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Metric for an Oblate Earth

Ronald J. Adler!-?
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In linearized general relativity the metric of a body is described by a
scalar potential and a three-vector potential. We here present a simple
transformation derivation of the linearized metric in terms of these po-
tentials, and calculate the exact scalar and vector potentials for a field
with oblate spheroidal symmetry. The results for the external potentials
do not depend on details of the density distribution inside the earth; both
the scalar and vector potentials are fully determined by the total mass,
the total angular momentum, and a radial parameter, all of which are
accurately known from observation. The scalar potential is accurate to
roughly 10-¢ and the vector potential, which has never been accurately
measured, should be accurate to about 107°. Applications include an
accurate treatment of the details of the motion of satellites, and the
precession of a gyroscope in earth orbit.

KEY WORDS : General relativity ; gravity ; gravitomagnetism ; oblate
earth

1. INTRODUCTION

Soon after the discovery of general relativity Lense and Thirring (1] gave an
approximate linearized analysis in which the metric is expressed in terms of
a scalar potential, which is the same as the classical Newtonian potential,
and a three-vector potential, which is the analog of the vector potential
of classical electrodynamics (Ref. 2, Ch. 3 and 4, Ref. 3, sec. 40.7, Ref. 4,
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sec. 9.2). The same result may be obtained by using a transformation
argument, which clarifies its physical meaning [5-8]. We briefly review the
transformation derivation because of its importance in the experimental
testing of general relativity, and because it does not appear to be widely
known.

The Newtonian scalar potential of the earth hag approximately the
symmetry of an oblate ellipse of revolution, that is oblate spheroidal sym-
metry (Ref. 9, sec. 1.3, Ref. 10, p.546 and sec. 2.11, Ref. 11). We obtain
the exact scalar and vector potentials, within the context of linearized gen-
eral relativity, of a field with this symmetry, exterior to the earth. Our
derivation uses oblate spheroidal coordinates, and is a generalization of
the derivation of the potentials for a sphere.

The mathematical problem of the scalar potential is the same as the
electrostatic problem of a charged conducting oblate spheroid, and the
solution to that problem may be found in the literature (Ref. 12, p.124,
sec. 5.271, p.292 and p.322, and Ref. 13, sec. 1.4). Vinti noted the use-
fulness of this solution in the context of classical gravitational theory and
satellite geodesy (11). The mathematical problem of the vector potential
is the same as the magnetostatic problem of an oblate spheroid with a sur-
face current; a problem of this general type is noted by Smythe [12], and
Jackson and Durand discuss the special case of a charged rotating sphere
(Ref. 14, p.166, and Ref. 15). We know of no discussion of the solution
presented here.

We include a short section on the multipole expansion of both po-
tentials, and another on the relation of the exterior field and the shape
of the earth’s surface (7,9]. These provide a numerical evaluation of the
radial parameter which appears in the spheroidal coordinate system, and
a consistency check and estimate of the accuracy of the fields.

The scalar potential field of the earth has been accurately measured
by the use of satellite geodesy [9,16]. Rough evidence for the vector field is
provided by observations of the Lageos satellites, but the accuracy is low
and controversial [17]. The only presently viable method for an accurate
measurement is the precession of the gyroscope on the Gravity Probe B
satellite, which is scheduled for launch in the year 2000 [18]. The calcu-
lation of the precession of such a gyroscope in earth orbit wil] be carried
out with the use of our solution in another work.

2. THE METRIC

Within the context of linearized general relativity theory Lense and
Thirring [1] obtained the general form for the metric for a time independent
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weak field system. The metric, in isotropic spatial coordinates, is (with
c=1)

ds® = (1 +2¢)dt* ~ (1 ~ 2¢)d7? + 2(R - dF)dt. (1)
Here ¢ is the Newtonian potential and A is a gravitational three-vector
potential, analogous to the vector potential of classical electrodynamics.

The potentials are determined in terms of the mass density p and velocity
¥ of the source material by the following equations [2,3]:

Vip = 4nG P (2a)
VZh - V(V- k) = —167G p¥. (2b)

These have Green’s function solutions

! 3 1
- -G / pl(r _) ‘i (3a)
G/ e o

It is assumed here that both potentials go to zero far from the localized
source, and in the second solution we assume V - b = 0, the analog of a
gauge choice in electrodynamics. Then both equations in (2) are Poisson
equations.

It is instructive to obtain the above result from a different and phys-
ically interesting perspective, and moreover introduce parameters conve-
nient for discussing experimental measurements [5,7). Following Eddington
we consider the Schwarzschild metric of a point mass with geometric mass

= GM at a large distance r, so that m/r is small. Using isotropic
spatial coordinates we expand the Schwarzschild metric as

(1 —m/2r)?
(1 +m/2r)?

2m 2 m?
(1——m+—m—+ )dt2~<1+27m+3 ---)sz. (4)

ds? = dt* — (1 + m/2r)%dr?

22

Eddington (Ref. 19, p.105) suggested that this be written in terms of
dimensionless parameters as

dszz(l—agT—n+ﬂ—+ )dt2-<1+’y27m+~-)df‘2. (5)
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The Eddington parameters o and B and v are equal to 1 for general rel-
ativity. The series (5) is a rather general form for the metric far from a
spherically symmetric body. Since the constant m which appears in (5)
represents the mass of the central body the parameter o may be absorbed
into it, which is equivalent to taking o = 1. This is consistent so long as
no independent non-gravitational determination of the mass of the central
body is considered. In this work we will display a explicitly.

The parameters may be viewed as a book-keeping tool for tracking
which terms in the metric contribute to some gravitational effect, for ex-
ample the deflection of starlight by the sun. Alternatively they may be
viewed as numbers which may not be equal to 1 if a metric theory other
than general relativity is valid. In either case they provide a convenient way
to express the results of experimental tests of gravity as giving values to
the parameters. This parametrized approach has been extended to include
many other parameters, and has been highly developed under the name
parametrized post Newtonian theory, or ppn (Ref. 20; see in particular
p.339). Solar system measurements give the values f—1 = (0.2+1.0)x 103
and v -1 = (-1.2 + 1.6) x 1073, In this paper we consider only general
relativity and emphasize that we are not using the more general ppN ap-
proach.

We limit ourselves to phenomena in which the second order term in
goo is unimportant, so we may ignore 3 and assume that the underlying
gravitational theory is linear. Then for a stationary point mass

ds? = (1 - az:_—n—)dt?' - (1 + 72—:n—)df'2. (6)

Since the metric is nearly Lorentz we may generalize this to a moving mass
point using a transformation that is nearly Lorentz, that is to first order
in the velocity

tr =t — vz, T, =2 — vt, (7)

where the subscript r indicates the point mass is at rest in that frame.
This gives the metric for the moving mass as

ds? = <1 - a2—r—m)dt2 - <1 +’727m>d7—"2 + (o +'Y)4Tm vdzdt, (8)

which obviously generalizes for motion in any direction to

2
= (1- o2 Ya - (1 #9728+ @+ )22 @ a0
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Since we assume that the underlying theory is linear to this order we can
superpose the fields of a distribution of such point masses and write for
any such mass distribution

GM o p(F")d3r
r ¢(T) - —G/ I'F _ 7-:., 3 (10(1)
M—f . FING N A3
GMV i) =46 [ 2T (100)
r |7 — 7

and the metric is
ds? = (1 + a2¢)dt® — (1 - v2¢)d7? + (o + 7)(h - dF)dt. (11)

This agrees with the general relativity result (1) when o = v =1 but now
contains appropriate combinations of Eddington parameters. This is a very
strong result in that it rests only on the Schwarzschild metric (5) which is
well-verified by observation, the approximate Lorentz transformation (7N,
and the superposition in (10). No new parameter appears in this process.
Thus a measurement of a phenomenon which depends on the cross term in
the metric (11) provides a value for a + vy and does not provide a logically
independent test of gravitational theory. (Some authors do not agree with
this interpretation; see Ref. 21, Ch. 6.)

3. THE SCALAR POTENTIAL

We recall the derivation of a scalar potential with spherical symmetry,
which generalizes easily to the oblate spheroidal case. Poisson’s equation
for a spherically symmetric field is

1 d d¢
Vi(r) = = — (=2 ) =4 . 12
o) = 5 35 (%) = 4nGotr) (12)
Note the coordinate consistency, that both sides are functions of r only.
Outside the body, where the density is zero, the equation may be directly
integrated twice to obtain

#r=p-2. (13)

To determine the two constants of integration, C' and D, we consider very
large r and compare with the Green’s function solution (3a), which gives
C =GM and D = 0 and thus the well-known result

o(r) = -2 (14)
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v=rx/2
b4
v=y,
v=y,
u=u, u=u
-2

Figure 1. The oblate spheroidal coordinates: a cut through ¢ = 0 or v = 0. The level
curves for constant u are ellipses and those for constant v are hyperbolas.

This procedure may be generalized to a potential with oblate spheroidal

symmetry. To do this we use oblate spheroidal coordinates (u,v, ) defined
by (10]

T = acoshucosvcosy, y = acoshucosvsin ¥, 2z =asinhusinv. (15)

Here u is a dimensionless radial coordinate, running from 0 to 00, v is a
latitude angle running from 0 at the equator to 7/2 at the pole, and @ is
the azimuth angle. The parameter a has the dimension of a distance, and
we refer to it as the radial parameter (see Figure 1). At large distances,
these go over to spherical coordinates, with

eu

ag =1, v= g -8 (large distances). (16)

This form for the oblate spherical coordinates is particularly convenient
for our purposes, much more so than that used by Landau and Lifshitz,
for example [13]. The level surfaces for constant u are oblate ellipses of
revolution; in Cartesian and spherical coordinates the equations are

2.,.,2 . 2
Tty z -, (17a)
a%cosh?y ' g2ginK?,
r25in% ¢ 7% cos? 9 _ (175)
a%cosh?u ' g2ginh24

These equations also serve to give u as a function of the Cartesian or
spherical coordinates. For a level surface the semi-major axis, semi-minor
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axes, flattening, and the radial parameter a are related by

A = acosh u, (semi-major axis),
B = asinhu, (semi-minor axis),
ii—g =1 - tanhu, (flattening), 19
a’> = A? - B? (radial parameter).
The metric of flat Euclidean space in these coordinates is
di® = a?(sinh? u + sin®v) (du? + dv?) + a%cosh u cos? v d?. (19)

Following our procedure for the spherical case we now seek a solution with
oblate spheroidal symmetry, that is with ¢ = ¢(u). Note that this does
not imply that the surface of the source body is an equipotential or that its
density is a function of u only. Poisson’s equation (2a) in oblate spheroidal
coordinates is

1 1 d do
a2(sinh2 u + sin? v)] coshu du (COSh "@) = 47Gp. (20)

For consistency the density must therefore depend on both u and v, with
the v dependence given by

P(u)

_ 21
sinh® u + sin® v (21)

plu,v) =
where P is a function of only u, i.e. the density is larger at the equator
than at the poles. However we emphasize that this has no bearing on the
external fields we calculate in this paper.

Outside the body where the density is zero the potential obeys La-
place’s equation, which may be easily integrated twice,

i(cosh u@) =0, d—¢ - C

du du du ~ coshu'’
¢p=C / du_ _ D + Carctan (sinh u) (22)
- coshu )

To evaluate the two constants of integration, C and D, we consider large u,
in which case the field becomes spherically symmetric and we may relate
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it to the spherical case using (16). Using the large argument expansion for
the arctan and comparing with (14) we find :

d(u) = CiTM [arctan (sinhu) — -g] (23)

We will consider the multipole expansion of this in spherical coordinates
in Section 5, and its relation to the surface shape of the earth in Section 6

11,12).
4. THE VECTOR POTENTIAL

As with the scalar potential we first do the spherical case in such a
way that it generalizes easily to the oblate spheroidal case. To do this we
consider eq. (2b), with V.& = 0, and with emphasis on the axial symmetry
of the field. For a rigidly rotating body the velocity field of its matter is

V=0 x7 =w(-yz,0). (24)

Since the velocity curves ¥ are circles parallel to the z,y plane we impose
the same axial symmetry on the field lines i and seek solutions of the form

h = f(r)w(-y,z,0). (25)

That is we assume the A field lines are also circles parallel to the z, y plane.
We now consider the first component of h ; observe that

7]
VA1) = y9 1)+ 20—y 4 a

2 df(r)
= 2 LN
= y[V f(r) + il B (26)
Equation (2b) for the first component of £ is then

L d(adf\ 2d
ﬁ&;(’l‘ %>+T$— 16mGp. (27)

Outside the body where p = 0 this is easily integrated to give the solution

f=D+r£3. (28)
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To determine the constants of integration, C and D, we compare this
solution with the integral solution (3b) far from the source body. The
constant D is obviously zero, and to find C' we consider a point on the
y axis very far from the central body. Then, equating the above solution
and (3b), we find by expansion

1 /d3/

Ir — |

=22 [ pewar - 222 [orwydr. (o)

The first integral is zero if the origin is at the center of mass, and the
second integral is half the moment of inertia; we thereby obtain C = 2GI,
and the solution

2GI
f P (30a)

2GIw 2GJ 2G
3 (—y,:z:,O) = _";5"' (-—y,m,O) =3

h Jx 7 (300)

(see Refs. 12,14, and 15).

To obtain the vector potential for oblate spheroidal symmetry we
follow the above derivation closely with oblate spheroidal coordinates. The
velocity of matter in the body is still given by (24), so we seek a solution
of the form .

h = f(u)w(-y,z,0), (31)

that is with field lines that are circles, the analog of the spherically sym-
metric solution (25). We consider the first Cartesian component of A , and
note that

Of(w) _ (w)
oy~ VYW + = (32)

V3(yf(u)) = yV2f(u) + 2204 az; d

A slightly tedious calculation with (17) yields

D
I3

y sinhu
a2

— = . 33
Oy cosh u(sinh® u + sin? v) (33)

Substitution of (32) and (33) into (2b) then leads to

1 d &\ | sinhu df _ e
coshu du <COShudu> +2coshu du 167G pa“(sinh® u + sin® v). (34)
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Notice that the same consistency condition on the functional form of the
density occurs here as with the scalar potential, that is (21). Outside the
body, in empty space, this takes the form

Lo [d( o &\ ]
wosha [% (coshu%) +2smhua] =0. (35)

Integration of this is straightforward. We first rewrite it as

1 d 3 df
P [312 (cosh u@)} =0, (36)

which leads directly to

f=D+ C[arct;an (sinhu) + %}%J (37)

To determine the constants of integration we again appeal to the large
distance limit, and ask that the above agree with the spherically symmetric
case (30a). This leads to

3GI . sinhu 7
f= — [arctan (sinhu) + cosh s~ EJ (38)
Thus finally we have from (31) and (38)
~ 3GI , sinhu 7
h = ~ [arctan (sinhu) + cosh?n ~ 5] w(-y,z,0)
3G . sinhue 7] .
=-— [arctan (sinhu) + coshZu 5] JxF, (39)

which is the exact solution for the vector potential.
5. MULTIPOLE EXPANSION

Our main results are the scalar potential (23) and the vector potential
(39). These are completely determined by the total mass M and total
angular momentum J of the source, and the radial parameter a. The mass
and angular momentum of the earth are accurately measured; the radial
Parameter is simply related to the quadrupole parameter J, as we will show
in this section, and thus q is also well-known for the earth. Therefore the
scalar and vector Potentials are completely determined for the earth within
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the context of the spheroidal symmetry assumption. We emphasize that
the details of the density distribution do not matter.

For a system with small oblateness like the earth it is interesting to
relate our solutions to a standard multipole expansion in spherical coor-
dinates [7].The expansion of the scalar potential for an axially symmetric
system may be written as

GM R? R3 R?
¢(r,0) = —-—7:-— 1- Jz?ﬁ— P2(0) - Js-ﬁ P3(9) - J4-;4— P4(0) LR I (40)

Here R is any characteristic distance, and is usually taken to be the equa-
torial radius of the body, as we do here for the earth. To compare the
oblate spheroidal solution to this we expand (23) for large distances, and
express sinhu in terms of r and 6. Equation (17b) allows us to solve for
sinhu as

2 4 2 1/2
sinh2u=%{<%—l>+[—2;—2%2—(1—2c0320)+1} } (41)

For the potential in (23) and (41) we use the expansions

, T 1 1 1
arctan (smh u) — 5 = “snhu + Toni%e  5enite ,  (42a)
9 r2 a? at
sinh“u = ) [1 ~ 3 sin? 6 + o sin? coszﬂw-]. (42b)
Combining these in (23) we get the expansion
GM 1 q? 1at
e 122 P68 + = = el
¢ - [1 372 Pz( ) + 5 P4(0) ] (43)
By comparison with (40) we have
1 a? 1 qt
J2—§r_2’ J3 =0, J“__Eﬁ‘ (44)

This allows us to express the radial parameter in terms of the measured
quadrupole parameter as a> = 3R%J,. An amusing aspect of the above
result is a simple relation between the moments [11],

Jy=-2J2. (45)

K
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For the earth the equatorial radius and the moment parameters are accu-
rately measured and given by [10,16]

R = 6.37814 x 10%m, J2 = 1.08263 x 103, (46a)
a
Jy=—(2.44£0.3) x 1078, Ji=—(1.4£0.2) x 1078,
Thus the radial parameter is
a=+/3J; R = 3.63492 x 10%m. (46b)

The relation (45) predicts that Jg = —2.1 x 10~%, which is in reasonably
good agreement with the measured value in (46a). From this and the value
of J3 we may fairly say that the oblate spheroidally symmetric potential
is accurate to a few parts in a million, due of course to the smallness of
the higher moment parameters.

We also wish to express the vector potential & as a Legendre type
series. Since the components of % are harmonic functions we see from (25)
that both yf(u) and zf(u) are harmonic also. Thus for the general axially
symmetric case we may expand them as

R&+2

yf(u) =rsinfsinpf(r,8) = N* szm—eﬁ P (8) sinmep,
ém r
Rt+2 (47a)

zf(u) = rsinfsinpf(r,6) = NCZbﬁmrg—_H- P;™(6) cos mep,
&m

f(r, 9) = f(u[r, 9])’ (47b)

where N* and N° are constants to be determined for convenience. For
consistency the sums in (47) must be over only m = 1 terms. The depen-
dence on ¢ is then automatically correct, and the subscripts m and the
superscripts ¢ and s are redundant and may be dropped, to give

f(r,8)sing = N )" b, ( 7) P}0)
[4
3 4
= N[blf—a (sin@) + bz% (3sin 6 cos 8)

RS (3 2 ":
+b3r_5(§ sin 8(5 cos* 6 — 1)) ] (48)‘-
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The common factor of sin @ makes this a consistent expansion for f. We
may determine the constant N by asking that this agree with the spheri-
cally symmetric case (30) with b, = 1, which implies that N = 2GI/R3,
and

f(r,0)sinf = £ [(smB) +b2—— (3sinf@cosb)

2

R* /3 | 2
+b3;3(§ sin 6(5 cos 0—1))"-}- (49)

This is the expansion for the general axisymmetric case.
To compare with our oblate spheroidally symmetric solution (38) we
expand with the help of (42) to obtain

1 a2

; 2(3 sme(scosa-1)) ] (50)

f(r,0)sind = 6l [(sm 8) —

Comparison of this with the general expression (49) gives

_ b 5 1 a2
b1=1, 2 =0, 3=—g‘ﬁ—2-. (510,)
Notice that we thus have a simple relation between b3 and the well-

measured quadrupole parameter Js,
by=~3%J,. (51b)

In terms of the expansion we may summarize with the following expression
for the vector potential:

-~ 2G 1 a? P}(9) -
h_'l‘_a l—gr—z—sm- JxTF, (52)

which of course includes the spherically symmetrié case as the first term.
6. ROTATION AND THE SHAPE OF THE EARTH

The preceding has been based on the assumed symmetry of the ex-
ternal fields and is thus independent of details of the shape and mass
distribution of the source body, the earth. Here we discuss the shape of
the earth and relate it to the shape of the external equipotential surfaces.
If the earth was sufficiently plastic during formation we may expect its
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surface to be an equipotential surface in its own rotating reference frame
[9]. This immediately implies that its surface cannot be an equipotential
in the inertial nonrotating frame. That is the surface of the earth can-
not be a surface of constant u. A derivation of the shape of the earth in
the context of our solution is interesting in its own right, and moreover it
relates the physical flattening of the surface to the flattening of the exte-
rior equipotential surfaces and to the quadrupole parameter Js, a classic
problem in geodesy.

The scalar potential for a stationary body in the frame rotating with
the earth at w is given by the scalar potential in the inertial frame (23)
with a centrifugal term added, that is

ér(u,v) = %% [arctan (sinhu) — g—} - %w2r2 sin? 9

= _Gi\’f [arctan (sinhu) — %J - %wzazcosh *ucos?v. (53)

An equipotential surface in the rotating frame is described by ¢ = con-
stant. The constant is the value of ®r at the north pole, where the cen-
trifugal term vanishes. This gives the equation for the surface as

2 GM
2 . .
cos“v = arctan (sinh u) — arctan (sinhu,)]. (54
or*v = ( rzremsirs ) 22X fectan inh) - actan s uy) . (54
It is convenient to express this in terms of the polar radius, which is R, =
asinhu,, and a small dimensionless parameter m. defined as the ratio of
the centrifugal force at the equator to the gravitational force; then the

surface equation is

3.5498
3.5496 |y
3.5494 <
3.5492

, 35490 A C
3.5488
3.5486
3.5484 AN
3.5482 <

N

3.5480
3.5478

00 02 04 06 08 10 12 14 1.6

v

Figure 2. Surface shape of the earth according to eq. (55).
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3
cos?v = mic (%) &)—s-:l—%: [arctan (sinhu) — arctan (%’1)], (55)
_ w?R
e = (CM/RY)
As before, R is taken to be the equatorial radius. At the equator we have
cosv = 1, we define u = u, and from (15) R = acosh u.; thus at the
equator (55) gives-

me = 2—? [arctan (\/_]g:) — arctan (%’)]
= 2—? [arctan (\/__GR;___I) — arctan (% -2—2)] (56)

The way in which we will actually use the shape equations (55) and (56) is
to take the accurately measured values of the equatorial and polar radii, R
and Ry, as known, and solve (56) numerically for the ratio R/a. This ratio
yields a number for the quadrupole parameter J; from (44), which we may
consider a theoretical prediction to be compared with the measured value
in (46). For the radii and the centrifugal parameter we use [10,16]

R =6.37814x10°m, R, =6.35666x10°m, m, = 3.44252x1073, (57)

and find

1 a? _3
= 17.4145, Jo =3 77 = 109915 x 10°°. (58)

el

This is in reasonably good agreement with the measured value in (46),
about 1.5% larger. With the parameters in the shape equation (55) all
consistently determined we may use it to plot u as a function of v, which
is shown in Figure 2.

There is an interesting and well-known approximate relation between
the centrifugal parameter m,, the flattening of the earth, and the quadru-
pole parameter J; [9] which we may obtain from the shape equation (56).
We expand (56) to second order in the radial parameter a to find

"2[R&Rp+3(ﬁ'%§l)_i]' (59)
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equipotential of exterior field
in inertial frame

surface, equipotential in
rotating frame

Figure 3. Relation of the equipotentials of the exterior field to the surface of the earth.

In terms of the flattening of the surface, defined as f = (R - R,)/R, this
gives to lowest order

2
mc=2f-——;—2=2f—3J2. (60)

Viewed as a prediction for the quadrupole parameter this yields the well-
known relation

Jp = gf - % = 1.09766 x 10~3 (61)

which is slightly more accurate than obtained above in (58).

Another way to view this result is as a relation between the flattening
of the earth and the flattening of the external equipotentials near the
surface. The flattening of the external equipotentials, feq, near the earth’s
surface is easily obtained from (18) as

2
a®=A42_-pB?_ (A—AE)A(A + B) = feq2R?, feq = -2%5, (62)

80 (60) tells us that
m,
f=fua+ 22 (63)

Numerically the surface flattening is roughly twice the flattening of the
equipotentials. The relation is shown schematically in Figure 3.

The above analysis provides a consistency check of the symmetry of
the external field and the shape of the earth’s surface. The value of the
quadrupole parameter is of course directly measured, ahd we do not need
this analysis to determine it. The analogous parameters for the vector
field are at present not measured, but as noted previously are in principle
measurable by the precession of the gyroscopes in the Gravity Probe B
satellite. Due to the symmetry assumption our analysis thus gives the
vector potential with no unmeasured parameters.
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7. SUMMARY AND CONCLUSIONS

With the assumption of oblate spheroidal symmetry for the earth’s
exterior scalar and vector potentials we have obtained exact solutions in
linearized general relativity theory. These solutions do not depend on
details of the internal mass distribution but only on the total mass and
angular momentum, and of course on the radial parameter a. Since the
radial parameter may be obtained from the quadrupole parameter all of
the parameters in the solutions are accurately known.

The consistency and accuracy of the assumption of oblate spheroidal
symmetry may be inferred from the relation of the moment parameters J,
and Jy in (44) and by the small value of the measured Js in (45). As.noted
following (46b) the scalar field is accurate to about 10~%. The relation
between J; and the flattening of the earth’s surface in (58) is consistent
with oblate spheroidal symmetry to about a percent. Since the correction
to the spherically symmetric part of the vector potential is about 10~3 we
may expect it to be accurate to about 1075,
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Note added in proof: We have learned of related work by P. Teyssandier,
in which the metric functions are obtained using specific axisymmetric
models of the Earth [22]. Our results are in reasonably good agreement.
Teyssandier also applies his results to the Lense-Thirring precession to be
measured by Gravity Probe B; the effect of oblateness on that precession
is not large enough to be observed with the presently expected accuracy.
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