Department of Civil and Environmental Engineering Stanford University CEE 70 – Environmental Science and Technology (Engr 90 Cross Listed)

Time and Place:	Monday through Thursday 3:15 to 4:05, Y2E2 111
Instructor:	Royal Kopperud kopperud@stanford.edu
Office Hours:	Y2E2, time and location to be announced
Teaching Assistant:	Xing Xie <xiexing@stanford.edu></xiexing@stanford.edu>
Textbook:	Introduction to Environmental Engineering and Science, 3rd Edition, Prentice-Hall 2008, Gilbert M. Masters and Wendell P. Ela. Available at the bookstore and on reserve at the Engineering Library.
Homework:	20% of Final Grade Homework sets handed out approximately weekly, due 1 week later. Homework is due before class begins and may be submitted in class or in the drop box at Y2E2 (Yellow Atrium Basement - Shelves).
	Although you may work together in groups of 2 or 3 to develop your understanding of the homework questions, your submitted homework must be a product of your own effort and must represent your own understanding. Observe the Honor Code in preparing your homework.
Exams:	4 tests, 20% each. In class 8 July, 22 July, 5 August, and during the final exam period 7 to 8 PM, Saturday August 18th. Each test will be 50 or 60 minutes, depending on room availability. <u>Please let me know as</u> <u>soon as possible if you have another class Monday at</u> <u>4:15 so that we can schedule the tests.</u>

The summer coordinator, Colin Ong, would like all students taking any of our summer classes (Stanford as well as Visiting) to register with him so we can contact everyone for our extra activities which will include field trips and socials. The registration form is at:

http://www.stanford.edu/group/ees/summer/forms/appform.fb

[Please note that the above registration is NOT REQUIRED, merely optional.]

Topic Outline (Readings from IEES 3rd Ed.) Dates are approximate.

Mass and Energy (pp. 1 - 35)	
Ideal gas law	
Mass balances	
Steady-state	
First-order decay	
Energy balance	
Heat capacity and heat of vaporization	
Energy efficiency	
Chemistry (pp. 47-70)	
Stoichiometry	
Reaction enthalpy	
Equilibrium constants and pH	
Read and understand alpha-diagrams	
Population Growth (Ch 3 especially pp. 87-94, 106-120)	
Exponential growth	
Half life and doubling time	
Human population dynamics	
Risk Assessment (Ch 4 especially pp. 145-157)7/3-7/9	
Potency Factor or Oral Slope Factor	
Drinking water unit risk / Inhalation unit risk	
Drinking water equivalent level at 10^{-4} , 10^{-5} , and 10^{-6} risk	
Inhalation unit risk	
RfD, hazard quotient, and Hazard Index	
Water Pollution (Ch 5, especially pp. 199-226, 229-240)	
Biochemical Oxygen Demand	
ThOD, BOD ₅ , CBOD, NBOD	
Rate constants and temperature dependence	
Streeter-Phelps oxygen sag curve	
Lakes (pp. 219-226)	
Algae and limiting nutrients	
Oligotrophic, mesotrophic, and eutrophic lakes	
Thermal stratification	
Groundwater (pp. 229-244)	
Porosity	
Hydraulic gradient	
Darcy's Law, Darcy velocity	
Average linear velocity and retardation	
Water Quality (pp 289-295, 299-302, 314-332)	
Safe Drinking Water Act	
Maximum Contaminant Level (MCL) and MCL Goal (MCLG)	
Treatment Technique (TT)	
Secondary Standards	
Basic wastewater unit operations	

Settling and Stoke's Law
Settling basins
Combined and separate sewer systems
Air Pollution (Skim pp. 367-384; 389-393; skim 394-426; 426-428; 437-438; 438-450;
450-458; 483-end of ch.7)
Criteria Pollutants
Air Quality Index (AQI)
Carbon monoxide
Stokes Law
Atmospheric stability
Ozone
Automobile pollution
Gaussian dispersion
Box model - steady state and transient solutions
Global atmospheric change (Skim pp. 502-512; 512-536; skim 536-545; 545-551; 554-
558; 574-587)7/31-8/13
Energy balance and radiation
IR window
Albedo
Climate sensitivity
Global Warming Potential (GWP)
Stabilization wedges
Chlorine and stratospheric ozone
Review, wrap up