School of Medicine
Showing 1-10 of 53 Results
-
Daibhid O Maoileidigh
Instructor, Otolaryngology - Head & Neck Surgery Divisions
Current Research and Scholarly Interests The O Maoileidigh group employs mathematical and computational approaches to better understand normal hearing and hearing impairment. Because complete restoration of auditory function by artificial devices or regenerative treatments will only be possible when experiments and computational modeling align, we work closely with experimental laboratories. Our goal is to understand contemporary experimental observations, to make experimentally testable predictions, and to motivate new experiments. We are pursuing several projects.
Hair-Bundle Mechanics
Auditory and balance organs rely on hair cells to convert mechanical vibrations into electrical signals for transmission to the brain. In response to the quietest sounds we can hear, the hair cell's mechanical sensor, the hair bundle, moves by less than one-billionth of a meter. To determine how this astounding sensitivity is possible, we construct computational models of hair-bundle mechanics. By comparing models with experimental observations, we are learning how a hair bundle's geometry, material properties, and ability to move spontaneously determine its function.
Cochlear Mechanics
The cochlea contains the auditory organ that houses the sensory hair cells in mammals. Vibrations in the cochlea arising from sound are amplified more than a thousandfold by the ear's active process. New experimental techniques have additionally revealed that the cochlea vibrates in a complex manner in response to sound. We use computational models to interpret these observations and to make hypotheses about how the cochlea works. -
Lucy Erin O'Brien
Assistant Professor of Molecular and Cellular Physiology
Current Research and Scholarly Interests Many adult organs tune their functional capacity to variable levels of physiologic demand. Adaptive organ resizing breaks the allometry of the body plan that was established during development, suggesting that it occurs through different mechanisms. Emerging evidence points to stem cells as key players in these mechanisms. We use the Drosophila midgut, a stem-cell based organ analogous to the vertebrate small intestine, as a simple model to uncover the rules that govern adaptive remodeling.
-
Hugh O'Brodovich
Arline and Pete Harman Professor for the Chair in the Department of Pediatrics in the School of Medicine, Emeritus
Current Research and Scholarly Interests Clinical:
Pulmonary edema, acute respiratory distress syndromes (ARDS), hyaline membrane disease (HMD), bronchopulmonary dysplasia (BPD)
Basic Science:
Lung epithelial sodium transport
Genetic influences on the development of BPD -
Ruth O'hara
Associate Professor of Psychiatry and Behavioral Sciences (Adolescent Psychiatry and Child Development)
Current Research and Scholarly Interests Dr. OHaras research aims to identify physiological markers of neurocognitive impairment in a broad range of late-life disorders, including Mild Cognitive Impairment, Alzheimers disease (AD), Late-Life Depression, and Late-Life Anxiety disorders.
-
Michelle O'Shaughnessy, MD, MRCPI, MS
Clinical Assistant Professor, Medicine - Nephrology
Bio Dr. Michelle O'Shaughnessy specializes in the treatment of kidney disease and hypertension. She practiced Internal Medicine and Nephrology for 4 years in Ireland before coming to Stanford in 2013 to complete a 3-year Clinical Research Fellowship in nephrology. Dr. O'Shaughnessy has a special interest in treating and studying patients with glomerular diseases i.e. those diseases that affect the glomerulus (or filtering portion) of the kidney.