

Bursting Neuron

Bursting in Aplysia (left) and in thalamic reticular neuron (right)

Has two stable states: Rest and spiking

And mechanism(s) to switch between them

Requires an inward-current proportional to spike rate

Model simulation

Membrane-voltage equation

Slow voltage-dependent, high-threshold Ca^{2+} current (I_Ca) added.

Like the K-channels, these Ca-channels open only during a spike:

$$
C_m \frac{dV_m}{dt} + g_{1k} V_m + g_K V_m = I_{in} + I_{Ca} + \frac{1}{3} \left(\frac{V_m}{V_{th}}\right)^2 g_{1k} V_m
$$

where $I_{Ca} = \Delta I_{Ca} \tau_{Ca} f$

We model the Ca-current in the same way as the M-current, the only difference being that it is inward rather than outward. Thus, the Ca-current is proportional to spike rate, with proportionality constant determined by the increase in Ca-current each spike evokes (ΔI_{Ca}) and the time-constant with which the Ca-current decays (τ_{Ca}).

In dimensionless form, we have:

Effect of Ca-current

Ca-current lowers input current required to spike at a given frequency.

Adding the Ca-current $(r_{\text{ca}}(f))$ generated by a given spike-rate (*f*) to the input current (r_{in}) and substituting that into the neuron's frequency-current relationship ($f_{\infty}(r)$), yields a new frequency-current relationship ($f_{\infty}(r_{\text{in}} + r_{\text{Ca}})$). When plotted, this new relationship yields a curve that is shifted to the left by the amount $\Delta r_{Ca} \tau f$ for each frequency *f*. This additional current makes it possible to sustain spiking with an input current lower than the minimum $(r_{th}(g))$ required to start it!

Ca-current produces bistability

Three distinct spike-rates are possible for this input current *r*in.

For input currents in a certain range, there are three distinct frequencies at which the neuron can fire. The middle fixedpoint (intermediate spike-rate) is unstable: A slight increase in spike-rate D*f* increases the Ca-current by an amount greater than the amount of current required to sustain that increase in spike rate (i.e., $dr_{Ca}/df > dr/df$).

M-current (gK¥HfL) switches between states

The trajectory (arrows) orbits the unstable-point—a limit-cycle.

As we increase the Ca-current's strength (either ΔI_{Ca} or τ_{Ca}), the stable-point (gray, No Ca) becomes unstable (white, $f_{\infty}(g_K, r + r_{Ca})$).

The trajectory follows $f_{\infty}(g_K, r + r_{Ca})$'s upper (spiking) or lower (resting) parts, approaching $g_{K\infty}(f)$ in both cases.

The trajectory switches from one part to the other (resting to spiking or vise-versa) when it reaches the unstable region (slope reversal).

Phase portrait

Adapts or bursts (red or blue dotted-lines) when $\Delta r_{Ca} = 1$ or 6, respectively ($\tau_K = 180 \text{ ms}$ and $\tau_{Ca} = 10 \text{ ms}$).

In actuality, the tracjectory deviates from $f_{\infty}(g_K, r + r_{Ca})$ because *f* does not respond instantaneously to changes in g_K .

The trajectory crosses $g_{K\infty}(f)$ vertically— $g_{K\infty}$ is constant briefly—which makes sense since that's $g_{K\infty}$'s steady-state value for the value of *f* at that point.

Similarly, the trajectory crosses $f_{\infty}(g_K, r + r_{Ca})$ horizontally—*f* is constant briefly—since that's *f*'s correct value for g_K 's value at that point.

Lab 3: Set-up

The neuron transitions from adapting to bursting as Δr_{Ca} increases.

Lab 3: Data

The neuron transitions from adapting to bursting as Δr_{Ca} increases.

Next week: Phase-response curve

Current-pulses decrease a cortical neuron's period (Cat, Layer V) [Fetz93]