomas.This is a retrospective review of 21 patients (12 men, 9 women; age, 19-66 years) with biopsy-proven sarcomas who had separate F-NaF PET/CT, F-FDG PET/CT, and combined F-NaF/F-FDG PET/CT scans for evaluation of malignancy. Two board-certified nuclear medicine physicians and 1 board-certified musculoskeletal radiologist were randomly assigned to review the scans. Results were analyzed for sensitivity and specificity, using linear regression and receiver operating characteristics.A total of 13 patients had metastatic disease on F-NaF PET/CT, F-FDG PET/CT, and combined F-NaF/F-FDG PET/CT. Skeletal disease was more extensive on the F-NaF PET/CT scan than on the F-FDG PET/CT in 3 patients, whereas in 1 patient, F-FDG PET/CT showed skeletal disease and the F-NaF PET/CT was negative. Extraskeletal lesions were detected on both F-FDG and combined F-NaF/F-FDG PET/CT in 20 patients, with 1 discordant finding in the lung.The combined F-NaF/F-FDG PET/CT scan allows for accurate evaluation of sarcoma patients. Further evaluation of this proposed imaging modality is warranted to identify the most suitable clinical scenarios, including initial treatment strategy and evaluation of response to therapy.

    View details for DOI 10.1097/RLU.0000000000000845

    View details for Web of Science ID 000359668600005

    View details for PubMedID 26053718

  • Anaplastic Thyroid Carcinoma, Version 2.2015 JOURNAL OF THE NATIONAL COMPREHENSIVE CANCER NETWORK Haddad, R. I., Lydiatt, W. M., Ball, D. W., Busaidy, N. L., Byrd, D., Callender, G., Dickson, P., Duh, Q., Ehya, H., Haymart, M., Hoh, C., Hunt, J. P., Iagaru, A., Kandeel, F., Kopp, P., Lamonica, D. M., McCaffrey, J. C., Moley, J. F., Parks, L., Raeburn, C. D., Ridge, J. A., Ringel, M. D., Scheri, R. P., Shah, J. P., Smallridge, R. C., Sturgeon, C., Wang, T. N., Wirth, L. J., Hoffmann, K. G., Hughes, M. 2015; 13 (9): 1140-1150

    Abstract

    This selection from the NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines) for Thyroid Carcinoma focuses on anaplastic carcinoma because substantial changes were made to the systemic therapy recommendations for the 2015 update. Dosages and frequency of administration are now provided, docetaxel/doxorubicin regimens were added, and single-agent cisplatin was deleted because it is not recommended for patients with advanced or metastatic anaplastic thyroid cancer.

    View details for Web of Science ID 000361419800013

    View details for PubMedID 26358798

    View details for PubMedCentralID PMC4986600

  • Fusion dual-tracer SPECT-based hepatic dosimetry predicts outcome after radioembolization for a wide range of tumour cell types EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING Lam, M. G., Banerjee, A., Goris, M. L., Iagaru, A. H., Mittra, E. S., Louie, J. D., Sze, D. Y. 2015; 42 (8): 1192-1201

    Abstract

    Fusion dual-tracer SPECT imaging enables physiological rather than morphological voxel-based partitioning and dosimetry for (90)Y hepatic radioembolization (RE). We evaluated its prognostic value in a large heterogeneous cohort of patients with extensive hepatic malignancy.A total of 122 patients with primary or secondary liver malignancy (18 different cell types) underwent SPECT imaging after intraarterial injection of (99m)Tc macroaggregated albumin (TcMAA) as a simulation of subsequent (90)Y microsphere distribution, followed by administration of an excess of intravenous (99m)Tc-labelled sulphur colloid (TcSC) as a biomarker for functional liver, and a second SPECT scan. TcMAA distribution was used to estimate (90)Y radiation absorbed dose in tumour (D T) and in functional liver. Laboratory and clinical follow-up were recorded for 12 weeks after RE, and radiographic responses according to (m)RECIST were evaluated at 3 and 6 months. Dose-response relationships were determined for efficacy and toxicity.Patients were treated with a median of 1.73 GBq activity of resin microspheres (98 patients) or glass microspheres (24 patients), in a whole-liver approach (97 patients) or a lobar approach (25 patients). The objective response rate was 41 % at 3 months and 48 % at 6 months. Response was correlated with D T (P < 0.01). Median overall survival was 10.1 months (95 % confidence interval 7.4 - 12.8 months). Responders lived for 36.0 months compared to 8.7 months for nonresponders (P < 0.01). Stratified for tumour cell type, D T was independently associated with survival (P < 0.01). Absorbed dose in functional liver was correlated with toxicity grade change (P < 0.05) and RE-induced liver disease (P < 0.05).Fusion dual-tracer SPECT imaging offers a physiology-based functional imaging tool to predict efficacy and toxicity of RE. This technique can be refined to define dosing thresholds for specific tumour types and treatments, but appears generally predictive even in a heterogeneous cohort.

    View details for DOI 10.1007/s00259-015-3048-z

    View details for Web of Science ID 000356809100005

    View details for PubMedID 25916740

    View details for PubMedCentralID PMC4480819

  • Stereotactic ablative radiotherapy for the treatment of refractory cardiac ventricular arrhythmia. Circulation. Arrhythmia and electrophysiology Loo, B. W., Soltys, S. G., Wang, L., Lo, A., Fahimian, B. P., Iagaru, A., Norton, L., Shan, X., Gardner, E., Fogarty, T., Maguire, P., Al-Ahmad, A., Zei, P. 2015; 8 (3): 748-750

    View details for DOI 10.1161/CIRCEP.115.002765

    View details for PubMedID 26082532

  • New Training Pathways to Dual Certification in Nuclear Medicine and Radiology JOURNAL OF NUCLEAR MEDICINE Harolds, J. A., Oates, M., Guiberteau, M. J., Ghesani, M., Scanlon, M. H., Iagaru, A. H. 2015; 56 (6): 17N–18N

    View details for Web of Science ID 000355570300001

    View details for PubMedID 26033625

  • Ra-223 experience in pretreated patients: EAP setting. Sartor, A., Fernandez, D., Morris, M. J., Iagaru, A., Brown, A., Almeida, F., Sweeney, C., Smith, M., Dicker, A., Wong, Y., Shore, N. D., Gratt, J., Petrenciuc, O., Germino, J., Vogelzang, N. J. AMER SOC CLINICAL ONCOLOGY. 2015
  • Semiquantitative Analysis of the Biodistribution of the Combined F-18-NaF and F-18-FDG Administration for PET/CT Imaging JOURNAL OF NUCLEAR MEDICINE Minamimoto, R., Mosci, C., Jamali, M., Barkhodari, A., Habte, F., Jackson, T., Mittra, E., Gambhir, S. S., Iagaru, A. 2015; 56 (5): 688-694

    Abstract

    In this study we evaluated the biodistribution of the (18)F-/(18)F-FDG administration compared to separate (18)F-NaF and (18)F-FDG. We also estimated the interaction of (18)F-NaF and (18)F-FDG in the (18)F-/(18)F-FDG administration by semiquantitative analysis.We retrospectively analyzed data of 49 patients (male 39, female 10; mean ± SD age: 59.3 ± 15.2 years) who had separate (18)F-FDG PET/CT and (18)F-NaF PET/CT, as well as the (18)F-/(18)F-FDG PET/CT sequentially. The most common primary diagnosis was prostate cancer (n = 28), followed by sarcoma (n = 9) and breast cancer (n = 6). The mean standardized uptake values (SUVmean) were recorded for 18 organs in all patients, while maximum SUV (SUVmax) and SUVmean were recorded for all the identified malignant lesions. We also estimated the (18)F-/(18)F-FDG uptake by sum of (18)F-FDG uptake and adjusted (18)F-NaF uptake based on the ratio of (18)F-NaF injected dose in (18)F-/(18)F-FDG PET/CT. Lastly, we compared the results in order to explore the interaction of (18)F-FDG and (18)F-NaF uptake in the (18)F-/(18)F-FDG scan.The (18)F-/(18)F-FDG uptake in the cerebral cortex, cerebellum, parotid grand, myocardium and bowel mostly reflect the (18)F-FDG uptake, while the uptake in the other analyzed structures is influenced by both the (18)F-FDG and the (18)F-NaF uptake. The (18)F-/(18)F-FDG uptake in extra skeletal lesions shows no significant difference when compared to the uptake from the separate (18)F-FDG scan. The (18)F-/(18)F-FDG uptake in skeletal lesions reflected mostly the (18)F-NaF uptake. Tumor to background (T/B) ratio of (18)F-/(18)F-FDG in extra skeletal lesions showed no significant difference when compared with that from (18)F-FDG alone (P = 0.73). For skeletal lesions, T/B ratio of (18)F-/(18)F-FDG was lower than that from (18)F-NaF alone (P <0.001); however, this difference did not result in missed skeletal lesions on the (18)F-/(18)F-FDG scan.The understanding of the biodistribution of radiopharmaceuticals and the lesions uptake of the (18)F-/(18)F-FDG scan, as well as the variations compared to the uptake on the separate (18)F-FDG PET/CT and (18)F-NaF PET/CT are valuable for more in depth evaluation of the combined scanning technique.

    View details for DOI 10.2967/jnumed.115.153767

    View details for Web of Science ID 000353831000013

    View details for PubMedID 25840978

  • A convenient production of clinical grade Ga-68-labeled Bombesin in an automated cassette-based platform. Schneider, B., Zerna, M., Iagaru, A., Mueller, A., Berndt, M., Chin, F. SOC NUCLEAR MEDICINE INC. 2015
  • Standard OSEM vs. Q.Clear (R) PET image reconstruction: an analysis of phantom data. Lantos, J., Iagaru, A., Levin, C. SOC NUCLEAR MEDICINE INC. 2015
  • Ga-68-PRGD(2) and F-18-FDG PET/CT for differentiating uncommon meningioma with severe peritumoral edema mimicking glioma Li, D., Zhao, X., Ji, N., Xu, G., Mittra, E., Iagaru, A., Zhu, Z. SOC NUCLEAR MEDICINE INC. 2015
  • Ga-68-DOTATATE uptake in patients with neuroendocrine tumors Moradi, F., Barkhodari, A., Jamali, M., Minamimoto, R., Schneider, B., Chin, F. T., Mittra, E. S., Iagaru, A. SOC NUCLEAR MEDICINE INC. 2015
  • PET/MR Oncologic Whole Body Workflow Optimization Holley, D., Zaharchuk, G., Vasanawala, S., Iagaru, A. SOC NUCLEAR MEDICINE INC. 2015
  • Ga-68 DOTA TATE PET/CT in patients with neuroendocrine tumors: a technologist's perspective Luan Nguyen, Moradi, F., Iagaru, A. SOC NUCLEAR MEDICINE INC. 2015
  • Prospective evaluation of Tc-99m MDP scintigraphy, F-18 NaF/F-18 FDG PET/CT and WBMRI in patients with breast and prostate cancers Iagaru, A., Minamimoto, R., Mosci, C., Jamali, M., Barkhodari, A., Loening, A., Taviani, V., Mittra, E., Gambhir, S., Vasanawala, S. SOC NUCLEAR MEDICINE INC. 2015
  • Imaging patients with breast and prostate cancers using combined F-18 NaF/F-18 FDG and TOF simultaneous PET/MRI Iagaru, A., Minamimoto, R., Jamali, M., Barkhodari, A., Obara, P., Loening, A., Taviani, V., Mittra, E., Gambhir, S., Vasanawala, S. SOC NUCLEAR MEDICINE INC. 2015
  • Radioembolization Dosimetry: The Road Ahead CARDIOVASCULAR AND INTERVENTIONAL RADIOLOGY Smits, M. L., Elschot, M., Sze, D. Y., Kao, Y. H., Nijsen, J. F., Iagaru, A. H., de Jong, H. W., Van den Bosch, M. A., Lam, M. G. 2015; 38 (2): 261-269

    Abstract

    Methods for calculating the activity to be administered during yttrium-90 radioembolization (RE) are largely based on empirical toxicity and efficacy analyses, rather than dosimetry. At the same time, it is recognized that treatment planning based on proper dosimetry is of vital importance for the optimization of the results of RE. The heterogeneous and often clustered intrahepatic biodistribution of millions of point-source radioactive particles poses a challenge for dosimetry. Several studies found a relationship between absorbed doses and treatment outcome, with regard to both toxicity and efficacy. This should ultimately lead to improved patient selection and individualized treatment planning. New calculation methods and imaging techniques and a new generation of microspheres for image-guided RE will all contribute to these improvements. The aim of this review is to give insight into the latest and most important developments in RE dosimetry and to suggest future directions on patient selection, individualized treatment planning, and study designs.

    View details for DOI 10.1007/s00270-014-1042-7

    View details for Web of Science ID 000351155100002

    View details for PubMedID 25537310

  • Dual-tracer imaging of malignant bone involvement using PET CLINICAL AND TRANSLATIONAL IMAGING Moradi, F., Iagaru, A. 2015; 3 (2): 123–31
  • F-18-Sodium Fluoride PET/CT in Oncology An Atlas of SUVs CLINICAL NUCLEAR MEDICINE Sabbah, N., Jackson, T., Mosci, C., Jamali, M., Minamimoto, R., Quon, A., Mittra, E. S., Iagaru, A. 2015; 40 (4): E228-E231

    Abstract

    The purpose of this study was to analyze the distribution of F Sodium Fluoride (F-NaF) uptake in the normal skeleton, benign and malignant bone lesions, and extraskeletal tissues, using semiquantitative SUV measurements.We retrospectively analyzed data from 129 patients who had F-NaF PET/CT at our institution for an oncological diagnosis between 2007 and 2014. There were 99 men and 30 women, 19 to 90 years old (mean [SD], 61.5 [15.5]). The range, average, and SD of SUV were measured for normal bone and extraskeletal tissues uptake for the entire patient population. A separate statistical analysis was performed to compare group A, which corresponds to the population of patient with no F-NaF-avid metastatic lesions, and group B, which corresponds to the population of patient with F-NaF-avid metastatic lesions. We also measured SUVmax and SUVmean for bony metastases and degenerative changesThe PET/CT images were acquired at 30 to 169 minutes (mean [SD], 76.5 [22.8]) after injection of 3.9 to 13.6 mCi (mean [SD], 7.3 [2.4]) of F-NaF. The range and mean (SD) of SUVmax for F-NaF-avid metastasis were 4.5 to 103.3 and 25.9 (16.6) and for F-NaF-avid degenerative changes were 3.3 to 52.1 and 16.5 (7.9), respectively.Various skeletal sites have different normal SUVs. Skeletal metastases have different SUVs when compared with benign findings such as degenerative changes.

    View details for Web of Science ID 000352219100003

    View details for PubMedID 25546225

  • 18F-sodium fluoride PET/CT in oncology: an atlas of SUVs. Clinical nuclear medicine Sabbah, N., Jackson, T., Mosci, C., Jamali, M., Minamimoto, R., Quon, A., Mittra, E. S., Iagaru, A. 2015; 40 (4): e228-31

    Abstract

    The purpose of this study was to analyze the distribution of F Sodium Fluoride (F-NaF) uptake in the normal skeleton, benign and malignant bone lesions, and extraskeletal tissues, using semiquantitative SUV measurements.We retrospectively analyzed data from 129 patients who had F-NaF PET/CT at our institution for an oncological diagnosis between 2007 and 2014. There were 99 men and 30 women, 19 to 90 years old (mean [SD], 61.5 [15.5]). The range, average, and SD of SUV were measured for normal bone and extraskeletal tissues uptake for the entire patient population. A separate statistical analysis was performed to compare group A, which corresponds to the population of patient with no F-NaF-avid metastatic lesions, and group B, which corresponds to the population of patient with F-NaF-avid metastatic lesions. We also measured SUVmax and SUVmean for bony metastases and degenerative changesThe PET/CT images were acquired at 30 to 169 minutes (mean [SD], 76.5 [22.8]) after injection of 3.9 to 13.6 mCi (mean [SD], 7.3 [2.4]) of F-NaF. The range and mean (SD) of SUVmax for F-NaF-avid metastasis were 4.5 to 103.3 and 25.9 (16.6) and for F-NaF-avid degenerative changes were 3.3 to 52.1 and 16.5 (7.9), respectively.Various skeletal sites have different normal SUVs. Skeletal metastases have different SUVs when compared with benign findings such as degenerative changes.

    View details for DOI 10.1097/RLU.0000000000000633

    View details for PubMedID 25546225

  • Detection of osseous metastasis by 18F-NaF/18F-FDG PET/CT versus CT alone. Clinical nuclear medicine Sampath, S. C., Sampath, S. C., Mosci, C., Lutz, A. M., Willmann, J. K., Mittra, E. S., Gambhir, S. S., Iagaru, A. 2015; 40 (3): e173-7

    Abstract

    Sodium fluoride PET (F-NaF) has recently reemerged as a valuable method for detection of osseous metastasis, with recent work highlighting the potential of coadministered F-NaF and F-FDG PET/CT in a single combined imaging examination. We further examined the potential of such combined examinations by comparing dual tracer F-NaF/F-FDG PET/CT with CT alone for detection of osseous metastasis.Seventy-five participants with biopsy-proven malignancy were consecutively enrolled from a single center and underwent combined F-NaF/F-FDG PET/CT and diagnostic CT scans. PET/CT as well as CT only images were reviewed in blinded fashion and compared with the results of clinical, imaging, or histological follow-up as a truth standard.Sensitivity of the combined F-NaF/F-FDG PET/CT was higher than that of CT alone (97.4% vs 66.7%). CT and F-NaF/F-FDG PET/CT were concordant in 73% of studies. Of 20 discordant cases, F-NaF/F-FDG PET/CT was correct in 19 (95%). Three cases were interpreted concordantly but incorrectly, and all 3 were false positives. A single case of osseous metastasis was detected by CT alone, but not by F-NaF/F-FDG PET/CT.Combined F-NaF/F-FDG PET/CT outperforms CT alone and is highly sensitive and specific for detection of osseous metastases. The concordantly interpreted false-positive cases demonstrate the difficulty of distinguishing degenerative from malignant disease, whereas the single case of metastasis seen on CT but not PET highlights the need for careful review of CT images in multimodality studies.

    View details for DOI 10.1097/RLU.0000000000000560

    View details for PubMedID 25140557

  • Prior and concurrent use of abiraterone and enzalutamide with Ra-223 in an expanded access setting. Sartor, A., Fernandez, D., Morris, M. J., Iagaru, A., Brown, A., Almeida, F., Sweeney, C., Smith, M., Dicker, A., Wong, Y., Shore, N. D., Gratt, J., Petrenciuc, O., Vogelzang, N. J. AMER SOC CLINICAL ONCOLOGY. 2015
  • Radium-223 dichloride (Ra-223) in US expanded access program (EAP). Vogelzang, N. J., Fernandez, D., Morris, M. J., Iagaru, A., Brown, A., Almeida, F., Sweeney, C., Smith, M., Dicker, A., Wong, Y., Shore, N. D., Bangerter, K., Petrenciuc, O., Sartor, A. AMER SOC CLINICAL ONCOLOGY. 2015
  • Detection of Osseous Metastasis by 18F-NaF/18F-FDG PET/CT Versus CT Alone. Clinical nuclear medicine Sampath, S. C., Sampath, S. C., Mosci, C., Lutz, A. M., Willmann, J. K., Mittra, E. S., Gambhir, S. S., Iagaru, A. 2015; 40 (3): e173-7

    Abstract

    Sodium fluoride PET (F-NaF) has recently reemerged as a valuable method for detection of osseous metastasis, with recent work highlighting the potential of coadministered F-NaF and F-FDG PET/CT in a single combined imaging examination. We further examined the potential of such combined examinations by comparing dual tracer F-NaF/F-FDG PET/CT with CT alone for detection of osseous metastasis.Seventy-five participants with biopsy-proven malignancy were consecutively enrolled from a single center and underwent combined F-NaF/F-FDG PET/CT and diagnostic CT scans. PET/CT as well as CT only images were reviewed in blinded fashion and compared with the results of clinical, imaging, or histological follow-up as a truth standard.Sensitivity of the combined F-NaF/F-FDG PET/CT was higher than that of CT alone (97.4% vs 66.7%). CT and F-NaF/F-FDG PET/CT were concordant in 73% of studies. Of 20 discordant cases, F-NaF/F-FDG PET/CT was correct in 19 (95%). Three cases were interpreted concordantly but incorrectly, and all 3 were false positives. A single case of osseous metastasis was detected by CT alone, but not by F-NaF/F-FDG PET/CT.Combined F-NaF/F-FDG PET/CT outperforms CT alone and is highly sensitive and specific for detection of osseous metastases. The concordantly interpreted false-positive cases demonstrate the difficulty of distinguishing degenerative from malignant disease, whereas the single case of metastasis seen on CT but not PET highlights the need for careful review of CT images in multimodality studies.

    View details for DOI 10.1097/RLU.0000000000000560

    View details for PubMedID 25140557

  • 123I accumulation in thoracic neoesophagus masking residual papillary thyroid cancer. Clinical nuclear medicine Jackson, T., Sabbah, N., Iagaru, A. 2015; 40 (2): e150-1

    Abstract

    A 56-year-old woman with prior esophageal resection and reconstruction after accidental lye ingestion presented for management of recently diagnosed thyroid cancer. She had total thyroidectomy with pathology demonstrating bilateral well-differentiated papillary thyroid cancer measuring up to 1.0 cm and positive margins. Approximately 1 month after surgery, I whole-body scan was obtained. Planar images demonstrated linear I uptake in the thorax, compatible with accumulation in the neoesophagus. Given the patient's postsurgical anatomy, SPECT/CT of the thorax was done and demonstrated additional focal I uptake in the left lower neck, compatible with residual thyroid tissue versus thyroid cancer (lymph node metastasis).

    View details for DOI 10.1097/RLU.0000000000000499

    View details for PubMedID 24999691

  • Simultaneous Whole-Body Time-of-Flight F-18-FDG PET/MRI A Pilot Study Comparing SUVmax With PET/CT and Assessment of MR Image Quality CLINICAL NUCLEAR MEDICINE Iagaru, A., Mittra, E., Minamimoto, R., Jamali, M., Levin, C., Quon, A., Gold, G., Herfkens, R., Vasanawala, S., Gambhir, S. S., Zaharchuk, G. 2015; 14 (1): 1-8

    Abstract

    The recent introduction of hybrid PET/MRI scanners in clinical practice has shown promising initial results for several clinical scenarios. However, the first generation of combined PET/MRI lacks time-of-flight (TOF) technology. Here we report the results of the first patients to be scanned on a completely novel fully integrated PET/MRI scanner with TOF.We analyzed data from patients who underwent a clinically indicated F FDG PET/CT, followed by PET/MRI. Maximum standardized uptake values (SUVmax) were measured from F FDG PET/MRI and F FDG PET/CT for lesions, cerebellum, salivary glands, lungs, aortic arch, liver, spleen, skeletal muscle, and fat. Two experienced radiologists independently reviewed the MR data for image quality.Thirty-six patients (19 men, 17 women, mean [±standard deviation] age of 61 ± 14 years [range: 27-86 years]) with a total of 69 discrete lesions met the inclusion criteria. PET/CT images were acquired at a mean (±standard deviation) of 74 ± 14 minutes (range: 49-100 minutes) after injection of 10 ± 1 mCi (range: 8-12 mCi) of F FDG. PET/MRI scans started at 161 ± 29 minutes (range: 117 - 286 minutes) after the F FDG injection. All lesions identified on PET from PET/CT were also seen on PET from PET/MRI. The mean SUVmax values were higher from PET/MRI than PET/CT for all lesions. No degradation of MR image quality was observed.The data obtained so far using this investigational PET/MR system have shown that the TOF PET system is capable of excellent performance during simultaneous PET/MR with routine pulse sequences. MR imaging was not compromised. Comparison of the PET images from PET/CT and PET/MRI show no loss of image quality for the latter. These results support further investigation of this novel fully integrated TOF PET/MRI instrument.

    View details for Web of Science ID 000346633400023

  • Scanner Dependent Noise Properties of the Q.Clear PET Image Reconstruction Tool Lantos, J., Iagaru, A., Levin, C. S., IEEE IEEE. 2015
  • Validation of 64Cu-DOTA-rituximab injection preparation under good manufacturing practices: a PET tracer for imaging of B-cell non-Hodgkin lymphoma. Molecular imaging Natarajan, A., Arksey, N., Iagaru, A., Chin, F. T., Gambhir, S. S. 2015; 14

    View details for DOI 10.2310/7290.2014.00055

    View details for PubMedID 25762106

  • Simultaneous whole-body time-of-flight 18F-FDG PET/MRI: a pilot study comparing SUVmax with PET/CT and assessment of MR image quality. Clinical nuclear medicine Iagaru, A., Mittra, E., Minamimoto, R., Jamali, M., Levin, C., Quon, A., Gold, G., Herfkens, R., Vasanawala, S., Gambhir, S. S., Zaharchuk, G. 2015; 40 (1): 1-8

    Abstract

    The recent introduction of hybrid PET/MRI scanners in clinical practice has shown promising initial results for several clinical scenarios. However, the first generation of combined PET/MRI lacks time-of-flight (TOF) technology. Here we report the results of the first patients to be scanned on a completely novel fully integrated PET/MRI scanner with TOF.We analyzed data from patients who underwent a clinically indicated F FDG PET/CT, followed by PET/MRI. Maximum standardized uptake values (SUVmax) were measured from F FDG PET/MRI and F FDG PET/CT for lesions, cerebellum, salivary glands, lungs, aortic arch, liver, spleen, skeletal muscle, and fat. Two experienced radiologists independently reviewed the MR data for image quality.Thirty-six patients (19 men, 17 women, mean [±standard deviation] age of 61 ± 14 years [range: 27-86 years]) with a total of 69 discrete lesions met the inclusion criteria. PET/CT images were acquired at a mean (±standard deviation) of 74 ± 14 minutes (range: 49-100 minutes) after injection of 10 ± 1 mCi (range: 8-12 mCi) of F FDG. PET/MRI scans started at 161 ± 29 minutes (range: 117 - 286 minutes) after the F FDG injection. All lesions identified on PET from PET/CT were also seen on PET from PET/MRI. The mean SUVmax values were higher from PET/MRI than PET/CT for all lesions. No degradation of MR image quality was observed.The data obtained so far using this investigational PET/MR system have shown that the TOF PET system is capable of excellent performance during simultaneous PET/MR with routine pulse sequences. MR imaging was not compromised. Comparison of the PET images from PET/CT and PET/MRI show no loss of image quality for the latter. These results support further investigation of this novel fully integrated TOF PET/MRI instrument.

    View details for DOI 10.1097/RLU.0000000000000611

    View details for PubMedID 25489952

  • Validation of 64Cu-DOTA-rituximab injection preparation under good manufacturing practices: a PET tracer for imaging of B-cell non-Hodgkin lymphoma. Molecular imaging Natarajan, A., Arksey, N., Iagaru, A., Chin, F. T., Gambhir, S. S. 2015; 14

    Abstract

    AbstractManufacturing of 64Cu-1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid (DOTA)-rituximab injection under good manufacturing practices (GMP) was validated for imaging of patients with CD20+ B-cell non-Hodgkin lymphoma. Rituximab was purified by size exclusion high performance liquid chromatography (HPLC) and conjugated to DOTA-mono-(N-hydroxysuccinimidyl) ester. 64CuCl2, buffers, reagents, and other raw materials were obtained as high-grade quality. Following a semi-automated synthesis of 64Cu-DOTA-rituximab, a series of quality control tests was performed. The product was further tested in vivo using micro-positron emission tomography/computed tomography (PET/CT) to assess targeting ability towards human CD20 in transgenic mice. Three batches of 64Cu-DOTA-rituximab final product were prepared as per GMP specifications. The radiolabeling yield from these batches was 93.1 ± 5.8%; these provided final product with radiopharmaceutical yield, purity, and specific activity of 59.2 ± 5.1% (0.9 ± 0.1 GBq of 64Cu), > 95% (by HPLC and radio-thin layer chromatography), and 229.4 ± 43.3 GBq/µmol (or 1.5 ± 0.3 MBq/µg), respectively. The doses passed apyrogenicity and human serum stability specifications, were sterile up to 14 days, and retained > 60% immunoreactivity. In vivo micro-PET/CT mouse images at 24 hours postinjection showed that the tracer targeted the intended sites of human CD20 expression. Thus, we have validated the manufacturing of GMP grade 64Cu-DOTA-rituximab for injection in the clinical setting.

    View details for DOI 10.2310/7290.2014.00055

    View details for PubMedID 25762106

  • Thyroid Carcinoma, Version 2.2014 Featured Updates to the NCCN Guidelines JOURNAL OF THE NATIONAL COMPREHENSIVE CANCER NETWORK Tuttle, R. M., Haddad, R. I., Ball, D. W., Byrd, D., Dickson, P., Duh, Q., Ehya, H., Haymart, M., Hoh, C., Hunt, J. P., Iagaru, A., Kandeel, F., Kopp, P., Lamonica, D. M., Lydiatt, W. M., McCaffrey, J., Moley, J. F., Parks, L., Raeburn, C. D., Ridge, J. A., Ringel, M. D., Scheri, R. P., Shah, J. P., Sherman, S. I., Sturgeon, C., Waguespack, S. G., Wang, T. N., Wirth, L. J., Hoffmann, K. G., Hughes, M. 2014; 12 (12): 1671-1680

    Abstract

    These NCCN Guidelines Insights focus on some of the major updates to the 2014 NCCN Guidelines for Thyroid Carcinoma. Kinase inhibitor therapy may be used to treat thyroid carcinoma that is symptomatic and/or progressive and not amenable to treatment with radioactive iodine. Sorafenib may be considered for select patients with metastatic differentiated thyroid carcinoma, whereas vandetanib or cabozantinib may be recommended for select patients with metastatic medullary thyroid carcinoma. Other kinase inhibitors may be considered for select patients with either type of thyroid carcinoma. A new section on "Principles of Kinase Inhibitor Therapy in Advanced Thyroid Cancer" was added to the NCCN Guidelines to assist with using these novel targeted agents.

    View details for Web of Science ID 000346190900005

  • Thyroid carcinoma, version 2.2014. Journal of the National Comprehensive Cancer Network Tuttle, R. M., Haddad, R. I., Ball, D. W., Byrd, D., Dickson, P., Duh, Q., Ehya, H., Haymart, M., Hoh, C., Hunt, J. P., Iagaru, A., Kandeel, F., Kopp, P., Lamonica, D. M., Lydiatt, W. M., McCaffrey, J., Moley, J. F., Parks, L., Raeburn, C. D., Ridge, J. A., Ringel, M. D., Scheri, R. P., Shah, J. P., Sherman, S. I., Sturgeon, C., Waguespack, S. G., Wang, T. N., Wirth, L. J., Hoffmann, K. G., Hughes, M. 2014; 12 (12): 1671-1680

    Abstract

    These NCCN Guidelines Insights focus on some of the major updates to the 2014 NCCN Guidelines for Thyroid Carcinoma. Kinase inhibitor therapy may be used to treat thyroid carcinoma that is symptomatic and/or progressive and not amenable to treatment with radioactive iodine. Sorafenib may be considered for select patients with metastatic differentiated thyroid carcinoma, whereas vandetanib or cabozantinib may be recommended for select patients with metastatic medullary thyroid carcinoma. Other kinase inhibitors may be considered for select patients with either type of thyroid carcinoma. A new section on "Principles of Kinase Inhibitor Therapy in Advanced Thyroid Cancer" was added to the NCCN Guidelines to assist with using these novel targeted agents.

    View details for PubMedID 25505208

  • (18)F-FPPRGD2 PET/CT: pilot phase evaluation of breast cancer patients. Radiology Iagaru, A., Mosci, C., Shen, B., Chin, F. T., Mittra, E., Telli, M. L., Gambhir, S. S. 2014; 273 (2): 549-559

    Abstract

    Purpose To present data from the first prospective pilot phase trial of breast cancer participants imaged with fluorine 18 ((18)F)-2-fluoropropionyl-labeled PEGylated dimeric arginine-glycine-aspartic acid (RGD) peptide (PEG3-E[c{RGDyk}]2) (FPPRGD2), a radiopharmaceutical agent used in positron emission tomographic (PET) imaging. Materials and Methods The local institutional review board approved the HIPAA-compliant protocol. Written informed consent was obtained from each patient. Eight women (age range, 44-67 years; mean age, 54.3 years ± 8.8 [standard deviation]) with newly diagnosed or recurrent breast cancer were recruited between November 2010 and February 2011. (18)F-FPPRGD2 PET/computed tomographic (CT) and (18)F-fluorodeoxyglucose (FDG) PET/CT examinations were performed within 3 weeks of each other. Dynamic (18)F-FPPRGD2 PET and two whole-body static (18)F-FPPRGD2 PET/CT scans were obtained. During this time, vital signs and electrocardiograms were recorded at regular intervals. Blood samples were obtained before the injection of (18)F-FPPRGD2 and at 24 hours and 1 week after injection to evaluate for toxicity. A nonparametric version of multivariate analysis of variance was used to assess the safety outcome measures simultaneously across time points. A paired two-sample t test was performed to compare the maximum standardized uptake values (SUVmax). Results (18)F-FPPRGD2 was well tolerated, without noticeable changes in vital signs, on electrocardiograms, or in laboratory values. A total of 30 lesions were evaluated at (18)F-FDG PET/CT and (18)F-FPPRGD2 PET/CT. The primary breast lesions had (18)F-FPPRGD2 uptake with SUVmax of 2.4-9.4 (mean, 5.6 ± 2.8) 60 minutes after injection, compared with (18)F-FDG uptake with SUVmax of 2.8-18.6 (mean, 10.4 ± 7.2). Metastatic lesions also showed (18)F-FPPRGD2 uptake, with SUVmax of 2.4-9.7 (mean, 5.0 ± 2.3) at 60 minutes, compared with (18)F-FDG uptake with SUVmax of 2.2-14.6 (mean, 6.6 ± 4.2). Conclusion Data from this pilot phase study suggest that (18)F-FPPRGD2 is a safe PET radiopharmaceutical agent. Evaluation of (18)F-FPPRGD2 in participants with breast cancer demonstrated significant uptake in the primary lesion and in the metastases. Larger cohorts are required to confirm these preliminary findings. © RSNA, 2014.

    View details for DOI 10.1148/radiol.14140028

    View details for PubMedID 25033190

  • Successful treatment of systemic and central nervous system post-transplant lymphoproliferative disorder without the use of high-dose methotrexate or radiation. Pediatric blood & cancer Mahapatra, S., Chin, C. C., Iagaru, A., Heerema-McKenney, A., Twist, C. J. 2014; 61 (11): 2107-2109

    Abstract

    Post-transplant lymphoproliferative disorder (PTLD) describes a spectrum of conditions with highest incidence in the first year post-solid organ transplant in pediatric patients. Central nervous system (CNS) involvement with PTLD carries high mortality risk with no consensus on optimal therapeutic regimen. We present the case of a 7-year old heart transplant patient diagnosed with widespread monomorphic, CD20+, Epstein-Barr virus-positive PTLD, including CNS involvement. In addition to immunosuppression reduction and rituximab, she was treated with multiagent systemic and intrathecal chemotherapy. She achieved a prompt and complete clinical and radiologic remission, which has been sustained for over 46 months since diagnosis.

    View details for DOI 10.1002/pbc.25129

    View details for PubMedID 25066638

  • Successful Treatment of Systemic and Central Nervous System Post-Transplant Lymphoproliferative Disorder Without the Use of High-Dose Methotrexate or Radiation PEDIATRIC BLOOD & CANCER Mahapatra, S., Chin, C. C., Iagaru, A., Heerema-McKenney, A., Twist, C. J. 2014; 61 (11): 2107-2109

    Abstract

    Post-transplant lymphoproliferative disorder (PTLD) describes a spectrum of conditions with highest incidence in the first year post-solid organ transplant in pediatric patients. Central nervous system (CNS) involvement with PTLD carries high mortality risk with no consensus on optimal therapeutic regimen. We present the case of a 7-year old heart transplant patient diagnosed with widespread monomorphic, CD20+, Epstein-Barr virus-positive PTLD, including CNS involvement. In addition to immunosuppression reduction and rituximab, she was treated with multiagent systemic and intrathecal chemotherapy. She achieved a prompt and complete clinical and radiologic remission, which has been sustained for over 46 months since diagnosis.

    View details for DOI 10.1002/pbc.25129

    View details for Web of Science ID 000342723300041

  • F-18 NaF Brain Metastasis Uptake in a Patient with Melanoma CLINICAL NUCLEAR MEDICINE Jones, R. P., Iagaru, A. 2014; 39 (10): E448–E450

    Abstract

    A 57-year-old man with a history of metastatic melanoma and sclerotic bone lesions seen on CT was referred for F NaF PET/CT evaluation of active skeletal metastases. While the bone lesions had no uptake and were therefore thought to represent sequela of previously treated disease, an unexpected area of F NaF uptake was identified in the left temporal lobe. Concurrent contrast-enhanced brain MRI re-demonstrated a large metastasis, also seen on previous MRI scans done at another institution.

    View details for Web of Science ID 000342091900009

    View details for PubMedID 24566410

  • Improved automated clinical production of Ga-68-DOTA-TATE for targeting somatostatic receptor-positive neuroendocrine tumors Arksey, N., Schneider, B., Iagaru, A., Chin, F. T. AMER CHEMICAL SOC. 2014
  • Circulating Tumor Microemboli Diagnostics for Patients with Non-Small-Cell Lung Cancer JOURNAL OF THORACIC ONCOLOGY Carlsson, A., Nair, V. S., Luttgen, M. S., Keu, K. V., Horng, G., Vasanawala, M., Kolatkar, A., Jamali, M., Iagaru, A. H., Kuschner, W., Loo, B. W., Shrager, J. B., Bethel, K., Hoh, C. K., Bazhenova, L., Nieva, J., Kuhn, P., Gambhir, S. S. 2014; 9 (8): 1111-1119

    Abstract

    Circulating tumor microemboli (CTM) are potentially important cancer biomarkers, but using them for cancer detection in early-stage disease has been assay limited. We examined CTM test performance using a sensitive detection platform to identify stage I non-small-cell lung cancer (NSCLC) patients undergoing imaging evaluation.First, we prospectively enrolled patients during 18F-FDG PET-CT imaging evaluation for lung cancer that underwent routine phlebotomy where CTM and circulating tumor cells (CTCs) were identified in blood using nuclear (DAPI), cytokeratin (CK), and CD45 immune-fluorescent antibodies followed by morphologic identification. Second, CTM and CTC data were integrated with patient (age, gender, smoking, and cancer history) and imaging (tumor diameter, location in lung, and maximum standard uptake value [SUVmax]) data to develop and test multiple logistic regression models using a case-control design in a training and test cohort followed by cross-validation in the entire group.We examined 104 patients with NSCLC, and the subgroup of 80 with stage I disease, and compared them to 25 patients with benign disease. Clinical and imaging data alone were moderately discriminating for all comers (Area under the Curve [AUC] = 0.77) and by stage I disease only (AUC = 0.77). However, the presence of CTM combined with clinical and imaging data was significantly discriminating for diagnostic accuracy in all NSCLC patients (AUC = 0.88, p value = 0.001) and for stage I patients alone (AUC = 0.87, p value = 0.002).CTM may add utility for lung cancer diagnosis during imaging evaluation using a sensitive detection platform.

    View details for Web of Science ID 000340138700012

    View details for PubMedID 25157764

  • Performance of a high sensitivity time-of-flight PET ring operating simultaneously within a 3T MR system. EJNMMI physics Levin, C. S., Jansen, F., Deller, T., Maramraju, S. H., Grant, A., Iagaru, A. 2014; 1: A72-?

    View details for DOI 10.1186/2197-7364-1-S1-A72

    View details for PubMedID 26501663

    View details for PubMedCentralID PMC4545961

  • Prospective evaluation of combined NaF/FDG PET/CT and whole-body MRI in patients with breast and prostate cancer Iagaru, A., Mosci, C., Jamali, M., Loening, A., Mittra, E., Gambhir, S., Vasanawala, S. SOC NUCLEAR MEDICINE INC. 2014
  • Initial experience with 223Ra vial delivery (Alpharadin (R)) vs. unit dose delivery (Xofigo (R)) Castaneda, P., Leonard, Z., Wen, M., Kwofie, J., Mittra, E., Iagaru, A. SOC NUCLEAR MEDICINE INC. 2014
  • Initial experience with 223Ra vial delivery (Alpharadin (R)) vs. unit dose delivery (Xofigo (R)) Castaneda, P., Leonard, Z., Wen, M., Kwofie, J., Mittra, E., Iagaru, A. SOC NUCLEAR MEDICINE INC. 2014
  • Combined NaF/FDG PET/CT evaluation of prostate cancer patients Iagaru, A., Mosci, C., Keu, K., Mittra, E., Hancock, S., Pachynski, R., Srinivas, S., Gambhir, S. SOC NUCLEAR MEDICINE INC. 2014
  • FDG uptake in normal tissues and malignant lesions from the first whole-body time-of-flight PET/MRI scanner: Comparison with PET/CT Iagaru, A., Mittra, E., Zaharchuk, G., Frost, R., Elekes, A., Anderson, J., Bobb, C., Lahrman, J., Gold, G., Gambhir, S. SOC NUCLEAR MEDICINE INC. 2014
  • 18F-FDG PET/CT in the management of patients with post-transplant lymphoproliferative disorder. Nuclear medicine communications Takehana, C. S., Twist, C. J., Mosci, C., Quon, A., Mittra, E., Iagaru, A. 2014; 35 (3): 276-281

    Abstract

    Post-transplant lymphoproliferative disorder (PTLD) is a rare but serious complication in transplant patients. Although fluorine-18 2-fluoro-2-deoxyglucose PET and computed tomography (F-FDG PET/CT) has been used for the evaluation and management of patients with PTLD, its utility has yet to be documented. We were therefore prompted to review our experience with F-FDG PET/CT in PTLD.We retrospectively reviewed the records of consecutive patients who had undergone F-FDG PET/CT for evaluation of PTLD from January 2004 to June 2012 at our institution. F-FDG PET/CT scans were compared with other imaging modalities performed concurrently. A chart review of pertinent clinical information was also conducted.A total of 30 patients were identified (14 female and 16 male; 1.7-76.7 years of age, average: 23.8 years). Twenty-seven participants had biopsy-proven PTLD and another three had been treated for PTLD because of high clinical suspicion of disease and positive F-FDG PET/CT findings in the absence of histological diagnosis. Eighty-three percent of these PTLD patients had extranodal involvement. In 57% of the cases, F-FDG PET/CT detected occult lesions not identified on other imaging modalities or suggested PTLD in equivocal lesions. The more aggressive PTLD histological subtypes demonstrated higher SUVmax compared with the less aggressive subtypes.F-FDG PET/CT is beneficial in the diagnostic evaluation of patients with PTLD. F-FDG PET/CT has the ability to detect occult lesions not identified on other imaging modalities, particularly extranodal lesions. In addition, F-FDG PET/CT may predict the PTLD subtype, as the lesions with higher pathologic grade presented with significantly higher SUVmax compared with the less aggressive forms.

    View details for DOI 10.1097/MNM.0000000000000050

    View details for PubMedID 24296883

  • The Clinical Use of PET/CT in the Evaluation of Melanoma. Methods in molecular biology (Clifton, N.J.) Keu, K. V., Iagaru, A. H. 2014; 1102: 553-580

    Abstract

    Positron emission tomography combined with computed tomography (PET/CT) has emerged in the last decade as a dominant imaging modality used for staging, monitoring response and surveillance of various cancers, including melanoma. Using 2-deoxy-2-((18)F)fluoro-D-glucose ((18)F-FDG) as the radiopharmaceutical, PET/CT has demonstrated its efficacy and its utility in the management of patients with advanced melanoma. Nonetheless, challenges remain in the early stage evaluation of melanoma and in the development of novel radiotracers to better characterize lesions found on PET/CT. This chapter focuses on the advantages and limitations of this imaging modality in melanoma. We also detail and describe the approach to perform (18)F-FDG PET/CT, the methods to accurately quantify lesions, as well as the pearls/pitfalls of image interpretation. Finally, an overview of preclinical and investigational clinical radiopharmaceuticals is presented.

    View details for DOI 10.1007/978-1-62703-727-3_30

    View details for PubMedID 24258999

  • Root cause analysis of gastroduodenal ulceration after yttrium-90 radioembolization. Cardiovascular and interventional radiology Lam, M. G., Banerjee, S., Louie, J. D., Abdelmaksoud, M. H., Iagaru, A. H., Ennen, R. E., Sze, D. Y. 2013; 36 (6): 1536-1547

    Abstract

    INTRODUCTION: A root cause analysis was performed on the occurrence of gastroduodenal ulceration after hepatic radioembolization (RE). We aimed to identify the risk factors in the treated population and to determine the specific mechanism of nontarget RE in individual cases. METHODS: The records of 247 consecutive patients treated with yttrium-90 RE for primary (n = 90) or metastatic (n = 157) liver cancer using either resin (n = 181) or glass (n = 66) microspheres were reviewed. All patients who developed a biopsy-proven microsphere-induced gastroduodenal ulcer were identified. Univariate and multivariate analyses were performed on baseline parameters and procedural data to determine possible risk factors in the total population. Individual cases were analyzed to ascertain the specific cause, including identification of the culprit vessel(s) leading to extrahepatic deposition of the microspheres. RESULTS: Eight patients (3.2 %) developed a gastroduodenal ulcer. Stasis during injection was the strongest independent risk factor (p = 0.004), followed by distal origin of the gastroduodenal artery (p = 0.004), young age (p = 0.040), and proximal injection of the microspheres (p = 0.043). Prolonged administrations, pain during administration, whole liver treatment, and use of resin microspheres also showed interrelated trends in multivariate analysis. Retrospective review of intraprocedural and postprocedural imaging showed a probable or possible culprit vessel, each a tiny complex collateral vessel, in seven patients. CONCLUSION: Proximal administrations and those resulting in stasis of flow presented increased risk for gastroduodenal ulceration. Patients who had undergone bevacizumab therapy were at high risk for developing stasis.

    View details for DOI 10.1007/s00270-013-0579-1

    View details for PubMedID 23435742

  • Prognostic Utility of Y-90 Radioembolization Dosimetry Based on Fusion Tc-99m-Macroaggregated Albumin-Tc-99m-Sulfur Colloid SPECT JOURNAL OF NUCLEAR MEDICINE Lam, M. G., Goris, M. L., Iagaru, A. H., Mittra, E. S., Louie, J. D., Sze, D. Y. 2013; 54 (12): 2055-2061

    Abstract

    Planning hepatic (90)Y radioembolization activity requires balancing toxicity with efficacy. We developed a dual-tracer SPECT fusion imaging protocol that merges data on radioactivity distribution with physiologic liver mapping.Twenty-five patients with colorectal carcinoma and bilobar liver metastases received whole-liver radioembolization with resin microspheres prescribed as per convention (mean administered activity, 1.69 GBq). As part of standard treatment planning, all patients underwent SPECT imaging after intraarterial injection of 37 MBq of (99m)Tc-macroaggregated albumin ((99m)Tc-MAA) to simulate subsequent (90)Y distribution. Immediately afterward, patients received 185 MBq of labeled sulfur colloid ((99m)Tc-SC) intravenously as a biomarker for normal hepatic reticuloendothelial function and SPECT was repeated. The SPECT images were coregistered and fused. A region-based method was used to predict the (90)Y radiation absorbed dose to functional liver tissue (DFL) by calculation of (99m)Tc-MAA activity in regions with (99m)Tc-SC uptake. Similarly, the absorbed dose to tumor (DT) was predicted by calculation of (99m)Tc-MAA activity in voxels without (99m)Tc-SC uptake. Laboratory data and radiographic response were measured for 3 mo, and the survival of patients was recorded. SPECT-based DT and DFL were correlated with parameters of toxicity and efficacy.Toxicity, as measured by increase in serum liver enzymes, correlated significantly with SPECT-based calculation of DFL at all time points (P < 0.05) (mean DFL, 27.9 Gy). Broad biochemical toxicity (>50% increase in all liver enzymes) occurred at a DFL of 24.5 Gy and above. In addition, in uni- and multivariate analysis, SPECT-based calculation of DT (mean DT, 44.2 Gy) correlated with radiographic response (P < 0.001), decrease in serum carcinoembryonic antigen (P < 0.05), and overall survival (P < 0.01). The cutoff value of DT for prediction of 1-y survival was 55 Gy (area under the receiver-operating-characteristic curve = 0.86; P < 0.01). Patients who received a DT of more than 55 Gy had a median survival of 32.8 mo, compared with 7.2 mo in patients who received less (P < 0.05).Dual-tracer (99m)Tc-MAA-(99m)Tc-SC fusion SPECT offers a physiology-based imaging tool with significant prognostic power that may lead to improved personalized activity planning.

    View details for DOI 10.2967/jnumed.113.123257

    View details for Web of Science ID 000328013000006

  • Combined 18F-fluoride and 18F-FDG PET/CT: a response based on actual data from prospective studies. European journal of nuclear medicine and molecular imaging Iagaru, A., Mosci, C., Dick, D. W., Sathekge, M., Lapa, P., de Lima, J. M., Gambhir, S. S. 2013; 40 (12): 1922-1924

    View details for DOI 10.1007/s00259-013-2556-y

    View details for PubMedID 24057457

  • Prognostic utility of 90Y radioembolization dosimetry based on fusion 99mTc-macroaggregated albumin-99mTc-sulfur colloid SPECT. Journal of nuclear medicine : official publication, Society of Nuclear Medicine Lam, M. G., Goris, M. L., Iagaru, A. H., Mittra, E. S., Louie, J. D., Sze, D. Y. 2013; 54 (12): 2055-2061

    Abstract

    Planning hepatic (90)Y radioembolization activity requires balancing toxicity with efficacy. We developed a dual-tracer SPECT fusion imaging protocol that merges data on radioactivity distribution with physiologic liver mapping.Twenty-five patients with colorectal carcinoma and bilobar liver metastases received whole-liver radioembolization with resin microspheres prescribed as per convention (mean administered activity, 1.69 GBq). As part of standard treatment planning, all patients underwent SPECT imaging after intraarterial injection of 37 MBq of (99m)Tc-macroaggregated albumin ((99m)Tc-MAA) to simulate subsequent (90)Y distribution. Immediately afterward, patients received 185 MBq of labeled sulfur colloid ((99m)Tc-SC) intravenously as a biomarker for normal hepatic reticuloendothelial function and SPECT was repeated. The SPECT images were coregistered and fused. A region-based method was used to predict the (90)Y radiation absorbed dose to functional liver tissue (DFL) by calculation of (99m)Tc-MAA activity in regions with (99m)Tc-SC uptake. Similarly, the absorbed dose to tumor (DT) was predicted by calculation of (99m)Tc-MAA activity in voxels without (99m)Tc-SC uptake. Laboratory data and radiographic response were measured for 3 mo, and the survival of patients was recorded. SPECT-based DT and DFL were correlated with parameters of toxicity and efficacy.Toxicity, as measured by increase in serum liver enzymes, correlated significantly with SPECT-based calculation of DFL at all time points (P < 0.05) (mean DFL, 27.9 Gy). Broad biochemical toxicity (>50% increase in all liver enzymes) occurred at a DFL of 24.5 Gy and above. In addition, in uni- and multivariate analysis, SPECT-based calculation of DT (mean DT, 44.2 Gy) correlated with radiographic response (P < 0.001), decrease in serum carcinoembryonic antigen (P < 0.05), and overall survival (P < 0.01). The cutoff value of DT for prediction of 1-y survival was 55 Gy (area under the receiver-operating-characteristic curve = 0.86; P < 0.01). Patients who received a DT of more than 55 Gy had a median survival of 32.8 mo, compared with 7.2 mo in patients who received less (P < 0.05).Dual-tracer (99m)Tc-MAA-(99m)Tc-SC fusion SPECT offers a physiology-based imaging tool with significant prognostic power that may lead to improved personalized activity planning.

    View details for DOI 10.2967/jnumed.113.123257

    View details for PubMedID 24144563

  • Safety of repeated yttrium-90 radioembolization. Cardiovascular and interventional radiology Lam, M. G., Louie, J. D., Iagaru, A. H., Goris, M. L., Sze, D. Y. 2013; 36 (5): 1320-1328

    Abstract

    PURPOSE: Repeated radioembolization (RE) treatments carry theoretically higher risk of radiation-induced hepatic injury because of the liver's cumulative memory of previous exposure. We performed a retrospective safety analysis on patients who underwent repeated RE. METHODS: From 2004 to 2011, a total of 247 patients were treated by RE. Eight patients (5 men, 3 women, age range 51-71 years) underwent repeated treatment of a targeted territory, all with resin microspheres (SIR-Spheres; Sirtex, Lane Cove, Australia). Adverse events were graded during a standardized follow-up. In addition, the correlation between the occurrence of RE-induced liver disease (REILD) and multiple variables was investigated in univariate and multivariate analyses in all 247 patients who received RE. RESULTS: Two patients died shortly after the second treatment (at 84 and 107 days) with signs and symptoms of REILD. Both patients underwent whole liver treatment twice (cumulative doses 3.08 and 2.66 GBq). The other 6 patients demonstrated only minor toxicities after receiving cumulative doses ranging from 2.41 to 3.88 GBq. All patients experienced objective tumor responses. In the whole population, multifactorial analysis identified three risk factors associated with REILD: repeated RE (p = 0.036), baseline serum total bilirubin (p = 0.048), and baseline serum aspartate aminotransferase (p = 0.043). Repeated RE proved to be the only independent risk factor for REILD in multivariate analysis (odds ratio 9.6; p = 0.002). Additionally, the administered activity per target volume (in GBq/L) was found to be an independent risk factor for REILD, but only in whole liver treatments (p = 0.033). CONCLUSION: The risk of REILD appears to be elevated for repeated RE. Objective tumor responses were observed, but establishment of safety limits will require improvement in dosimetric measurement and prediction.

    View details for DOI 10.1007/s00270-013-0547-9

    View details for PubMedID 23354961

  • Imaging Tumor Angiogenesis: The Road to Clinical Utility AMERICAN JOURNAL OF ROENTGENOLOGY Iagaru, A., Gambhir, S. S. 2013; 201 (2): W183-W191

    Abstract

    OBJECTIVE. Tumor growth and progression require the formation of new blood vessels from preexisting vasculature, a process called angiogenesis. The ability to noninvasively visualize angiogenesis may provide new opportunities to more appropriately select patients for antiangiogenesis treatment and to monitor treatment efficacy. CONCLUSION. The superior molecular sensitivity of PET and the lack of radiation from MRI and contrast-enhanced ultrasound put these techniques at the forefront of clinical translation.

    View details for DOI 10.2214/AJR.12.8568

    View details for Web of Science ID 000322225400003

    View details for PubMedID 23883233

  • An Observational Study of Circulating Tumor Cells and F-18-FDG PET Uptake in Patients with Treatment-Naive Non-Small Cell Lung Cancer PLOS ONE Nair, V. S., Keu, K. V., Luttgen, M. S., Kolatkar, A., Vasanawala, M., Kuschner, W., Bethel, K., Iagaru, A. H., Hoh, C., Shrager, J. B., Loo, B. W., Bazhenova, L., Nieva, J., Gambhir, S. S., Kuhn, P. 2013; 8 (7)

    Abstract

    We investigated the relationship of circulating tumor cells (CTCs) in non-small cell lung cancer (NSCLC) with tumor glucose metabolism as defined by (18)F-fluorodeoxyglucose (FDG) uptake since both have been associated with patient prognosis.We performed a retrospective screen of patients at four medical centers who underwent FDG PET-CT imaging and phlebotomy prior to a therapeutic intervention for NSCLC. We used an Epithelial Cell Adhesion Molecule (EpCAM) independent fluid biopsy based on cell morphology for CTC detection and enumeration (defined here as High Definition CTCs or "HD-CTCs"). We then correlated HD-CTCs with quantitative FDG uptake image data calibrated across centers in a cross-sectional analysis.We assessed seventy-one NSCLC patients whose median tumor size was 2.8 cm (interquartile range, IQR, 2.0-3.6) and median maximum standardized uptake value (SUVmax) was 7.2 (IQR 3.7-15.5). More than 2 HD-CTCs were detected in 63% of patients, whether across all stages (45 of 71) or in stage I disease (27 of 43). HD-CTCs were weakly correlated with partial volume corrected tumor SUVmax (r = 0.27, p-value = 0.03) and not correlated with tumor diameter (r = 0.07; p-value = 0.60). For a given partial volume corrected SUVmax or tumor diameter there was a wide range of detected HD-CTCs in circulation for both early and late stage disease.CTCs are detected frequently in early-stage NSCLC using a non-EpCAM mediated approach with a wide range noted for a given level of FDG uptake or tumor size. Integrating potentially complementary biomarkers like these with traditional patient data may eventually enhance our understanding of clinical, in vivo tumor biology in the early stages of this deadly disease.

    View details for DOI 10.1371/journal.pone.0067733

    View details for Web of Science ID 000321425300025

    View details for PubMedID 23861795

    View details for PubMedCentralID PMC3702496

  • Pilot prospective evaluation of 99mTc-MDP scintigraphy, 18F NaF PET/CT, 18F FDG PET/CT and whole-body MRI for detection of skeletal metastases. Clinical nuclear medicine Iagaru, A., Young, P., Mittra, E., Dick, D. W., Herfkens, R., Gambhir, S. S. 2013; 38 (7): e290-6

    Abstract

    The aim of this study was to compare Tc-MDP bone scanning, F NaF PET/CT, F FDG PET/CT, and whole-body MRI (WBMRI) for detection of known osseous metastases.This prospective pilot trial (September 2007-April 2009) enrolled 10 participants (5 men, 5 women, 47-81 years old) diagnosed with cancer and known osseous metastases. F NaF PET/CT, F FDG PET/CT, and WBMRI were performed within 1 month for each participant.The image quality and evaluation of extent of disease were superior by F NaF PET/CT compared to Tc-MDP scintigraphy in all patients with skeletal lesions and compared to F FDG PET/CT in 3 of the patients with skeletal metastases. F NaF PET/CT showed osseous metastases where F FDG PET/CT was negative in another 3 participants. Extraskeletal metastases were identified by F FDG PET/CT in 6 participants. WBMRI with the combination of iterative decomposition of water and fat with echo asymmetry and least-squares estimation, short tau inversion recovery, and diffusion-weighted imaging pulse sequences showed fewer lesions than F NaF PET/CT in 5 patients, same number of lesions in 2 patients, and more lesions in 1 patient. WBMRI showed fewer lesions than F FDG in 3 patients and same lesions in 6 patients.Our pilot phase prospective trial demonstrated superior image quality and evaluation of skeletal disease extent with F NaF PET/CT compared to Tc-MDP scintigraphy and F FDG PET/CT, as well as the feasibility of multisequence WBMRI. In addition, F FDG PET/CT provided valuable soft-tissue information that can change disease management. Further evaluation of these findings using the recently introduced PET/MRI scanners is warranted.

    View details for DOI 10.1097/RLU.0b013e3182815f64

    View details for PubMedID 23455520

  • Pilot prospective evaluation of 99mTc-MDP scintigraphy, 18F NaF PET/CT, 18F FDG PET/CT and whole-body MRI for detection of skeletal metastases. Clinical nuclear medicine Iagaru, A., Young, P., Mittra, E., Dick, D. W., Herfkens, R., Gambhir, S. S. 2013; 38 (7): e290-6

    View details for DOI 10.1097/RLU.0b013e3182815f64

    View details for PubMedID 23455520

  • Utilizing SPECT/CT to improve small bowel transit studies Kulm, J., Iagaru, A., Quon, A. SOC NUCLEAR MEDICINE INC. 2013
  • Second Sino-American Conference on Nuclear Medicine JOURNAL OF NUCLEAR MEDICINE Delbeke, D., Alessio, A., Iagaru, A. 2013; 54 (4): 15N-16N

    View details for Web of Science ID 000316939200001

    View details for PubMedID 23546927

  • Combined F-18-Fluoride and F-18-FDG PET/CT Scanning for Evaluation of Malignancy: Results of an International Multicenter Trial JOURNAL OF NUCLEAR MEDICINE Iagaru, A., Mittra, E., Mosci, C., Dick, D. W., Sathekge, M., Prakash, V., Iyer, V., Lapa, P., Isidoro, J., de Lima, J. M., Gambhir, S. S. 2013; 54 (2): 176-183

    Abstract

    (18)F-FDG PET/CT is used in a variety of cancers, but because of variable rates of glucose metabolism, not all cancers are reliably identified. (18)F(-) PET/CT allows for the acquisition of highly sensitive and specific images of the skeleton. We prospectively evaluated combined (18)F(-)/(18)F-FDG as a single PET/CT examination for evaluation of cancer patients and compared it with separate (18)F(-) PET/CT and (18)F-FDG PET/CT scans.One hundred fifteen participants with cancer were prospectively enrolled in an international multicenter trial evaluating (18)F(-) PET/CT, (18)F-FDG PET/CT, and combined (18)F(-)/(18)F-FDG PET/CT. The 3 PET/CT scans were performed sequentially within 4 wk of one another for each patient.(18)F(-)/(18)F-FDG PET/CT allowed for accurate interpretation of radiotracer uptake outside the skeleton, with findings similar to those of (18)F-FDG PET/CT. In 19 participants, skeletal disease was more extensive on (18)F(-) PET/CT and (18)F(-)/(18)F-FDG PET/CT than on (18)F-FDG PET/CT. In another 29 participants, (18)F(-) PET/CT and (18)F(-)/(18)F-FDG PET/CT showed osseous metastases where (18)F-FDG PET/CT was negative. The extent of skeletal lesions was similar in 18 participants on all 3 scans.This trial demonstrated that combined (18)F(-)/(18)F-FDG PET/CT shows promising results when compared with separate (18)F(-) PET/CT and (18)F-FDG PET/CT for evaluation of cancer patients. This result opens the possibility for improved patient care and reduction in health-care costs, as will be further evaluated in future trials.

    View details for DOI 10.2967/jnumed.112.108803

    View details for Web of Science ID 000314691200016

    View details for PubMedID 23243299

  • An observational study of circulating tumor cells and (18)F-FDG PET uptake in patients with treatment-naive non-small cell lung cancer. PloS one Nair, V. S., Keu, K. V., Luttgen, M. S., Kolatkar, A., Vasanawala, M., Kuschner, W., Bethel, K., Iagaru, A. H., Hoh, C., Shrager, J. B., Loo, B. W., Bazhenova, L., Nieva, J., Gambhir, S. S., Kuhn, P. 2013; 8 (7)

    Abstract

    We investigated the relationship of circulating tumor cells (CTCs) in non-small cell lung cancer (NSCLC) with tumor glucose metabolism as defined by (18)F-fluorodeoxyglucose (FDG) uptake since both have been associated with patient prognosis.We performed a retrospective screen of patients at four medical centers who underwent FDG PET-CT imaging and phlebotomy prior to a therapeutic intervention for NSCLC. We used an Epithelial Cell Adhesion Molecule (EpCAM) independent fluid biopsy based on cell morphology for CTC detection and enumeration (defined here as High Definition CTCs or "HD-CTCs"). We then correlated HD-CTCs with quantitative FDG uptake image data calibrated across centers in a cross-sectional analysis.We assessed seventy-one NSCLC patients whose median tumor size was 2.8 cm (interquartile range, IQR, 2.0-3.6) and median maximum standardized uptake value (SUVmax) was 7.2 (IQR 3.7-15.5). More than 2 HD-CTCs were detected in 63% of patients, whether across all stages (45 of 71) or in stage I disease (27 of 43). HD-CTCs were weakly correlated with partial volume corrected tumor SUVmax (r = 0.27, p-value = 0.03) and not correlated with tumor diameter (r = 0.07; p-value = 0.60). For a given partial volume corrected SUVmax or tumor diameter there was a wide range of detected HD-CTCs in circulation for both early and late stage disease.CTCs are detected frequently in early-stage NSCLC using a non-EpCAM mediated approach with a wide range noted for a given level of FDG uptake or tumor size. Integrating potentially complementary biomarkers like these with traditional patient data may eventually enhance our understanding of clinical, in vivo tumor biology in the early stages of this deadly disease.

    View details for DOI 10.1371/journal.pone.0067733

    View details for PubMedID 23861795

  • 18F-FDG PET/CT Demonstration of Diffuse Lymphohistiocytic Granulomatous Vasculitis. Clinical nuclear medicine Kumar, M., Iagaru, A. 2013

    Abstract

    Surveillance FDG PET/CT was performed in a 75-year-old woman with history of melanoma and colon cancer. She had rash and erythematous papules on the forearms, elbows, knees, and thighs and then developed right-leg weakness, difficulty with fine motor movement, and ptosis. Chest CT identified a right-lung spiculated nodule. Skin and pulmonary nodule biopsies showed lymphohistiocytic infiltrate with granulomatous features, without lymphoid cells, metastatic carcinoma or melanoma cells, or microorganisms. Epstein-Barr immunostain result was negative, making lymphomatoid granuloma unlikely. The inflammatory process involved the peripheral vasculature on FDG PET, and given the related neuropathy, findings were compatible with granulomatous vasculitis.

    View details for DOI 10.1097/RLU.0b013e31827083a4

    View details for PubMedID 23510876

  • Initial investigation of F-18-NaF PET/CT for identification of vertebral sites amenable to surgical revision after spinal fusion surgery EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING Quon, A., Dodd, R., Iagaru, A., de Abreu, M. R., Hennemann, S., Alves Neto, J. M., Sprinz, C. 2012; 39 (11): 1737-1744

    Abstract

    A pilot study was performed in patients with recurrent back pain after spinal fusion surgery to evaluate the ability of (18)F-NaF PET/CT imaging to correctly identify those requiring surgical intervention and to locate a site amenable to surgical intervention.In this prospective study 22 patients with recurrent back pain after spinal surgery and with equivocal findings on physical examination and CT were enrolled for evaluation with (18)F-NaF PET/CT. All PET/CT images were prospectively reviewed with the primary objective of identifying or ruling out the presence of lesions amenable to surgical intervention. The PET/CT results were then validated during surgical exploration or clinical follow-up of at least 15 months.Abnormal (18)F-NaF foci were found in 16 of the 22 patients, and surgical intervention was recommended. These foci were located at various sites: screws, cages, rods, fixation hardware, and bone grafts. In 6 of the 22 patients no foci requiring surgical intervention were found. Validation of the results by surgery (15 patients) or on clinical follow-up (7 patients) showed that (18)F-NaF PET/CT correctly predicted the presence of an abnormality requiring surgical intervention in 15 of 16 patients and was falsely positive in 1 of 16.In this initial investigation, (18)F-NaF PET/CT imaging showed potential utility for evaluation of recurrent symptoms after spinal fusion surgery by identifying those patients requiring surgical management.

    View details for DOI 10.1007/s00259-012-2196-7

    View details for Web of Science ID 000309562600010

    View details for PubMedID 22895860

    View details for PubMedCentralID PMC3464378

  • Positron Emission Tomography of Cu-64-DOTA-Rituximab in a Transgenic Mouse Model Expressing Human CD20 for Clinical Translation to Image NHL MOLECULAR IMAGING AND BIOLOGY Natarajan, A., Gowrishankar, G., Nielsen, C. H., Wang, S., Iagaru, A., Goris, M. L., Gambhir, S. S. 2012; 14 (5): 608-616

    Abstract

    This study aims to evaluate (64)Cu-DOTA-rituximab (PETRIT) in a preclinical transgenic mouse model expressing human CD20 for potential clinical translation.(64)Cu was chelated to DOTA-rituximab. Multiple radiolabeling, quality assurance, and imaging experiments were performed. The human CD20 antigen was expressed in B cells of transgenic mice (CD20TM). The mice groups studied were: (a) control (nude mice, n = 3) that received 7.4 MBq/dose, (b) with pre-dose (CD20TM, n = 6) received 2 mg/kg pre-dose of cold rituximab prior to PETRIT of 7.4 MBq/dose, and (c) without pre-dose (CD20TM, n = 6) PETRIT alone received 7.4 MBq/dose. Small animal PET was used to image mice at various time points (0, 1, 2, 4, 24, 48, and 72 h). The OLINDA/EXM software was used to determine the human equivalent dose for individual organs.PETRIT was obtained with a specific activity of 545 ± 38.91 MBq/nmole, radiochemical purity >95%, and immunoreactivity >75%. At 24 h, spleenic uptake of PETRIT%ID/g (mean ± STD) with and without pre-dose was 1.76 ± 0.43% and 16.5 ± 0.45%, respectively (P value = 0.01). Liver uptake with and without pre-dose was 0.41 ± 0.51% and 0.52 ± 0.17% (P value = 0.86), respectively. The human equivalents of highest dose organs with and without pre-dose are osteogenic cells at 30.8 ± 0.4 μSv/MBq and the spleen at 99 ± 4 μSv/MBq, respectively.PET imaging with PETRIT in huCD20 transgenic mice provided human dosimetry data for eventual applications in non-Hodgkins lymphoma patients.

    View details for DOI 10.1007/s11307-011-0537-8

    View details for Web of Science ID 000308819300011

    View details for PubMedID 22231277

  • Metabolic Imaging Patterns of Complete Local Response to Chemoradiation in Patients with Nasopharyngeal Carcinoma: A Review Keu, K., Mittra, E., Iagaru, A. SPRINGER. 2012: S558
  • Post-Surgical 131I Ablation in Patients with Papillary Thyroid Cancer: The Role of Diagnostic 123I Whole Body Scan Iagaru, A., Mosci, C., Akatsu, H., Basina, M., Dosiou, C., McDougall, I. SPRINGER. 2012: S235
  • alpha v beta 3 Integrins as a Biomarker of Disease Recurrence in Glioblastoma Multiforme: Initial Clinical Results Using 18F FPPRGD2 PET/CT 4th International Symposium on Targeted Radiotherapy and Dosimetry (ISTARD) in Conjunction with the 25th Annual Congress of the European-Association-of-Nuclear-Medicine (EANM) Iagaru, A., Mosci, C., Mittra, E. S., Shin, B., Chin, F., Gambhir, S. S. SPRINGER. 2012: S244–S245
  • The Impact of Partial Volume Correction in the Evaluation of Solitary Pulmonary Nodules by FDG PET/CT in a Population at Intermediate Risk of Lung Cancer 4th International Symposium on Targeted Radiotherapy and Dosimetry (ISTARD) in Conjunction with the 25th Annual Congress of the European-Association-of-Nuclear-Medicine (EANM) Keu, K., Nair, V. S., Mittra, E., Gambhir, S. S., Iagaru, A. SPRINGER. 2012: S455–S455
  • F-18-FDG PET/CT Demonstration of a Liver Metastasis in a Patient With Papillary Thyroid Cancer CLINICAL NUCLEAR MEDICINE Mosci, C., McDougall, I. R., Jeffrey, R. B., Iagaru, A. 2012; 37 (9): E234-E236

    Abstract

    A 51-year-old woman with papillary thyroid cancer had recurrent disease. An unexpected FDG-avid hepatic metastasis was identified. Follow-up contrast-enhanced CT scan showed a hepatic lesion, compatible with malignancy. Histopathologic examination demonstrated metastatic carcinoma, consistent with thyroid primary. Few studies reported liver metastases originating from thyroid cancer on FDG PET. These were medullary thyroid carcinomas (MTC) or poorly differentiated cancers. There are no reports describing liver metastasis from PTC diagnosed by FDG PET/CT.

    View details for DOI 10.1097/RLU.0b013e318262ae07

    View details for Web of Science ID 000307808000007

    View details for PubMedID 22889801

  • Validation that metabolic tumor volume predicts outcome in head-and-neck cancer. International journal of radiation oncology, biology, physics Tang, C., Murphy, J. D., Khong, B., La, T. H., Kong, C., Fischbein, N. J., Colevas, A. D., Iagaru, A. H., Graves, E. E., Loo, B. W., Le, Q. 2012; 83 (5): 1514-1520

    Abstract

    We have previously reported that metabolic tumor volume (MTV) obtained from pretreatment (18)F-fluorodeoxydeglucose positron emission tomography (FDG PET)/ computed tomography (CT) predicted outcome in patients with head-and-neck cancer (HNC). The purpose of this study was to validate these results on an independent dataset, determine whether the primary tumor or nodal MTV drives this correlation, and explore the interaction with p16(INK4a) status as a surrogate marker for human papillomavirus (HPV).The validation dataset in this study included 83 patients with squamous cell HNC who had a FDG PET/CT scan before receiving definitive radiotherapy. MTV and maximum standardized uptake value (SUV(max)) were calculated for the primary tumor, the involved nodes, and the combination of both. The primary endpoint was to validate that MTV predicted progression-free survival and overall survival. Secondary analyses included determining the prognostic utility of primary tumor vs. nodal MTV.Similarly to our prior findings, an increase in total MTV of 17 cm(3) (difference between the 75th and 25th percentiles) was associated with a 2.1-fold increase in the risk of disease progression (p = 0.0002) and a 2.0-fold increase in the risk of death (p = 0.0048). SUV(max) was not associated with either outcome. Primary tumor MTV predicted progression-free (hazard ratio [HR] = 1.94; p < 0.0001) and overall (HR = 1.57; p < 0.0001) survival, whereas nodal MTV did not. In addition, MTV predicted progression-free (HR = 4.23; p < 0.0001) and overall (HR = 3.21; p = 0.0029) survival in patients with p16(INK4a)-positive oropharyngeal cancer.This study validates our previous findings that MTV independently predicts outcomes in HNC. MTV should be considered as a potential risk-stratifying biomarker in future studies of HNC.

    View details for DOI 10.1016/j.ijrobp.2011.10.023

    View details for PubMedID 22270174

  • Prognostic Value of Metabolic Tumor Volume and Velocity in Predicting Head-and-Neck Cancer Outcomes INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS Chu, K. P., Murphy, J. D., La, T. H., Krakow, T. E., Iagaru, A., Graves, E. E., Hsu, A., Maxim, P. G., Loo, B., Chang, D. T., Quynh-Thu Le, Q. T. 2012; 83 (5): 1521-1527

    Abstract

    We previously showed that metabolic tumor volume (MTV) on positron emission tomography-computed tomography (PET-CT) predicts for disease recurrence and death in head-and-neck cancer (HNC). We hypothesized that increases in MTV over time would correlate with tumor growth and biology, and would predict outcome. We sought to examine tumor growth over time in serial pretreatment PET-CT scans.From 2006 to 2009, 51 patients had two PET-CT scans before receiving HNC treatment. MTV was defined as the tumor volume ≥ 50% of maximum SUV (SUV(max)). MTV was calculated for the primary tumor, nodal disease, and composite (primary tumor + nodes). MTV and SUV velocity were defined as the change in MTV or SUV(max) over time, respectively. Cox regression analyses were used to examine correlations between SUV, MTV velocity, and outcome (disease progression and overall survival).The median follow-up time was 17.5 months. The median time between PET-CT scans was 3 weeks. Unexpectedly, 51% of cases demonstrated a decrease in SUV(max) (average, -0.1 cc/week) and MTV (average, -0.3 cc/week) over time. Despite the variability in MTV, primary tumor MTV velocity predicted disease progression (hazard ratio 2.94; p = 0.01) and overall survival (hazard ratio 1.85; p = 0.03).Primary tumor MTV velocity appears to be a better prognostic indicator of disease progression and survival in comparison to nodal MTV velocity. However, substantial variability was found in PET-CT biomarkers between serial scans. Caution should be used when PET-CT biomarkers are integrated into clinical protocols for HNC.

    View details for DOI 10.1016/j.ijrobp.2011.10.022

    View details for Web of Science ID 000306128100047

    View details for PubMedID 22270168

    View details for PubMedCentralID PMC3337882

  • Validation that Metabolic Tumor Volume Predicts Outcome in Head-and-Neck Cancer INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS Tang, C., Murphy, J. D., Khong, B., La, T. H., Kong, C., Fischbein, N. J., Colevas, A. D., Iagaru, A. H., Graves, E. E., Loo, B. W., Quynh-Thu Le, Q. T. 2012; 83 (5): 1514-1520

    Abstract

    We have previously reported that metabolic tumor volume (MTV) obtained from pretreatment (18)F-fluorodeoxydeglucose positron emission tomography (FDG PET)/ computed tomography (CT) predicted outcome in patients with head-and-neck cancer (HNC). The purpose of this study was to validate these results on an independent dataset, determine whether the primary tumor or nodal MTV drives this correlation, and explore the interaction with p16(INK4a) status as a surrogate marker for human papillomavirus (HPV).The validation dataset in this study included 83 patients with squamous cell HNC who had a FDG PET/CT scan before receiving definitive radiotherapy. MTV and maximum standardized uptake value (SUV(max)) were calculated for the primary tumor, the involved nodes, and the combination of both. The primary endpoint was to validate that MTV predicted progression-free survival and overall survival. Secondary analyses included determining the prognostic utility of primary tumor vs. nodal MTV.Similarly to our prior findings, an increase in total MTV of 17 cm(3) (difference between the 75th and 25th percentiles) was associated with a 2.1-fold increase in the risk of disease progression (p = 0.0002) and a 2.0-fold increase in the risk of death (p = 0.0048). SUV(max) was not associated with either outcome. Primary tumor MTV predicted progression-free (hazard ratio [HR] = 1.94; p < 0.0001) and overall (HR = 1.57; p < 0.0001) survival, whereas nodal MTV did not. In addition, MTV predicted progression-free (HR = 4.23; p < 0.0001) and overall (HR = 3.21; p = 0.0029) survival in patients with p16(INK4a)-positive oropharyngeal cancer.This study validates our previous findings that MTV independently predicts outcomes in HNC. MTV should be considered as a potential risk-stratifying biomarker in future studies of HNC.

    View details for DOI 10.1016/j.ijrobp.2011.10.023

    View details for Web of Science ID 000306128100046

    View details for PubMedCentralID PMC3337958

  • (18)F NaF PET/CT in the Assessment of Malignant Bone Disease. PET clinics Mosci, C., Iagaru, A. 2012; 7 (3): 263-274

    Abstract

    Diagnostic imaging plays a major role in the evaluation of patients with malignant bone disease. (18)F-Labeled sodium fluoride ((18)F NaF) is a positron-emitting radiopharmaceutical with desirable characteristics (rapid blood clearance and bone uptake) for high-quality functional imaging of the skeleton. In addition to higher sensitivity and specificity, (18)F NaF PET combined with computed tomography (PET/CT) allows for shorter imaging time, thus improving patients' convenience and benefiting the overall workflow of the imaging facility. Although as yet no robust evidence-based data exist, this article summarizes the published data currently available on the role of (18)F NaF PET/CT in the assessment of malignant bone disease.

    View details for DOI 10.1016/j.cpet.2012.04.003

    View details for PubMedID 27157457

  • Correlating circulating tumor cells with F-18-FDG positron emission tomography (PET) uptake in patients with treatment naive non-small cell lung cancer: A pilot study Kuhn, P., Keu, K., Nair, V. S., Luttgen, M., Maestas, S., Bethel, K., Souder, K., Vasanawala, M., Kuschner, W., Iagaru, A. H., Hoh, C., Nieva, J., Bazhenova, L., Gambhir, S. S. AMER ASSOC CANCER RESEARCH. 2012
  • Prospective Evaluation of Tc-99m MDP Scintigraphy, F-18 NaF PET/CT, and F-18 FDG PET/CT for Detection of Skeletal Metastases MOLECULAR IMAGING AND BIOLOGY Iagaru, A., Mittra, E., Dick, D. W., Gambhir, S. S. 2012; 14 (2): 252-259

    Abstract

    Technetium (Tc) methylene diphosphonate (MDP) has been the standard method for bone scintigraphy for three decades. (18)F sodium fluoride ((18)F NaF) positron emission tomography (PET)/computed tomography (CT) has better resolution and is considered superior. The role of 2-deoxy-2-[(18)F]fluoro-D-glucose ((18)F FDG) PET/CT is proven in a variety of cancers, for which it has changed the practice of oncology. There are few prospective studies comparing these three methods of detection of skeletal metastases. Thus, we were prompted to initiate this prospective pilot trial.This is a prospective study (Sep 2007-Dec 2010) of 52 patients with proven malignancy referred for evaluation of skeletal metastases. There were 37 men and 15 women, 19-84 years old (average, 55.6 ± 15.9). Technetium-99m ((99m)Tc) MDP bone scintigraphy, (18)F NaF PET/CT, and (18)F FDG PET/CT were subsequently performed within 1 month.Skeletal lesions were detected by (99m)Tc MDP bone scintigraphy in 22 of 52 patients, by (18)F NaF PET/CT in 24 of 52 patients, and by (18)F FDG PET/CT in 16 of 52 patients. The image quality and evaluation of extent of disease were superior by (18)F NaF PET/CT over (99m)Tc MDP scintigraphy in all 22 patients with skeletal lesions on both scans and over (18)F FDG PET/CT in 11 of 16 patients with skeletal metastases on (18)F FDG PET/CT. In two patients, (18)F NaF PET/CT showed skeletal metastases not seen on either of the other two scans. Extraskeletal lesions were identified by (18)F FDG PET/CT in 28 of 52 subjects.Our prospective pilot-phase trial demonstrates superior image quality and evaluation of skeletal disease extent with (18)F NaF PET/CT over (99m)Tc MDP scintigraphy and (18)F FDG PET/CT. At the same time, (18)F FDG PET detects extraskeletal disease that can significantly change disease management. As such, a combination of (18)F FDG PET/CT and (18)F NaF PET/CT may be necessary for cancer detection. Additional evaluation with larger cohorts is required to confirm these preliminary findings.

    View details for DOI 10.1007/s11307-011-0486-2

    View details for Web of Science ID 000301584100013

    View details for PubMedID 21479710

  • Demonstration of peripheral nerve root involvement by non-Hodgkin's lymphoma on F-18-FDG PET/CT EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING Guo, H., Mosci, C., Iagaru, A. 2012; 39 (4): 729-730

    View details for DOI 10.1007/s00259-011-2000-0

    View details for Web of Science ID 000302287500024

    View details for PubMedID 22124779

  • Prospective comparison of combined F-18-FDG and F-18-NaF PET/CT vs. F-18-FDG PET/CT imaging for detection of malignancy EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING Lin, F. I., Rao, J. E., Mittra, E. S., Nallapareddy, K., Chengapa, A., Dick, D. W., Gambhir, S. S., Iagaru, A. 2012; 39 (2): 262-270

    Abstract

    Typically, (18)F-FDG PET/CT and (18)F-NaF PET/CT scans are done as two separate studies on different days to allow sufficient time for the radiopharmaceutical from the first study to decay. This is inconvenient for the patients and exposes them to two doses of radiation from the CT component of the examinations. In the current study, we compared the clinical usefulness of a combined (18)F-FDG/(18)F-NaF PET/CT scan with that of a separate (18)F-FDG-only PET/CT scan.There were 62 patients enrolled in this prospective trial. All had both an (18)F-FDG-alone PET/CT scan and a combined (18)F-FDG/(18)F-NaF PET/CT scan. Of the 62 patients, 53 (85%) received simultaneous tracer injections, while 9 (15%) received (18)F-NaF subsequent to the initial (18)F-FDG dose (average delay 2.2 h). Images were independently reviewed for PET findings by two Board-Certified nuclear medicine physicians, with discrepancies resolved by a third reader. Interpreters were instructed to only report findings that were concerning for malignancy. Reading the (18)F-FDG-only scan first for half of the patients controlled for order bias.In 15 of the 62 patients (24%) neither the (18)F-FDG-only PET/CT scan nor the combined (18)F-FDG/(18)F-NaF PET/CT scan identified malignancy. In the remaining 47 patients who had PET findings of malignancy, a greater number of lesions were detected in 16 of 47 patients (34%) using the combined (18)F-FDG/(18)F-NaF PET/CT scan compared to the (18)F-FDG-only PET/CT scan. In 2 of these 47 patients (4%), the (18)F-FDG-only scan demonstrated soft tissue lesions that were not prospectively identified on the combined study. In 29 of these 47 patients (62%), the combined scan detected an equal number of lesions compared to the (18)F-FDG-only scan. Overall, 60 of all the 62 patients (97%) showed an equal or greater number of lesions on the combined scan than on the (18)F-FDG-only scan.The current study demonstrated that (18)F-FDG and (18)F-NaF can be combined in a single PET/CT scan by administering the two radiopharmaceuticals simultaneously or in sequence on the same day. In addition to patient convenience and reduced radiation exposure from the CT component, the combined (18)F-FDG/(18)F-NaF PET/CT scan appeared to increase the sensitivity for detection of osseous lesions compared to the (18)F-FDG-only PET/CT scan in the studied population.

    View details for DOI 10.1007/s00259-011-1971-1

    View details for Web of Science ID 000302286600009

    View details for PubMedID 22065013

  • Response to Intra-Arterial Oncolytic Virotherapy with the Herpes Virus NV1020 Evaluated by [F-18]Fluorodeoxyglucose Positron Emission Tomography and Computed Tomography HUMAN GENE THERAPY Sze, D. Y., Iagaru, A. H., Gambhir, S. S., de Haan, H. A., Reid, T. R. 2012; 23 (1): 91-97

    Abstract

    Oncolytic virotherapy poses unique challenges to the evaluation of tumor response. We hypothesized that the addition of [(18)F]fluorodeoxyglucose (FDG) positron emission tomography (PET) to standard computed tomography (CT) evaluation would improve diagnostic and prognostic power of the measurement of tumor response to oncolytic virotherapy. A phase I/II trial was conducted to investigate treatment of hepatic metastases from colorectal carcinoma using intra-arterial administration of the oncolytic herpes virus NV1020. Both contrast-enhanced CT and FDG PET were obtained on each patient at each time point. Quantitative FDG PET and CT responses were correlated with each other and with clinical outcome metrics. A majority of patients showed initial post-viral infusion increases in tumor size (69%) or in standardized uptake value (SUV) (80%) large enough to qualify as progressive disease. Most showed subsequent decreases in tumor size (64%) or SUV (83%) enough to be reclassified as partial response or stable disease. Late PET and CT imaging results correlated well with each other and with clinical outcomes, but results from early in the treatment scheme did not correlate with each other, with later results, or with clinical outcomes. The addition of FDG PET to the evaluation of tumor response to the oncolytic virus NV1020 did not provide useful diagnostic or prognostic data. More sophisticated molecular imaging will need to be developed to monitor the effects of this novel class of antineoplastic agents.

    View details for DOI 10.1089/hum.2011.141

    View details for Web of Science ID 000299604000011

    View details for PubMedID 21895536

  • Correlation between metabolic tumor volume and pathologic tumor volume in squamous cell carcinoma of the oral cavity RADIOTHERAPY AND ONCOLOGY Murphy, J. D., Chisholm, K. M., Daly, M. E., Wiegner, E. A., Truong, D., Iagaru, A., Maxim, P. G., Loo, B. W., Graves, E. E., Kaplan, M. J., Kong, C., Le, Q. 2011; 101 (3): 356-361

    Abstract

    To explore the relationship between pathologic tumor volume and volume estimated from different tumor segmentation techniques on (18)F-fluorodeoxyglucose (FDG) positron emission tomography (PET) in oral cavity cancer.Twenty-three patients with squamous cell carcinoma of the oral tongue had PET-CT scans before definitive surgery. Pathologic tumor volume was estimated from surgical specimens. Metabolic tumor volume (MTV) was defined from PET-CT scans as the volume of tumor above a given SUV threshold. Multiple SUV thresholds were explored including absolute SUV thresholds, relative SUV thresholds, and gradient-based techniques.Multiple MTV's were associated with pathologic tumor volume; however the correlation was poor (R(2) range 0.29-0.58). The ideal SUV threshold, defined as the SUV that generates an MTV equal to pathologic tumor volume, was independently associated with maximum SUV (p=0.0005) and tumor grade (p=0.024). MTV defined as a function of maximum SUV and tumor grade improved the prediction of pathologic tumor volume (R(2)=0.63).Common SUV thresholds fail to predict pathologic tumor volume in head and neck cancer. The optimal technique that allows for integration of PET-CT with radiation treatment planning remains to be defined. Future investigation should incorporate biomarkers such as tumor grade into definitions of MTV.

    View details for DOI 10.1016/j.radonc.2011.05.040

    View details for Web of Science ID 000298894700003

    View details for PubMedID 21665308

    View details for PubMedCentralID PMC3178721

  • PET/CT Imaging of Thyroid Cancer CLINICAL NUCLEAR MEDICINE Mosci, C., Iagaru, A. 2011; 36 (12): E180-E185

    Abstract

    Positron emission tomography (PET) is a highly sensitive, low invasive technology for cancer biology imaging. The role of F-18 FDG PET/CT in differentiated thyroid cancer (DTC) is well established, particularly in patients presenting with elevated Tg levels and negative radioactive iodine WBS. It has been demonstrated that F-18 FDG uptake represents less differentiated thyroid cancer cells or dedifferentiated cells and PET positive lesions are more likely to be resistant to I treatment. The uptake of F-18 FDG is related to tumor size, thyroid capsule invasion and histological variants with a poor prognosis. As in other cancers, early detection of recurrences improves outcomes and survival. I PET/CT can also be used to image the patients with DTC, similarly to I WBS. Compared with F-18 FDG PET/CT, its spatial resolution is only slightly degraded but increasing the imaging time reduces this difference. In addition, F-18 FDG PET/CT has been found helpful in the management of patients with anaplastic and medullary thyroid cancer. Other radiopharmaceuticals such as Ga-DOTATOC and F-18 DOPA may provide complimentary information to F-18 FDG PET/CT in the detection of recurrent thyroid cancer.

    View details for DOI 10.1097/RLU.0b013e3182291d03

    View details for Web of Science ID 000296796800001

    View details for PubMedID 22064103

  • Pilot Pharmacokinetic and Dosimetric Studies of F-18-FPPRGD2: A PET Radiopharmaceutical Agent for Imaging alpha(v)beta(3) Integrin Levels RADIOLOGY Mittra, E. S., Goris, M. L., Iagaru, A. H., Kardan, A., Burton, L., Berganos, R., Chang, E., Liu, S., Shen, B., Chin, F. T., Chen, X., Gambhir, S. S. 2011; 260 (1): 182-191

    Abstract

    To assess the safety, biodistribution, and dosimetric properties of the positron emission tomography (PET) radiopharmaceutical agent fluorine 18 ((18)F) FPPRGD2 (2-fluoropropionyl labeled PEGylated dimeric RGD peptide [PEG3-E{c(RGDyk)}2]), which is based on the dimeric arginine-glycine-aspartic acid (RGD) peptide sequence and targets α(v)β(3) integrin, in the first volunteers imaged with this tracer.The protocol was approved by the institutional review board, and written informed consent was obtained from all participants. Five healthy volunteers underwent whole-body combined PET-computed tomography 0.5, 1.0, 2.0, and 3.0 hours after tracer injection (mean dose, 9.5 mCi ± 3.4 [standard deviation] [351.5 MBq ± 125.8]; mean specific radioactivity, 1200 mCi/mmol ± 714 [44.4 GBq/mmol ± 26.4]). During this time, standard vital signs, electrocardiographic (ECG) readings, and blood sample values (for chemistry, hematologic, and liver function tests) were checked at regular intervals and 1 and 7 days after the injection. These data were used to evaluate tracer biodistribution and dosimetric properties, time-activity curves, and the stability of laboratory values. Significant changes in vital signs and laboratory values were evaluated by using a combination of population-averaged generalized estimating equation regression and exact paired Wilcoxon tests.The administration of (18)F-FPPRGD2 was well tolerated, with no marked effects on vital signs, ECG readings, or laboratory values. The tracer showed the same pattern of biodistribution in all volunteers: primary clearance through the kidneys (0.360 rem/mCi ± 0.185 [0.098 mSv/MBq ± 0.050]) and bladder (0.862 rem/mCi ± 0.436 [0.233 mSv/MBq ± 0.118], voiding model) and uptake in the spleen (0.250 rem/mCi ± 0.168 [0.068 mSv/MBq ± 0.046]) and large intestine (0.529 rem/mCi ± 0.236 [0.143 mSv/MBq ± 0.064]). The mean effective dose of (18)F-FPPRGD2 was 0.1462 rem/mCi ± 0.0669 (0.0396 mSv/MBq ± 0.0181). With an injected dose of 10 mCi (370 MBq) and a 1-hour voiding interval, a patient would be exposed to an effective radiation dose of 1.5 rem (15 mSv). Above the diaphragm, there was minimal uptake in the brain ventricles, salivary glands, and thyroid gland. Time-activity curves showed rapid clearance from the vasculature, with a mean 26% ± 17 of the tracer remaining in the circulation at 30 minutes and most of the activity occurring in the plasma relative to cells (mean whole blood-plasma ratio, 0.799 ± 0.096).(18)F-FPPRGD2 has desirable pharmacokinetic and biodistribution properties. The primary application is likely to be PET evaluation of oncologic patients-especially those with brain, breast, or lung cancer. Specific indications may include tumor staging, identifying patients who would benefit from antiangiogenesis therapy, and separating treatment responders from nonresponders early.

    View details for DOI 10.1148/radiol.11101139

    View details for Web of Science ID 000291932300021

    View details for PubMedID 21502381

    View details for PubMedCentralID PMC3121013

  • FDG-PET/CT in Cancers of the Head and Neck: What is the Definition of Whole Body Scanning? MOLECULAR IMAGING AND BIOLOGY Iagaru, A., Mittra, E. S., Gambhir, S. S. 2011; 13 (2): 362-367

    Abstract

    The role of 2-deoxy-2-[F-18]fluoro-D-glucose-positron emission tomography (FDG-PET) was studied in a variety of cancers, including head and neck squamous cell carcinomas (HNSCC) and nasopharyngeal carcinomas (NPC), with several presentations indicating that for these clinical entities a "whole-body" (i.e., eyes to thighs) may yield little additional information. Therefore, we were prompted to review our experience with PET/computed tomography (CT) in the management of patients with HNSCC and NPC.This is a retrospective study of 133 patients with HNSCC, 23-90 years old (average: 58.2 ± 12.7) and 26 patients with NPC, ages 16-75 (average: 47.3 ± 17.1), who had whole body PET/CT at our institution from Jan 2003 to Nov 2006. Reinterpretation of the imaging studies for accuracy and data analysis from medical records was performed. Lesions identified on PET/CT below the level of the adrenal glands were recorded and tabulated.Lesions were identified below the adrenal glands in seven patients (5.2%) with HNSCC. These included hepatic and osseous metastases from HNSCC in two patients (1.5%), a new renal cancer (0.75%), a new pancreatic cancer (0.75%), a new colon cancer (0.75%) and findings proven benign on follow-up (focal colon uptake in one patient and an inflammatory inguinal lymph node in another patient; 1.5%). Lesions were identified below the adrenal glands in three patients (11.5%) with NPC. These included osseous metastases from NPC in two patients (7.7%) and findings proven benign on follow-up (focal colon uptake in one patient; 3.84%).This study suggests that whole body PET/CT imaging in HNSCC has a relatively low yield (3%, 95% CI: 1.33-8.42) of significant findings below the level of the adrenal glands. Therefore, implementing a more limited protocol (through the level of adrenal glands), especially in low-risk cases of HNSCC, may be considered. However, whole body PET/CT imaging in NPC may have a significant yield (7.7%, 95% CI: 1.02-25.26) of medically relevant findings below the level of the adrenal glands. Thus, the whole body (i.e., vertex to thighs) PET/CT scan of NPC patients appears to be the appropriate imaging protocol for this population. This recommendation requires further evaluation and validation in larger prospective studies.

    View details for DOI 10.1007/s11307-010-0343-8

    View details for Web of Science ID 000288177700021

    View details for PubMedID 20495879

  • Thyroid Stunning: Fact or Fiction? SEMINARS IN NUCLEAR MEDICINE McDougall, I. R., Iagaru, A. 2011; 41 (2): 105-112

    Abstract

    Stunning of thyroid tissue by diagnostic activities of (131)I has been described by some investigators and refuted by others. The support both for and against stunning has at times been enthusiastic and vigorous. We present the data from both sides of the debate in an attempt to highlight the strengths and deficiencies in the investigations cited. Clinical, animal, and in vitro studies are included. There are considerable differences in clinical practice, such as the administered activity for diagnostic whole-body scan, delay between diagnostic scan and treatment, time between treatment and posttherapy scanning, and timing of follow-up studies, that have to be analyzed with care. Other factors that often cannot be judged, such as levels of thyroid-stimulating hormone and serum iodine at time of diagnostic testing versus treatment could have an influence on stunning. Larger diagnostic doses and longer delays to therapy appear to increase the likelihood of stunning. The stunning effect of early-absorbed radiation from the therapy should also be considered.

    View details for DOI 10.1053/j.semnuclmed.2010.10.004

    View details for Web of Science ID 000287263600006

    View details for PubMedID 21272684

  • Case 166: Metastatic Left Pulmonary Artery Sarcoma RADIOLOGY Mittra, E. S., Iagaru, A. H., Leung, A. N. 2011; 258 (2): 645-648

    View details for DOI 10.1148/radiol.10082169

    View details for Web of Science ID 000286653700037

    View details for PubMedID 21273527

  • (18)F-FDG PET/CT: timing for evaluation of response to therapy remains a clinical challenge. American journal of nuclear medicine and molecular imaging Iagaru, A. 2011; 1 (1): 63-64

    Abstract

    Utilizing novel imaging modalities for defining response and predicting long-term outcome after treatment may have a significant impact on cancer patient management. (18)F-FDG PET/CT has great potential for use in early assessment of response to cancer therapy. However, the lack of a general consensus on a specific set of response criteria makes adoption of PET difficult for the oncology community. The optimal time after initiating therapy for assessing response to treatment also has yet to be clearly determined.

    View details for PubMedID 23133796

    View details for PubMedCentralID PMC3477715

  • Current concepts and future directions in radioimmunotherapy. Current drug discovery technologies Lin, F. I., Iagaru, A. 2010; 7 (4): 253-262

    Abstract

    Radioimmunotherapy relies on the principles of immunotherapy, but expands the cytotoxic effects of the antibody by complexing it with a radiation-emitting particle. If we consider radioimmunotherapy as a step beyond immunotherapy of cancer, the step was prompted by the (relative) failure of the latter. The conventional way to explain the failure is a lack of intrinsic killing effect and a lack of penetration into poorly vascularized tumor masses. The addition of a radioactive label (usually a β-emitter) to the antibody would improve both. Radiation is lethal and the type of radiation used (beta rays) has a sufficient range to overcome the lack of antibody penetration. At present, the most successful (and FDA approved) radioimmunotherapy agents for lymphomas are anti-CD20 monoclonal antibodies. Rituximab (Rituxan(®)) is a chimeric antibody, used as a non-radioactive antibody and to pre-load the patient when Zevalin(®) is used. Zevalin(®) is the Yttrium-90 ((90)Y) or Indium-111 ((111)In) labeled form of Ibritumomab Tiuxetan. Bexxar(®) is the Iodine-131 ((131)I) labeled form of Tositumomab. Ibritumomab Tiuxetan and Tositumomab are murine anti-CD20 monoclonal antibodies, not chimeric antibodies. Promising research is being done to utilize radioimmunotherapy earlier in the treatment algorithm for lymphoma, including as initial, consolidation, and salvage therapies. However, despite more than 8 years since initial regulatory approval, radioimmunotherapy still has not achieved widespread use due to a combination of medical, scientific, logistic, and financial barriers. Other experimental uses for radioimmunotherapy include other solid tumors to treat infections. Optimization can potentially be done with pre-targeting and bi-specific antibodies. Alpha particle and Auger electron emitters show promise as future radioimmunotherapy agents but are mostly still in pre-clinical stages.

    View details for PubMedID 21034409

  • [F-18]FPPRGD2 PET/CT Imaging of Integrin Expression in Healthy Volunteers 23rd Annual Congress of the European-Association-of-Nuclear-Medicine (EANM) Mittra, E., Iagaru, A., Goris, M. L., Chin, F., Chen, X., Gambhir, S. S. SPRINGER. 2010: S287–S287
  • Combined F-18 Fluoride and F-18 FDG PET/CT Scan for Evaluation of Malignancy: Beyond the Pilot Phase Study 23rd Annual Congress of the European-Association-of-Nuclear-Medicine (EANM) Iagaru, A., Mittra, E., Dick, D. W., Gambhir, S. S. SPRINGER. 2010: S200–S200
  • Tumor Measurements by F-18-FDG PET: How Accurate are they? 23rd Annual Congress of the European-Association-of-Nuclear-Medicine (EANM) Mittra, E., Iagaru, A., Gambhir, S. S. SPRINGER. 2010: S330–S331
  • F-18 FDG PET/CT Demonstration of Lymphohistiocytic Meningitis CLINICAL NUCLEAR MEDICINE Mansouri, M. A., Iagaru, A. 2010; 35 (8): 633-634

    View details for Web of Science ID 000279892100023

    View details for PubMedID 20631522

  • (18)F-FDG-PET and PET/CT for Evaluating Primary Bone Tumors. PET clinics Mittra, E., Iagaru, A. 2010; 5 (3): 327-339

    Abstract

    Imaging is critical for the proper evaluation of patients with primary tumors of bone. There is a growing role for (18)F-fluorodeoxyglucose PET and PET/computed tomography (CT) in the grading, staging, prognostication, evaluation of therapeutic response, and detection of recurrent disease in bone. These modalities can also be used to help differentiate benign from malignant disorders of bone.

    View details for DOI 10.1016/j.cpet.2010.04.004

    View details for PubMedID 27157837

  • I-131-Tositumomab (BexxarA (R)) vs. Y-90-Ibritumomab (ZevalinA (R)) Therapy of Low-Grade Refractory/Relapsed Non-Hodgkin Lymphoma MOLECULAR IMAGING AND BIOLOGY Iagaru, A., Mittra, E. S., Ganjoo, K., Knox, S. J., Goris, M. L. 2010; 12 (2): 198-203

    Abstract

    The American Cancer Society estimated 66,120 new cases of non-Hodgkin lymphoma (NHL) in the USA in 2008. Radioimmunotherapy has been shown in clinical trials to be an effective treatment for refractory/relapsed NHL. The available agents are Bexxar, a (131)I radiolabeled murine monoclonal antibody, and Zevalin, a (90)Y radiolabeled murine antibody. Both target CD20 receptors present on the surface of lymphocytes. We present our clinical experience with Bexxar and Zevalin in the management of low-grade refractory or relapsed NHL.This is a retrospective study (Jan 2000-Jul 2006) of 67 patients with NHL, who were treated with Bexxar (31 patients, group A) or Zevalin (36 patients, group B) for refractory/relapsed disease. Group A included 16 men and 15 women, 35-81 years old (average, 59.3 +/- 13.4). Group B included 27 men and nine women, 36-85 years old (average, 55.4 +/- 13.8). Therapeutic doses ranged 40-138 mCi (average, 78.1 +/- 28.2) for Bexxar and 17-34 mCi (average, 28.8 +/- 4.37) for Zevalin.Objective responses were induced in 22 of the 31 patients (70.9%) in group A and 28 of the 36 patients (77.8%) in group B. Complete response was noted in 11 patients (35.5%), partial response in seven patients (22.6%), and mixed response in four patients (12.9%) in group A. There were five patients (16.1%) with stable disease and four patients (12.9%) with disease progression in the same group. Complete response was noted in 15 patients (41.7%), partial response in nine patients (25%), and mixed response in four patients (11.1%) in group B. There were four patients (11.1%) with stable disease and another four patients (11.1%) with disease progression in the same group. The average decreases at posttherapy nadir were 36.9% +/- 0.33 (group A) and 52.6% +/- 0.32 (group B) for platelets, 27.8% +/- 0.27 (group A) and 34.2% +/- 0.38 (group B) for leukocytes, and 4.9% +/- 0.15 (group A) and 7.6% +/- 0.11 (group B) for hemoglobin. Grades 3 and 4 hematological toxicity occurred in 14 patients (45.2%) treated with Bexxar and 22 patients (61.1%) treated with Zevalin, but was reversible.Our study suggests that clinical practice of Bexxar and Zevalin radioimmunotherapy is an effective and safe adjunctive treatment for patients with NHL refractory/relapsed to conventional treatment. However, due to the small number of subjects, it was not possible to determine whether differences in the outcomes or toxicities from the two agents were statistically significant.

    View details for DOI 10.1007/s11307-009-0245-9

    View details for Web of Science ID 000275974900010

    View details for PubMedID 19543946

  • Combined F-18-FDG and Fluoride Approach in PET/CT Imaging: Is There a Clinical Future? REPLY JOURNAL OF NUCLEAR MEDICINE Iagaru, A., Mittra, E., Goris, M. L., Gambhir, S. S. 2010; 51 (1): 166-167
  • Efficacy of F-18-FDG PET/CT in the evaluation of patients with recurrent cervical carcinoma EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING Mittra, E., El-Maghraby, T., Rodriguez, C. A., Quon, A., McDougall, I. R., Gambhir, S. S., Iagaru, A. 2009; 36 (12): 1952-1959

    Abstract

    Only a limited number of studies have evaluated the efficacy of 18F-FDG PET/CT for recurrent cervical carcinoma, which this study seeks to expand upon.This is a retrospective study of 30 women with cervical carcinoma who had a surveillance PET/CT after initial therapy. Sensitivity, specificity, accuracy, positive predictive value, and negative predictive value were calculated using a 2 × 2 contingency table with pathology results (76%) or clinical follow-up (24%) as the gold standard. The Wilson score method was used to perform 95% confidence interval estimations.The sensitivity, specificity, accuracy, positive predictive value, and negative predictive value of PET/CT for the detection of local recurrence at the primary site were 93, 93, 93, 86, and 96%, respectively. The same values for the detection of distant metastases were 96, 95, 95, 96, and 95%, respectively. Seventy-one percent of the scans performed in symptomatic patients showed true-positive findings. In comparison, 44% of scans performed in asymptomatic patients showed true-positive findings. But, all patients subsequently had a change in their management based on the PET/CT findings such that the effect was notable. The maximum standardized uptake value ranged from 5 to 28 (average: 13 ± 7) in the primary site and 3 to 23 (average: 8 ± 4) in metastases which were significantly different (p = 0.04).This study demonstrates favorable efficacy of 18F-FDG PET/CT for identification of residual/recurrent cervical cancer, as well as for localization of distant metastases.

    View details for DOI 10.1007/s00259-009-1206-x

    View details for Web of Science ID 000271979300004

    View details for PubMedID 19585114

  • Role or FDG-PET/CT Surveillance for Patients with Classical Hodgkin's Disease in First Complete Response: The Stanford University Experience. 51st Annual Meeting and Exposition of the American-Society-of-Hematology Maeda, L. S., Horning, S. J., Iagaru, A. H., Lin, F. I., Hoppe, R. T., Rosenberg, S. A., Advani, R. H. AMER SOC HEMATOLOGY. 2009: 626–26
  • Efficacy of F-18-FDG PET/CT for Breast Cancer Mittra, E., Quon, A., Gambhir, S. S., Iagaru, A. SPRINGER. 2009: S176–S176
  • Survival after Y-90 radioembolization is predicted by dose distribution scintigraphy Sze, D. Y., Louie, J. D., Iagaru, A. H., Goris, M. L. SPRINGER. 2009: S279
  • Prospective Evaluation of Tc-99m-MDP Scintigraphy, F-18 NaF PET/CT and F-18 FDG PET/CT for Detection of Skeletal Metastases Iagaru, A., Mittra, E., Dick, D., Gambhir, S. S. SPRINGER. 2009: S187–S187
  • Evaluation by F-18-FDG-PET of patients with anal squamous cell carcinoma HELLENIC JOURNAL OF NUCLEAR MEDICINE Iagaru, A., Kundu, R., Jadvar, H., Nagle, D. 2009; 12 (1): 26-29

    Abstract

    Anal squamous cell carcinoma (ASCC) is a rare cancer of the gastrointestinal tract, representing less than 5% of the digestive malignancies. The cytological and/or histological confirmation of a suspected lesion should be followed by a complete imaging evaluation to determine the extent of disease. We are presenting our experience with (18)F-FDG PET in ASCC. This is a retrospective case series of patients diagnosed and treated for ASCC at our institution(s). A total of 14 (18)F-FDG PET scans (8 for initial staging, 6 for evaluation of response to chemotherapy and radiation therapy) were performed in 8 patients (6 men, 2 women). The patients were 33-60 years old (average: 44+/-9). Our results showed that PET demonstrated the primary lesion at initial evaluation in 7 of 8 anal cancers and showed FDG- avid lymph nodes in 4 patients. Metastatic nodal involvement was confirmed by pathology in 2 patients; in the other 2 patients pathology showed reactive follicular hyperplasia. In another patient, follow-up PET demonstrated progression of disease despite treatment, prompting a change in disease management. In the remaining 5 patients with follow-up PET, the scans confirmed interval resolution of the (18)F-FDG uptake in the primary lesion, suggesting good treatment response. In conclusion, PET provides valuable diagnostic information in initial staging and evaluation of treatment response in ASCC that may significantly alter the clinical management. The emergence of the combined PET/CT scanner enhanced the accuracy of the imaging procedure in view of the precise anatomic localization of metabolic abnormalities.

    View details for Web of Science ID 000265034600007

    View details for PubMedID 19330178

  • Tumor Metabolic Phenotypes on F-18 FDG PET REPLY JOURNAL OF NUCLEAR MEDICINE Iagaru, A. H., Gambhir, S. S., Goris, M. L. 2009; 50 (6): 1011-1012
  • Phase II efficacy results using an oncolytic herpes simplex virus (NV1020) in patients with colorectal cancer metastatic to liver (mCRC) 45th Annual Meeting of the American-Society-of-Clinical-Oncology (ASCO) Geevarghese, S. K., Chen, A., Geller, D. A., de Haan, H. A., Iagaru, A., Knoll, A., Nemunaitis, J., Reid, T. R., Sze, D. Y., Tanabe, K. AMER SOC CLINICAL ONCOLOGY. 2009
  • Incorporating Cone-beam CT into the Treatment Planning for Yttrium-90 Radioembolization JOURNAL OF VASCULAR AND INTERVENTIONAL RADIOLOGY Louie, J. D., Kothary, N., Kuo, W. T., Hwang, G. L., Hofmann, L. V., Goris, M. L., Iagaru, A. H., Sze, D. Y. 2009; 20 (5): 606-613

    Abstract

    To prepare for yttrium-90 ((90)Y) microsphere radioembolization therapy, digital subtraction angiography (DSA) and technetium- 99m-labeled macroaggregated albumin ((99m)Tc MAA) scintigraphy are used for treatment planning and detection of potential nontarget embolization. The present study was performed to determine if cone-beam computed tomography (CBCT) affects treatment planning as an adjunct to these conventional imaging modalities.From March 2007 to August 2008, 42 consecutive patients (21 men, 21 women; mean age, 59 years; range, 21-75 y) who underwent radioembolization were evaluated by CBCT in addition to DSA and (99m)Tc MAA scintigraphy during treatment planning, and their records were retrospectively reviewed. The contrast-enhanced territories shown by CBCT with selective intraarterial contrast agent administration were used to predict intrahepatic and possible extrahepatic distribution of microspheres.In 22 of 42 cases (52%), extrahepatic enhancement or incomplete tumor perfusion seen on CBCT affected the treatment plan. In 14 patients (33%), the findings were evident exclusively on CBCT and not detected by DSA. When comparing CBCT versus (99m)Tc MAA scintigraphy, CBCT showed eight cases of extrahepatic enhancement (19%) that were not evident on (99m)Tc MAA imaging. CBCT findings directed the additional embolization of vessels or repositioning of the catheter for better contrast agent and microsphere distribution. One case of gastric ulcer from nontarget embolization caused by reader error was observed.CBCT can provide additional information about tumor and tissue perfusion not currently detectable by DSA or (99m)Tc MAA imaging, which should optimize (90)Y microsphere delivery and reduce nontarget embolization.

    View details for DOI 10.1016/j.jvir.2009.01.021

    View details for Web of Science ID 000265700900007

    View details for PubMedID 19345589

  • Phase II Efficacy Results Using an Oncolytic Herpes Simplex Virus (NV1020) in Patients with Colorectal Cancer Metastatic to Liver (mCRC) 12th Annual Meeting of the American Society of Gene Therapy Nemunaitis, J., Geevarghese, S. K., Geller, D. A., de Haan, H. A., Iagaru, A., Knoll, A., Reid, T. R., Sze, D. Y., Tanabe, K. NATURE PUBLISHING GROUP. 2009: S304–S304
  • Novel Strategy for a Cocktail F-18-Fluoride and F-18-FDG PET/CT Scan for Evaluation of Malignancy: Results of the Pilot-Phase Study JOURNAL OF NUCLEAR MEDICINE Iagaru, A., Mittra, E., Yaghoubi, S. S., Dick, D. W., Quon, A., Goris, M. L., Gambhir, S. S. 2009; 50 (4): 501-505

    Abstract

    (18)F-FDG PET/CT is used for detecting cancer and monitoring cancer response to therapy. However, because of the variable rates of glucose metabolism, not all cancers are identified reliably. Sodium (18)F was previously used for bone imaging and can be used as a PET/CT skeletal tracer. The combined administration of (18)F and (18)F-FDG in a single PET/CT study for cancer detection has not been reported to date.This is a prospective pilot study (November 2007-November 2008) of 14 patients with proven malignancy (6 sarcoma, 3 prostate cancer, 2 breast cancer, 1 colon cancer, 1 lung cancer, and 1 malignant paraganglioma) who underwent separate (18)F PET/CT and (18)F-FDG PET/CT and combined (18)F/(18)F-FDG PET/CT scans for the evaluation of malignancy (a total of 3 scans each). There were 11 men and 3 women (age range, 19-75 y; average, 50.4 y).Interpretation of the combined (18)F/(18)F-FDG PET/CT scans compared favorably with that of the (18)F-FDG PET/CT (no lesions missed) and the (18)F PET/CT scans (only 1 skull lesion seen on an (18)F PET/CT scan was missed on the corresponding combined scan). Through image processing, the combined (18)F/(18)F-FDG scan yielded results for bone radiotracer uptake comparable to those of the (18)F PET/CT scan performed separately.Our pilot-phase prospective trial demonstrates that the combined (18)F/(18)F-FDG administration followed by a single PET/CT scan is feasible for cancer detection. This combined method opens the possibility for improved patient care and reduction in health care costs.

    View details for DOI 10.2967/jnumed.108.058339

    View details for Web of Science ID 000272487200003

    View details for PubMedID 19289439

  • F-18-FDG PET/CT evaluation of patients with ovarian carcinoma NUCLEAR MEDICINE COMMUNICATIONS Iagaru, A. H., Mittra, E. S., McDougall, I. R., Quon, A., Gambhir, S. S. 2008; 29 (12): 1046-1051

    Abstract

    The role of F-FDG PET has been studied in ovarian carcinoma, but its sensitivity and specificity calculations are based on dedicated PET acquisition, not PET/CT in the majority of the published studies. Therefore, we were prompted to review our experience with PET/CT in the management of patients with ovarian carcinoma.This is a retrospective study of 43 women with ovarian carcinoma, 27-80 years old (average: 53.9+/-7.8), who had whole-body PET/CT at our institution from 1 January 2003 to 31 August 2006. We reviewed the patients' outcomes from medical records and compared them to the interpretation of the PET/CT scans. Sensitivity and specificity were calculated using a 2 x 2 table with pathology results (79.1% of the patients) or clinical follow-up (20.9% of the cases) as the 'gold standard'. Confidence interval (CI) estimations were performed using the Wilson score method.All patients had advanced stage ovarian cancer and the study was requested for re-staging. A total of 60 scans were performed: 30 patients had one scan, nine patients had two scans and four patients had three scans. The administered doses of F-FDG ranged from 381.1 to 769.6 MBq (average: 569.8+/-73.3). PET/CT had a sensitivity of 88.4% (95% CI: 75.1-95.4) and a specificity of 88.2% (95% CI: 64.4-97.9) for detection of ovarian cancer. The SUV max of the detected lesions ranged from 3 to 27 (average: 9.4+/-5.9). The CA-125 tumor marker ranged from 3 to 935 kU/ml (average: 265.2) in patients with positive scans and 4-139 kU/ml (average: 17.1) in patients with negative scans. This difference was statistically significant (P value: 0.0242).This study confirms the good results of F-FDG PET/CT for identification of residual/recurrent ovarian cancer, as well as for distant metastases localization. PET/CT should be an integral part in evaluation of patients with high-risk ovarian cancer or rising values of tumor markers (CA-125), prior to selection of the most appropriate therapy.

    View details for DOI 10.1097/MNM.0b013e32831089cb

    View details for Web of Science ID 000261164200004

    View details for PubMedID 18987524

    View details for PubMedCentralID PMC2651960

  • Y-90-Ibritumomab Therapy in Refractory Non-Hodgkin's Lymphoma: Observations from In-111-Ibritumomab Pretreatment Imaging JOURNAL OF NUCLEAR MEDICINE Iagaru, A., Gambhir, S. S., Goris, M. L. 2008; 49 (11): 1809-1812

    Abstract

    Radioimmunotherapy is an effective treatment for non-Hodgkin's lymphoma (NHL). 90Y-ibritumomab is an antibody targeting CD20 receptors on the surface of lymphocytes. We present observations from our clinical experience with 90Y-ibritumomab in the management of NHL.This was a retrospective study of 28 NHL patients treated with 90Y-ibritumomab. There were 21 men and 7 women, 36-85 y old. A diagnostic dose of 111In-ibritumomab was administered on day 0, and imaging followed immediately and at 24, 48, and 72 h. The doses of 90Y-ibritumomab ranged from 629 to 1,258 MBq (17-34 mCi). Outcomes were compared with the findings of the 111In-ibritumomab scans.90Y-ibritumomab induced objective responses in 22 of 28 patients. A complete response was noted in 9 patients, a partial response in 9 patients, and a mixed response in 4 patients. Three patients had stable disease, and 3 patients had disease progression. 111In-ibritumomab findings were positive in 19 patients and negative in 9 patients. A complete response was noted in 2 of 19 patients with positive findings and 7 of 9 with negative findings. A partial response was seen in 7 of 19 patients with positive findings and 1 of 9 with negative findings. Disease progression was observed in 3 of 19 patients with positive findings and 0 of 9 with negative findings. The remaining patients had a mixed response or no changes.A higher rate of complete response after 90Y-ibritumomab treatment was seen in patients with negative 111In-ibritumomab findings, whereas a higher rate of disease progression despite therapy was noted in patients with positive 111In-ibritumomab findings. This observation suggests that patients with bulky disease may require more aggressive management.

    View details for DOI 10.2967/jnumed.108.052928

    View details for Web of Science ID 000260846600019

    View details for PubMedID 18927323

  • I-131-Tositumomab (Bexxar (R)) Therapy of Refractory/Relapsed Non-Hodgkin Lymphoma: Clinical Experience Iagaru, A., Knox, S., Goris, M. L. SPRINGER. 2008: S148–S149
  • Rhabdomyosarcoma diffusely metastatic to the bone marrow: suspicious findings on Tc-99m-MDP bone scintigraphy confirmed by F-18-18 FDG PET/CT and bone marrow biopsy EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING Iagaru, A., Goris, M. L. 2008; 35 (9): 1746-1746

    View details for DOI 10.1007/s00259-008-0864-4

    View details for Web of Science ID 000258673800026

    View details for PubMedID 18648808

  • F-18-FDG-PET/CT evaluation of response to treatment in lymphoma: when is the optimal time for the first re-evaluation scan? HELLENIC JOURNAL OF NUCLEAR MEDICINE Iagaru, A., Wang, Y., Mari, C., Quon, A., Goris, M. L., Horning, S., Gambhir, S. S. 2008; 11 (3): 153-156

    Abstract

    Assessing the response to treatment as soon after treatment initiation is one of the key reasons for imaging lymphoma patients. The optimal time after initiating treatment for assessing response to treatment has yet to be determined. Therefore, we were prompted to review our experience with serial (18)F-FDG PET/CT in patients undergoing treatment for Hodgkin's disease (HD) and non Hodgkin's lymphoma (NHL). This is a retrospective study (Feb 2003 - Oct 2004) of 20 patients, 11 men and 9 women, with age range of 7-75 years with diagnosis of HD (10) and NHL (10), who had PET/CT at our institution prior, during and at the completion of therapy. Restaging PET/CT was done after 2 cycles of chemotherapy in 10 patients (group A) and after 4 cycles of chemotherapy in 10 pts (group B). A total of 60 scans were reviewed. The DeltaSUV from baseline to first PET/CT was on average 67.6% in group A and 75.1% in group B. This had no statistical significance (P value: 0.31). The DeltaSUV from baseline to post-therapy PET/CT was on average 72.9% in group A and 79.8% in group B. This difference also had no statistical significance (P value: 0.24). The correlation coefficient was 0.98 in group A and 0.80 in group B. Results of PET/CT after 2 cycles of chemotherapy did not statistically differ from the results of PET/CT after 4 cycles of chemotherapy. These results need to be confirmed in larger, prospective, randomized trials.

    View details for Web of Science ID 000262093600003

    View details for PubMedID 19081857

  • Imaging characteristics and response after intraarterial administration of the oncolytic herpes virus NV1020 to treat hepatic colorectal metastases Sze, D. Y., Gambhir, S. S., Chari, R. S., Geller, D. A., Iagaru, A., Mescheder, A., Nemunaitis, J. J., Reid, T. R., Tanabe, K. AMER SOC CLINICAL ONCOLOGY. 2008
  • Perspectives of molecular imaging and radioimmunotherapy in lymphoma RADIOLOGIC CLINICS OF NORTH AMERICA Iagaru, A., Goris, M. L., Gambhir, S. S. 2008; 46 (2): 243-252

    Abstract

    Successful treatment of Hodgkin lymphomas and non-Hodgkin lymphomas depends on accurate staging and prognostic estimations, as well as evaluation of response to therapy as early after initiation as possible. We focus on several aspects of molecular imaging and therapy that affect the management of patients who have lymphoma. First, we review prior use of gallium-67 citrate for evaluation of lymphoma patients, mainly from a historical perspective, since it was the mainstream lymphoma functional imaging tracer for decades. Next, we review current clinical uses of 18F Fluoro-2-Deoxyglucose (18F FDG) PET and PET/CT for evaluation of lymphoma patients and use of radioimmunotherapy in lymphoma. Finally, we discuss advances in molecular imaging that may herald the next generation of PET radiotracers after 18F FDG.

    View details for DOI 10.1016/j.rcl.2008.03.007

    View details for Web of Science ID 000258543500006

    View details for PubMedID 18619379

  • I-123 MIBG mapping with intraoperative gamma probe for recurrent neuroblastoma MOLECULAR IMAGING AND BIOLOGY Iagaru, A., Peterson, D., Quon, A., Dutta, S., Twist, C., Daghighian, F., Gambhir, S. S., Albanese, C. 2008; 10 (1): 19-23

    Abstract

    Intraoperative gamma probe guidance has become widely utilized for sentinel lymph node dissection in patients with breast cancer and melanoma, using (99m)Tc sulfur colloid. However, new indications are possible and need to continue to be investigated. We report the use during a wedge liver biopsy of a new hand-held gamma probe designed for (123)I intraoperative guidance. The patient studied is a 5-year-old boy with history of stage 4 high-risk neuroblastoma. Anatomic imaging (CT, MRI), (99m)Tc bone scintigraphy and 2-deoxy-2-[F-18]fluoro-d-glucose-positron emission tomography/computed tomography (FDG-PET/CT) were negative, but the (123)I MIBG scintigraphy suggested recurrent liver disease. A decision was made to biopsy these lesions to obtain histopathological confirmation. Intraoperative gamma probe mapping of the liver identified areas with signal above the background, but these were prove to be hemosiderin deposits on histo-pathology examination.

    View details for DOI 10.1007/s11307-007-0116-1

    View details for Web of Science ID 000252107800002

    View details for PubMedID 17975716

  • F-18FDG PET and PET/CT evaluation of response to chemotherapy in bone and soft tissue sarcomas CLINICAL NUCLEAR MEDICINE Iagaru, A., Masamed, R., Chawla, S. P., Menendez, L. R., Fedenko, A., Conti, P. S. 2008; 33 (1): 8-13

    Abstract

    F-18 FDG PET has been used to grade sarcomas and assess response to therapy in advanced disease. Certain chemotherapy agents are thought to induce an inflammatory response in the tumor bed that can make interpretation of post-therapy FDG PET scans difficult. A review of our experience with PET in assessing therapy response in osseous and soft tissue sarcomas (OSTS) is presented.This is a retrospective study (January 1999 to December 2004) of 14 patients with histologic diagnosis of OSTS, who had 2 consecutive PET examinations for evaluation of chemotherapy response. The group included 8 men and 6 women, with age range of 18 to 56 years (average, 36 +/- 14). Semiquantitative assessment of FDG uptake was performed by calculating maximum standard uptake value (SUVmax) before and after treatment. The response to therapy was assessed independently by tumor necrosis at post-therapy surgery and according to European Organization for Research and Treatment of Cancer (EORTC) criteria for PET. The follow-up PET examinations were performed at an interval of 28 to 166 days (average, 90 +/- 45). All patients ended the ifosfamide regimen at 7 to 36 (average, 16 +/- 9) days before the follow-up PET scans. Five of them received methotrexate, adriamycin, and/or cisplatin as well.Based on the EORTC criteria alone, 3 patients (21.4%) had progression of disease (increase in SUVmax of 29%-69%; mean, 48% +/- 20%), 5 patients (35.7%) had stable disease, and 6 patients (42.8%) had partial response (decrease in SUVmax of 27%-84%; mean, 62% +/- 23%). Across all patients, the tumor necrosis postchemotherapy ranged from 5% to 100% (mean, 64% +/- 34%). In 8 patients (57.1%) the tumor necrosis correlated with the SUVmax changes. However, for 3 patients, the SUVmax changes indicated partial response despite necrosis of fewer than 90% of the surgical specimens, whereas 3 patients with >90% tumor necrosis had SUVmax changes indicative of stable disease.The pathologically determined degree of necrosis postneoadjuvant chemotherapy was concordant with PET-assessed EORTC classification of response in 57.1% of the cases. However, a significant number of patients had discrepancies, which may be in part explained by chemotherapy-induced inflammation. The latter should be considered during post-therapy PET interpretation in OSTS.

    View details for Web of Science ID 000252074200003

    View details for PubMedID 18097248

  • Molecular imaging can accelerate anti-angiogenic drug development and testing NATURE CLINICAL PRACTICE ONCOLOGY Lagaru, A., Chen, X., Gambhir, S. S. 2007; 4 (10): 556-557

    View details for DOI 10.1038/ncponc0929

    View details for Web of Science ID 000249708800002

    View details for PubMedID 17726490

  • PET Imaging of Skull Base Neoplasms. PET clinics Mittra, E. S., Iagaru, A., Quon, A., Fischbein, N. 2007; 2 (4): 489-510

    Abstract

    The utility of 18-F-fluorodeoxyglucose-positron emission tomography (PET) and PET/CT for the evaluation of skull base tumors is incompletely investigated, as a limited number of studies specifically focus on this region with regard to PET imaging. Several patterns can be ascertained, however, by synthesizing the data from various published reports and cases of primary skull base malignancies, as well as head and neck malignancies that extend secondarily to the skull base, including nasopharyngeal carcinoma, nasal cavity and paranasal sinus tumors, parotid cancers, and orbital tumors.

    View details for DOI 10.1016/j.cpet.2008.05.006

    View details for PubMedID 27158109

  • Osseous and soft tissue sarcomas: When can F-18 FDG PET/CT evaluation provide useful information? 20th Annual Congress of the European-Association-of-Nuclear-Medicine Iagaru, A., Quon, A., Jacobs, C., Marina, N., McDougall, I., Gambhir, S. S. SPRINGER. 2007: S152–S152
  • F-18 FDG PET/CT in the management of thyroid cancer CLINICAL NUCLEAR MEDICINE Iagaru, A., Kalinyak, J. E., McDougall, I. R. 2007; 32 (9): 690-695

    Abstract

    There are approximately 32,000 new cases of thyroid carcinoma annually in the United States. F-18 FDG PET/CT has an established role in cancer management, including thyroid cancer, usually in patients who are thyroglobulin (Tg) positive/iodine negative. We reviewed our experience with F-18 FDG PET/CT in thyroid cancer, with an emphasis on correlation with Tg, and maximum standardized uptake values (SUV). We also analyzed the role of thyroid stimulating hormone (TSH) on PET/CT results.This is a retrospective study (January 2003 to December 2006) of 76 patients with differentiated thyroid cancer, who had F-18 FDG PET/CT scans. There were 44 women and 32 men, with age range of 20 to 81 years (average, 51.1 +/- 18.1). The administered doses of F-18 FDG ranged from 396 to 717 MBq (15.8-19.4 mCi) (average, 566 +/- 74.8) (15.3 +/- 2). Reinterpretation of the imaging studies for accuracy and data analysis from medical records were performed.A total of 98 PET/CT scans were analyzed (59 patients had 1 scan, 12 patients had 2, and 5 patients had 3). PET/CT was 88.6% sensitive (95% CI: 78.-94.3) and 89.3% specific (95% CI: 71.9-97.1). Mean Tg level was 1203 ng/mL (range, 0.5-28,357) in patients with positive PET/CT and 9.72 ng/mL (range, 0.5-123.0) in patients with negative PET/CT scans (P = 0.0389). Mean SUV max was 10.8 (range, 2.5-32) in the thyroid bed recurrence/residual disease and 7.53 (range, 2.5-26.2) in metastatic lesions (P = 0.0114). Mean SUV max in recurrent/residual disease in patients with TSH 30 mIU/L was 8.1 (range, 2.6-32) (P = 0.2994).F-18 FDG PET/CT had excellent sensitivity (88.6%) and specificity (89.3%) in this patient population. Metastatic lesions were reliably identified, but were less F-18 FDG avid than recurrence/residual disease in the thyroid bed. TSH levels at the time of PET/CT did not appear to impact the FDG uptake in the lesions or the ability to detect disease. In the setting of high or rising levels of Tg, our study confirms that it is indicated to include PET/CT in the management of patients with differentiated thyroid cancer.

    View details for Web of Science ID 000248959000004

    View details for PubMedID 17710020

  • Antithyroid drugs and radioiodine and the absence of evidence - Reply JOURNAL OF NUCLEAR MEDICINE McDougall, I. R., Iagaru, A. 2007; 48 (8): 1403-1404
  • Advances in metabolic imaging for surgical oncology SURGICAL ONCOLOGY CLINICS OF NORTH AMERICA Iagaru, A., Quon, A. 2007; 16 (2): 273-?

    Abstract

    This review focuses on several aspects of molecular imaging. First, current positron emission tomography (PET)/CT scanner technology and several novel imaging techniques that are being developed are briefly discussed. Next, current clinical indications for (18)F FDG PET and PET/CT that are relevant to the surgical oncologist are discussed. Finally, advances in molecular imaging that may herald the next generation of PET radiotracers beyond (18)F FDG are reviewed.

    View details for DOI 10.1016/j.soc.2007.03.007

    View details for Web of Science ID 000247901000003

    View details for PubMedID 17560512

  • Treatment of thyrotoxicosis JOURNAL OF NUCLEAR MEDICINE Iagaru, A., McDougall, I. R. 2007; 48 (3): 379-389

    Abstract

    In this review, the causes of thyrotoxicosis and the treatment of syndromes with increased trapping of iodine are discussed. The benefits and the potential side effects of 3 frequently used therapies--antithyroid medications, thyroidectomy, and (131)I treatment--are presented. The different approaches to application of (131)I treatment are described. Treatment with (131)I has been found to be cost-effective, safe, and reliable.

    View details for Web of Science ID 000244937400016

    View details for PubMedID 17332615

  • Detection of occult medullary thyroid cancer recurrence with 2-deoxy-2-[F-18]fluoro-D-glucose-PET and PET/CT MOLECULAR IMAGING AND BIOLOGY Iagaru, A., Masamed, R., Singer, P. A., Conti, P. S. 2007; 9 (2): 72-77

    Abstract

    2-deoxy-2-[F-18]fluoro-D-glucose (FDG)-positron emission tomography (PET) has an established role in restaging of various cancers, including papillary and undifferentiated thyroid carcinoma. However, controversies exist regarding its ability to reliably assess recurrent medullary thyroid cancer (MTC). We were therefore prompted to review our experience with FDG-PET for detection of occult MTC.This is a retrospective study (Apr 1, 1997-Mar 31, 2004) of 13 patients with histologic diagnosis of MTC, who had PET examinations. The group included six men and seven women, 15-62 years old (average: 48+/-13). The PET scan request was triggered by rising levels of calcitonin and negative anatomical imaging studies.Recurrent/metastatic disease was identified by PET in seven (54%) of the 13 patients. The lesions were located in superior mediastinum (4), cervical lymph nodes (3), thyroid bed (2), lung (1) and liver (1). The calcitonin levels ranged from 52 to 5,090 pg/ml (average: 1,996 pg/ml) in patients with negative PET scans and from 132 to 9,500 pg/ml (average: 3,757 pg/ml) in patients with positive studies. The sensitivity and specificity of FDG-PET for disease detection in this cohort were 85.7% (95% CI: 48.7-97.4) and 83.3% (95% CI: 43.6-96.9), respectively.Our findings suggest a significant role for FDG-PET in patients with suspected MTC recurrence, with sensitivity of 85.7% and specificity of 83.3% for disease detection. FDG-PET provides additional information in a significant fraction of cases (54%) and could be used for restaging of patients with MTC and elevated levels of biomarkers (calcitonin). Additional studies are necessary to further evaluate the role of FDG-PET in MTC.

    View details for DOI 10.1007/s11307-006-0072-1

    View details for Web of Science ID 000244866700003

    View details for PubMedID 17186139

  • F-18 FDG PET visualization of urinary leak after nephrostomy tube removal CLINICAL NUCLEAR MEDICINE Iagaru, A., Gamie, S., Segall, G. 2007; 32 (2): 168-169

    View details for Web of Science ID 000243782800025

    View details for PubMedID 17242582

  • Follicular dendritic sarcoma within a focus of Castleman's disease. Serial FDG PET/CT in the follow up of recurrence with histopathologic confirmation REVISTA ESPANOLA DE MEDICINA NUCLEAR Iagaru, A., Mari, C., Gambhir, S. S. 2007; 26 (1): 40-45

    Abstract

    We report the case of a 30 year-old man with previous history of melanoma and new diagnoses of localized abdominal Castleman's disease with a focus of follicular dendritic sarcoma within the Castleman's tumor. He presented soon after with a single enlarged abdominal lymph node characterized and followed-up by FDG PET/CT as a low grade malignancy consistent with Castleman's recurrence. However, other imaging techniques raised the possibility of sarcoma/ melanoma recurrence. Final surgical resection allowed histological confirmation of the FDG PET/CT findings. To our knowledge, this is one of the few cases in the literature of Castleman's disease and follicular dendritic sarcoma association in the same focus. This is the first paper to our knowledge to use FDG PET/CT as the follow-up imaging tool for serial characterization of recurrence of Castleman's disease and follicular dendritic sarcoma. FDG PET/CT may be useful in the differentiation between Castleman's disease and malignancies associated with this disease.

    View details for Web of Science ID 000254133000006

    View details for PubMedID 17286947

  • F-18FDG PET/CT demonstration of an adrenal metastasis in a patient with anaplastic thyroid cancer CLINICAL NUCLEAR MEDICINE Iagaru, A., McDougall, I. R. 2007; 32 (1): 13-15

    Abstract

    An adrenal metastasis was identified on an F-18 FDG PET/CT scan in a patient with anaplastic thyroid cancer. There are very few reports of thyroid cancer, even anaplastic thyroid cancer, metastasizing to the adrenal.

    View details for Web of Science ID 000243200800004

    View details for PubMedID 17179796

  • Breast MRI and F-18 FDG PET/CT in the management of breast cancer ANNALS OF NUCLEAR MEDICINE Iagaru, A., Masamed, R., Keesara, S., Conti, P. S. 2007; 21 (1): 33-38

    Abstract

    18F FDG PET/CT is used for diagnosis, staging and establishing the response to therapy in various malignancies, including breast cancer (BC). Dedicated breast MRI (BMRI) is gaining a role in the management of BC patients (pts), demonstrating high sensitivity and specificity for detection of small lesions. We were therefore prompted to review our experience with PET and BMRI in BC.This is a retrospective study of 21 women with BC, 30-76 years old, who had BMRI and whole-body FDG PET/CT at our institution from Jun 2002 to May 2005. A total of 6 patients (group A) had BMRI and PET/CT in the preoperative period and 15 patients (group B) had BMRI and PET/CT after surgery. Reinterpretation of the imaging studies for accuracy and data analysis from medical records were performed.For group A, BMRI identified breast lesions in 4 patients, while PET/CT was able to identify breast lesions in 5 patients. All these were proven to be malignancy on pathology examination. In group B, BMRI detected recurrent breast lesions in 8 patients, with 88.9% sensitivity and 83.3% specificity. In the same patient population, PET/CT was 33.3% sensitive and 91.7% specific. As a whole body examination, PET/CT revealed metastatic disease in 6 patients (100% sensitive and 90% specific). Overall, sensitivities and specificities for breast disease detection were 85.7% and 85.7% for BMRI, and 75% and 92.3% for 18F FDG PET/ CT.As expected, BMRI is more sensitive than PET/CT in the detection of breast lesions. However, PET/CT as a whole-body examination changed the management of disease by detection of distant lesions in 6 of the 21 patients. Our study suggests that 18F FDG PET/CT and BMRI should be considered as complimentary imaging tools in the pre- and postoperative work-up of patients diagnosed with breast cancer.

    View details for Web of Science ID 000244431300005

    View details for PubMedID 17373334

  • 2-deoxy-2-[F-18]fluoro-D-glucose positron emission tomography/computed tomography in the management of melanoma MOLECULAR IMAGING AND BIOLOGY Iagaru, A., Quon, A., Johnson, D., Gambhir, S. S., McDougall, I. R. 2007; 9 (1): 50-57

    Abstract

    2-Deoxy-2-[F-18]fluoro-D-glucose (FDG)-positron emission tomography (PET)/computed tomography (CT) is widely available as a powerful imaging modality, combining the ability to detect active metabolic processes and their morphologic features in a single exam. The role of FDG-PET is proven in a variety of cancers, including melanoma, but the estimates of sensitivity and specificity are based in the majority of the published studies on dedicated PET, not PET/CT. Therefore, we were prompted to review our experience with FDG-PET/CT in the management of melanoma.This is a retrospective study on 106 patients with melanoma (20-87 years old; average: 56.8 +/- 15.9), who had whole-body FDG-PET/CT at our institution from January 2003 to June 2005. Thirty-eight patients (35.9%) were women and 68 patients (64.1%) were men. Reinterpretation of the imaging studies for accuracy and data analysis from medical records were performed.All patients had the study for disease restaging. The primary tumor depth (Breslow's thickness) at initial diagnosis was available for 76 patients (71.7%) and ranged from 0.4 to 25 mm (average: 3.56 mm). The anatomic level of invasion in the skin (Clark's level) was determined for 70 patients (66%): 3, level II; 13, level III; 43, level IV; 11, level V. The administered dose of (18)F FDG ranged from 9.8 to 21.6 mCi (average: 15.4 +/- 1.8 mCi). FDG-PET/CT had a sensitivity of 89.3% [95% confidence interval (CI): 78.5-95] and a specificity of 88% (95% CI: 76.2-94.4) for melanoma detection.This study confirms the good results of FDG-PET/CT for residual/recurrent melanoma detection, as well as for distant metastases localization. PET/CT should be an integral part in evaluation of patients with high-risk melanoma, prior to selection of the most appropriate therapy.

    View details for DOI 10.1007/s11307-006-0065-0

    View details for Web of Science ID 000243545600007

    View details for PubMedID 17051322

  • F-18FDG PET/CT evaluation of osseous and soft tissue sarcomas CLINICAL NUCLEAR MEDICINE Iagaru, A., Quon, A., McDougall, T. R., Gambhir, S. S. 2006; 31 (12): 754-760

    Abstract

    Osseous and soft tissue sarcomas (OSTS) represent a histologic heterogeneous group of malignant tumors. Most of the current clinical data on the role of F-18 FDG PET in sarcomas come from patients studied with dedicated PET and less frequently with hardware fusion PET/CT. Therefore, we were prompted to review our experience with F-18 FDG PET/CT in OSTS.This is a retrospective study (January 2003-December 2005) of 44 patients with histologic diagnoses of OSTS who had F-18 FDG PET/CT at our institution. The group included 22 men and 22 women with an age range of 2 of 84 years (average, 37 +/- 20.2 years). The administered doses of F-18 FDG range 4.1 to 19.5 mCi (average, 14.3 +/- 3 mCi). Reinterpretation of the imaging studies for accuracy and data analysis from medical records was performed.The sensitivity and specificity of combined F-18 FDG PET/CT were 100% (95% confidence interval [CI] = 75.7-100) and 93.3% (95% CI = 78.7-98.1) for the primary OSTS, and 80% (95% CI = 58.4-91.9) and 86.4% (95% CI = 66.7-95.2) for metastases. When interpreted separately, CT outperformed PET for pulmonary metastases detection: CT was 76.5% sensitive and 88% specific, whereas PET was only 57.1% sensitive but 96.4% specific. For detection of other metastases, CT was 82.3% sensitive and 76% specific, with PET demonstrating 78.6% sensitivity and 92.8% specificity.Relatively similar results (except better specificity for PET and PET/CT) were noted when examining the rate of metastases detection, excluding pulmonary lesions. However, CT had a better detection rate for pulmonary metastases when compared with PET alone. A negative PET scan in the presence of suspicious CT findings in the chest cannot reliably exclude pulmonary metastases from OSTS.

    View details for Web of Science ID 000242481400004

    View details for PubMedID 17117068

  • F-18-FDG PET and PET/CT for detection of pulmonary metastases from musculoskeletal sarcomas NUCLEAR MEDICINE COMMUNICATIONS Iagaru, A., Chawla, S., Menendez, L., Conti, P. S. 2006; 27 (10): 795-802

    Abstract

    Sarcomas represent a significant therapeutic challenge and their potential for distant pulmonary metastases is well known. [(18)F]Fluorodeoxyglucose ((18)F-FDG) positron emission tomography (PET) has a role in differentiating sarcomas from benign tumours and assessing the response to therapy in advanced sarcomas. However, PET appears to be less accurate in detection of pulmonary metastases. We were therefore prompted to review our experience with PET and PET/computed tomography (CT) in osseous and soft tissue sarcomas (OSTSs).This is a retrospective study (January 1995 to December 2004) of 106 patients with histological diagnosis of OSTS, who had PET and PET/CT at our institution. The group included 52 men and 54 women, aged 12-92 years (average, 45+/-20 years).For all the patients in the analysis, the sensitivity and specificity were 68.3% (95% CI: 53-80.4) and 98.4% (95% CI: 91.8-99.7) for PET, with 95.1% sensitivity (95% CI: 83.8-98.6) and 92.3% specificity (95% CI: 83.2-96.7) for CT. Pulmonary metastases were seen in 40 patients. CT identified 17 lesions larger than 1.0 cm, while PET identified 13 of them (76.5%).Chest CT is more sensitive than PET in detecting pulmonary metastases from OSTS. A significant portion of known pulmonary metastases greater than 1.0 cm on CT, are PET negative. Sub-centimetre CT lesions should not be considered false positive if inactive on PET. A negative PET scan in the presence of suspicious CT findings in the chest cannot reliably exclude pulmonary metastases from OSTS.

    View details for Web of Science ID 000241089000008

    View details for PubMedID 16969262

  • 2-Deoxy-2-[F-18]fluoro-D-glucose-positron emission tomography and positron emission tomography/computed tomography diagnosis of patients with recurrent papillary thyroid cancer MOLECULAR IMAGING AND BIOLOGY Iagaru, A., Masamed, R., Singer, P. A., Conti, P. S. 2006; 8 (5): 309-314

    Abstract

    2-Deoxy-2-[F-18]fluoro-D-glucose positron emission tomography (FDG-PET) has an established role in restaging of various cancers, including papillary and undifferentiated thyroid carcinoma, but detection rates are variable in the published literature. We were therefore prompted to review our experience with FDG-PET in detection of recurrent papillary thyroid cancer (PTC).This is a retrospective study (April 1, 1995-March 31, 2005) of 21 patients with histologic diagnosis of PTC who had PET examinations. The group included seven men and 14 women, with age range of 26-75 years (average 50 +/- 16). The PET scan request was triggered by rising levels of thyroglobulin (Tg) in the presence of a negative iodine-131 scan.Recurrent/metastatic disease was identified by PET in 16 (76%) of the 21 patients with PTC. The sensitivity and specificity of FDG-PET for disease detection in this cohort were 88.2% [95% confidence interval (CI), 65.7-96.7] and 75% (95% CI, 30.1-95.4), respectively. The Tg levels were 1.0-10.4 ng/ml (average, 4.52 ng/ml) in the patients with negative PET scans and 1.0-38 ng/ml (average, 16.8 ng/ml) in patients with positive scans. The lesions were located in the cervical lymph nodes (8), thyroid bed (4), lungs (4), and mediastinal lymph nodes (2).Our study confirms the feasibility of PET in detection of residual/recurrence of PTC, with sensitivity of 88.2% (95% CI, 65.7-96.7) and specificity of 75% (95% CI, 30.1-95.4). Detectable levels of Tg, even in the presence of negative I-131 scan or anatomic imaging, should prompt restaging with FDG-PET.

    View details for DOI 10.1007/s11307-006-0046-3

    View details for Web of Science ID 000240560800008

    View details for PubMedID 16758370

  • Demonstration of an ectopic mediastinal parathyroid adenoma on Tc-99m sestamibi myocardial perfusion scintigraphy JOURNAL OF NUCLEAR CARDIOLOGY Iagaru, A., Hachamovitch, R., Colletti, P. M., Wassef, H. 2006; 13 (5): 719-721
  • PET/CT follow-up in nonossifying fibroma AMERICAN JOURNAL OF ROENTGENOLOGY Iagaru, A., Henderson, R. 2006; 187 (3): 830-832

    View details for DOI 10.2214/AJR.05.0264

    View details for Web of Science ID 000240259300040

    View details for PubMedID 16928954

  • F-18FDG PET imaging of urinary bladder oat cell carcinoma with widespread osseous metastases CLINICAL NUCLEAR MEDICINE Iagaru, A., Gamie, S., Segall, G. 2006; 31 (8): 476-478

    View details for Web of Science ID 000241026700010

    View details for PubMedID 16855436

  • Merkel cell carcinoma: Is there a role for 2-deoxy-2-[F-18]fluoro-D-glucose-positron emission tomography/computed tomography? MOLECULAR IMAGING AND BIOLOGY Iagaru, A., Quon, A., McDougall, I. R., Gambhir, S. S. 2006; 8 (4): 212-217

    Abstract

    2-Deoxy-2-[F-18]fluoro-D-glucose (FDG)-positron emission tomography (PET)/computed tomography (CT) is becoming widely available as a powerful imaging modality, combining the ability to detect active metabolic processes and their morphologic features in a single study. The role of FDG-PET/CT is proven in lymphoma, melanoma, colorectal carcinoma, and other cancers. However, there are rare malignancies such as Merkel cell carcinoma that can potentially be evaluated with PET/CT. We were therefore prompted to review our experience with FDG-PET/CT in the management of patients with Merkel cell carcinoma.This is a retrospective case series of six patients with Merkel cell carcinoma, 58-81 years old (average 69 +/- 8.3), who had whole-body PET/CT at our institution from January 1st, 2003 to August 31st, 2005. Two patients were women and four were men. Reinterpretation of the imaging studies for accuracy and data analysis from medical records were performed.Twelve examinations were acquired for the six patients (one patient had six PET/CT, one patient had two PET/CT, and four patients had one PET/CT). The injected FDG doses ranged 381.1-669.7 MBq (average 573.5 +/- 70.3). Four patients had the PET/CT as part of initial staging, and two patients had the exam for restaging (after surgery and XRT). A total of six Merkel lesions (pancreas, adrenal, lip, submandibular lymph nodes, cervical lymph nodes, and parapharyngeal soft tissue) were identified in three patients and confirmed on histopathological examination. The FDG uptake in these areas was intense, with maximum standardized uptake value (SUVmax) values of 5-14 (average 10.4 +/- 3.8). In one patient, the PET/CT scan identified abnormal focal distal sigmoid uptake that was biopsied and diagnosed as adenocarcinoma. Two patients had negative scans and had no clinical evidence of disease on follow-up office visits (up to one year after PET/CT).This case series suggests that FDG-PET/CT may have a promising role in the management of patients with Merkel cell carcinoma.

    View details for DOI 10.1007/s11307-006-0047-2

    View details for Web of Science ID 000239124800003

    View details for PubMedID 16724293

  • F-18FDG PET evaluation of bronchial plasmacytoma with CT and MRI correlation CLINICAL NUCLEAR MEDICINE Iagaru, A., Mari, C., Segall, G. 2006; 31 (5): 279-280

    View details for Web of Science ID 000237077700009

    View details for PubMedID 16622337

  • Demonstration of a right inguinal hernia containing urinary bladder diverticulum on whole-body bone scan and pelvic CT EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING Iagaru, A., Siegel, M. E. 2006; 33 (2): 234-234

    View details for DOI 10.1007/s00259-005-1977-7

    View details for Web of Science ID 000234934800021

    View details for PubMedID 16344994

  • Failed atrial septal defect repair versus pulmonary hypertension with right ventricular failure CLINICAL NUCLEAR MEDICINE Iagaru, A., Wassef, H., Henderson, R. 2005; 30 (11): 767-768

    View details for Web of Science ID 000232741900021

    View details for PubMedID 16237312

  • FDG PET-CT demonstration of Sjogren's sialoadenitis CLINICAL NUCLEAR MEDICINE Jadvar, H., Bonyadlou, S., Iagaru, A., Colletti, P. M. 2005; 30 (10): 698-699

    Abstract

    We report the positron emission tomography-computed axial tomography (PET-CT) appearance of the inflammatory involvement of the salivary glands of a 69-year-old female with a history of lymphoma and known primary Sjogren's syndrome. Hybrid PET-CT was performed 5 months after completion of chemotherapy using a Siemens Biograph scanner (Knoxville, TN) 45 minutes after intravenous administration of 15 mCi of F-18 fluorodeoxyglucose (FDG). CT transmission scan was obtained for attenuation correction. PET-CT demonstrated no evidence of hypermetabolic nodal disease but showed symmetric intensely hypermetabolic submandibular and parotid salivary glands.

    View details for Web of Science ID 000232048400016

    View details for PubMedID 16166849