1

APPLIED PHYSICS

Courses offered by the Department of Applied Physics are listed under the subject code APPPHYS on the Stanford Bulletin's ExploreCourses web site.

The Department of Applied Physics offers qualified students with backgrounds in physics or engineering the opportunity to do graduate course work and research in the physics relevant to technical applications and natural phenomena. These areas include accelerator physics, biophysics, condensed matter physics, nanostructured materials, quantum electronics and photonics, quantum optics and quantum information, space science and astrophysics, synchrotron radiation and applications.

Student research is supervised by the faculty members listed above and also by various members of other departments such as Biology, Chemistry, Electrical Engineering, Materials Science and Engineering, Physics, the SLAC National Accelerator Laboratory, and faculty of the Medical School who are engaged in related research fields.

Research activities are carried out in laboratories including the Geballe Laboratory for Advanced Materials, the Edward L. Ginzton Laboratory, the Hansen Experimental Physics Laboratory, the SLAC National Accelerator Laboratory, the Center for Probing the Nanoscale, and the Stanford Institute for Materials and Energy Science.

The number of graduate students admitted to Applied Physics is limited. Applications to the Master of Science and Ph.D. programs should be received by December 15, 2015. M.S. and Ph.D. students normally enter the department only in Autumn Quarter.

Graduate Programs in Applied Physics

The Department of Applied Physics offers three types of advanced degrees:

- the Doctor of Philosophy
- the coterminal Master of Science in Applied and Engineering Physics
- the Master of Science in Applied Physics, either a terminal degree or an en route degree to the Ph.D. for students enrolled in the Applied Physics Department

Admission requirements for graduate work in the Master of Science and Ph.D. programs in Applied Physics include a bachelor's degree in Physics or an equivalent engineering degree. Students entering the program from an engineering curriculum should expect to spend at least an additional quarter of study acquiring the background to meet the requirements for the M.S. and Ph.D. degrees in Applied Physics.

Learning Outcomes (Graduate)

The purpose of the master's program is to further develop knowledge and skills in Applied Physics and to prepare students for a professional career or doctoral studies. This is achieved through completion of courses, in the primary field as well as related areas, and experience with independent work and specialization.

The Ph.D. is conferred upon candidates who have demonstrated substantial scholarship and the ability to conduct independent research and analysis in Applied Physics. Through completion of advanced course work and rigorous skills training, the doctoral program prepares students to make original contributions to the knowledge of Applied Physics and to interpret and present the results of such research.

Coterminal Master of Science in Applied and Engineering Physics

Stanford undergraduates, regardless of undergraduate major, who are interested in a M.S. degree at the intersection of applied physics and engineering may choose to apply for the coterminal Master of Science program in Applied and Engineering Physics. The program is designed to be completed in a fifth year at Stanford. Students with accelerated undergraduate programs may be able to complete their B.S. and coterminal M.S. in four years.

Application and Admission

Undergraduates must be admitted to the program and enrolled as a graduate student for at least one quarter prior to B.S. conferral. Applications will be due on the last day of class of the Spring Quarter for Autumn matriculation and at least four weeks before the last day of class in the previous quarter for Winter or Spring matriculation. All application materials must be submitted directly to the Applied Physics department office by the deadlines. To apply for admission to the Applied and Engineering Physics coterminal M.S. program, students must submit the coterminal application which consists of the following:

- Application for Admission to Coterminal Masters' Program (https:// stanford.box.com/CotermApplic)
- Statement of Purpose
- Unofficial Transcript
- Two Letters of Recommendation from members of the Stanford faculty
- Supplemental Form (http://www.stanford.edu/dept/app-physics/cgibin/aep-application-process)

University Coterminal Requirements

Coterminal master's degree candidates are expected to complete all master's degree requirements as described in this bulletin. University requirements for the coterminal master's degree are described in the "Coterminal Master's Program (http://exploredegrees.stanford.edu/ cotermdegrees)" section. University requirements for the master's degree are described in the "Graduate Degrees (http:// exploredegrees.stanford.edu/graduatedegrees/#masterstext)" section of this bulletin.

After accepting admission to this coterminal master's degree program, students may request transfer of courses from the undergraduate to the graduate career to satisfy requirements for the master's degree. Transfer of courses to the graduate career requires review and approval of both the undergraduate and graduate programs on a case by case basis.

In this master's program, courses taken three quarters prior to the first graduate quarter, or later, are eligible for consideration for transfer to the graduate career. No courses taken prior to the first quarter of the sophomore year may be used to meet master's degree requirements.

Course transfers are not possible after the bachelor's degree has been conferred.

The University requires that the graduate adviser be assigned in the student's first graduate quarter even though the undergraduate career may still be open. The University also requires that the Master's Degree Program Proposal be completed by the student and approved by the department by the end of the student's first graduate quarter.

Program Requirements

Coterminal M.S. students are required to take 45 units of course work during their graduate career. Of these 45 units, the following are required.

Applied Physics 2

APPPHYS 201	Electrons and Photons	4	
APPPHYS 203	Atoms, Fields and Photons	4	
APPPHYS 204	Quantum Materials	4	
APPPHYS 205	Introduction to Biophysics	4	
Three Engineering Depth Courses			
At least one mu be at the 200 le approved by th	ust be at the 300 level and the other courses must evel or above to provide depth in one area. To be e Applied Physics academic adviser.		
One Laboratory or	r Methods Course	3-4	
APPPHYS 207	Laboratory Electronics		
APPPHYS 208	Laboratory Electronics		
APPPHYS 215	Numerical Methods for Physicists and Engineers		
APPPHYS 217	Estimation and Control Methods for Applied Physics		
APPPHYS 232	Advanced Imaging Lab in Biophysics		
APPPHYS 304	Lasers Laboratory		
APPPHYS 305	Advanced Nonlinear Optics Laboratory		
EE 234	Photonics Laboratory		
EE 251	High-Frequency Circuit Design Laboratory		
EE 410	Integrated Circuit Fabrication Laboratory		
ENGR 341	Micro/Nano Systems Design and Fabrication		
ENGR 342	MEMS Laboratory II		
MATSCI 322	Transmission Electron Microscopy Laboratory		
MATSCI 331	Atom-based computational methods for materials		
Seminar ¹			
Approved Technic	al Electives ²	6-12	
6 units minimum that brings up the total units to 45			
Total Units			

- 1 The seminar requirement can be fulfilled by either (i) taking one formal seminar course for credit each term, and/or (ii) enrolling in Applied Physics 290 and attending a minimum of 8 informal talks or formal research seminars during each of the three terms. Students enrolling in Applied Physics 290 must submit with their final M.S. program proposal a list of the 8 talks/seminars with a paragraph describing the content, signed by their academic adviser.
- 2 These include APPPHYS, CS, CME, EE, ME, BIOE, MATSCI, PHYSICS courses (see http://www.stanford.edu/dept/app-physics/cgi-bin/ academic-programs/) as well as those courses that are formally approved by the Applied Physics Graduate Studies Committee through petition.

Any request for a course transfer from the undergraduate career is subject to approval of the undergraduate and graduate departments.

Master of Science in Applied Physics

The University's basic requirements for the master's degree are discussed in the "Graduate Degrees (http://exploredegrees.stanford.edu/ graduatedegrees)" section of this bulletin. The minimum requirements for the degree are 45 units, of which at least 39 units must be graduate-level courses in applied physics, engineering, mathematics, and physics. The required program consists of the following:

Advanced Mechanics

Select one of the following:		
PHYSICS 210	Advanced Mechanics	
PHYSICS 211	Continuum Mechanics (approved substitute)	
Electrodynamics		3
PHYSICS 220	Classical Electrodynamics	
Quantum Mechanics		6

	Select two of the following:			
	PHYSICS 230	Graduate Quantum Mechanics I		
	PHYSICS 231	Graduate Quantum Mechanics II		
	EE 222	Applied Quantum Mechanics I (approved substitute)		
	EE 223	Applied Quantum Mechanics II (approved substitute)		
	PHYSICS 234	Advanced Topics in Quantum Mechanics (approved substitute)		
	PHYSICS 330	Quantum Field Theory I (approved substitute)		
	PHYSICS 331	Quantum Field Theory II (approved substitute)		
	PHYSICS 332	Quantum Field Theory III (approved substitute)		
			Units	
	APPPHYS 290	Directed Studies in Applied Physics		
	1-unit seminar courses			
E>	Examples of suitable courses include:			
	BIO 217	Neuronal Biophysics		
	EE 222	Applied Quantum Mechanics I		
	EE 223	Applied Quantum Mechanics II		
		Modern Ontics		
	EE 236A	modelli optico		
	EE 236A EE 236C	Lasers		
	EE 236A EE 236C EE 248	Lasers		

Introduction to Nonlinear Optics PHYSICS 372 Condensed Matter Theory I

PHYSICS 373 Condensed Matter Theory II

EE 346

- 1. Courses in Physics and Mathematics to overcome deficiencies, if any, in undergraduate preparation.
- 2. Basic graduate courses (letter grade required):
 - · 33 units of additional advanced courses in science and/or engineering. May be any combination of APPPHYS 290 Directed Studies in Applied Physics, any 1-unit course, and regular courses. At least 18 of these 33 units must be taken for a letter grade.
- 3. A final overall grade point average (GPA) of 3.0 (B) is required for courses used to fulfill degree requirements.

There are no department nor University examinations. There is no thesis component. If a student is admitted to the M.S. program only, but later wishes to change to the Ph.D. program, the student must apply to the department's admissions committee.

Doctor of Philosophy in Applied Physics

The University's basic requirements for the Ph.D. including residency, dissertation, and examinations are discussed in the "Graduate Degrees (http://exploredegrees.stanford.edu/graduatedegrees)" section of this bulletin. The program leading to a Ph.D. in Applied Physics consists of course work, research, qualifying for Ph.D. candidacy, a research progress report, a University oral examination, and a dissertation as Units follows:

1. Course Work:

З

	Units
Advanced Mechanics	3
Select one of the following:	
PHYSICS 210 Advanced Mechanics	

3

	PHYSICS 211	Continuum Mechanics (approved substitute)		PHYSICS
S	tatistical Physic	cs	3-4	d Only 2 un
	Select one of	the following:		u. Only 5 ul
	APPPHYS 217	⁷ Estimation and Control Methods for Applied Physics		e. Additiona
	APPPHYS 285	5 Physics of Disordered Systems		as well as
	APPPHYS 315	Methods in Computational Biology		f. A final av
	APPPHYS 387	Quantum Optics and Measurements		required
	PHYSICS 212	Statistical Mechanics		g. Students
E	lectrodynamics		3	requirem
	PHYSICS 220	Classical Electrodynamics		2. Research: ma
C	uantum Mecha	nics	6	supervision o
	Select two of	the following:		faculty from
	PHYSICS 230	Graduate Quantum Mechanics I		3. Ph.D. Candida
	PHYSICS 231	Graduate Quantum Mechanics II		work, togethe
	PHYSICS 234	Advanced Topics in Quantum Mechanics (approved substitute)		must be com
	PHYSICS 330	Quantum Field Theory I (approved substitute)		by the studer
	PHYSICS 331	Quantum Field Theory II (approved substitute)		substitute) a
	PHYSICS 332	Quantum Field Theory III (approved substitute)		department.
	EE 222	Applied Quantum Mechanics I (approved substitute)		4. Research Pro Quarter of the
	EE 223	Applied Quantum Mechanics II (approved substitute)		the student a approximatel
L	aboratory		3-4	5 University Ph
	Select one of	the following:		defense of th
	APPPHYS 207	7 Laboratory Electronics		candidate by
	APPPHYS 208	Laboratory Electronics		6. Dissertation:
	APPPHYS 232	2 Advanced Imaging Lab in Biophysics		committee.
	APPPHYS 304	Lasers Laboratory		Emeriti [,] (Professo
	APPPHYS 305	5 Advanced Nonlinear Optics Laboratory		L. Fetter, Theodo
	BIOE 370	Microfluidic Device Laboratory		A. Sturrock, Yosh
	EE 234	Photonics Laboratory		Helmut Wiedema
	EE 410	Integrated Circuit Fabrication Laboratory		D. Osheroff
	MATSCI 171	Nanocharacterization Laboratory		Chair: Hideo Mab
	MATSCI 172	X-Ray Diffraction Laboratory		
	MATSCI 173	Mechanical Behavior Laboratory		Professors: Steve
	PHYSICS 301	Astrophysics Laboratory		F. Heinz Harold
i	a. Courses in Pl any, in under	hysics and Mathematics to overcome deficiencie graduate preparation.	s, if	Lee, Hideo Mabu Quarter), Stepher
	Desis muselus	a an		

- b. Basic graduate courses: These requirements may be totally or partly satisfied with equivalent courses taken elsewhere, pending the approval of the graduate study committee. Letter grades required for all courses:
- c. 21 units of additional advanced courses in science and/or engineering. Units from APPPHYS 290, APPPHYS 390, and any 1unit courses do not count towards this requirement. Examples of suitable courses include:

BIO 217	Neuronal Biophysics	4
EE 222	Applied Quantum Mechanics I	3
EE 223	Applied Quantum Mechanics II	3
EE 236A	Modern Optics	3
EE 236C	Lasers	3
EE 248		
EE 332	Laser Dynamics	3
EE 346	Introduction to Nonlinear Optics	3
PHYSICS 372	Condensed Matter Theory I	3

373 Condensed Matter Theory II

- its at the 300 or above level may be taken on a ory/no credit basis.
- al units of courses as needed to meet the minimum y requirement of 135. Directed study and research units s 1-unit seminar courses can be included.
- verage overall grade point average (GPA) of 3.0 (B) is for courses used to fulfill degree requirements.
- are normally expected to complete the specified course ents by the end of their third year of graduate study.
- ay be conducted in a science/engineering field under the of a member of the Applied Physics faculty or appropriate other departments.
- acy: satisfactory progress in academic and research er with passing the Ph.D. candidacy qualifying qualifies the student to apply for Ph.D. candidacy, and pleted before the third year of graduate registration. The consists of a seminar on a suitable subject delivered nt before the faculty academic adviser (or an approved nd two other members of the faculty selected by the
- gress Report: normally before the end of the Winter e fourth year of enrollment in graduate study at Stanford, arranges to give an oral research progress report of ly 45 minutes, of which a minimum of 15 minutes should o guestions from the Ph.D. reading committee.
- .D. Oral Examination: consists of a public seminar in e dissertation, followed by private questioning of the the University examining committee.
- must be approved and signed by the Ph.D. reading

ors) Malcolm R. Beasley, Arthur Bienenstock, Alexander re H. Geballe, Stephen E. Harris, Walter A. Harrison, Peter iihisa Yamamoto; (Professors, Research) Calvin F. Quate, ann, Herman Winick; (Courtesy) Gordon S. Kino, Douglas

ouchi

en M. Block, Philip H. Bucksbaum, Robert L. Byer, ch, Martin M. Fejer, Daniel S. Fisher, Ian R. Fisher, Tony Y. Hwang, Aharon Kapitulnik, Mark A. Kasevich, Young S. chi, Kathryn A. Moler, Vahé Petrosian (on leave Autumn n R. Quake, Zhi-Xun Shen, Yuri Suzuki

Associate Professors: Benjamin L. Lev, David A. Reis, Mark J. Schnitzer (on leave Spring Quarter)

Assistant Professors: Surya Ganguli, Amir H. Safavi-Naeini

Professor (Research): Michel J-F. Digonnet

Courtesy Professors: Mark L. Brongersma, Bruce M. Clemens, Shanhui Fan, David Goldhaber-Gordon, James S. Harris, Lambertus Hesselink, David A. B. Miller, W. E. Moerner, Jelena Vuckovic, Shoucheng Zhang

Courtesy Associate Professors: Zhirong Huang, Andrew J. Spakowitz

Courtesy Assistant Professor: William J. Greenleaf

Consulting Professors: Thomas M. Baer, Raymond G. Beausoleil, John D. Fox, Richard M. Martin