BioE332 Lecture 2: Decision Making

Kwabena Boahen Spring 2013

Direction discrimination task

Random-dot display 100% 30%

Psychophysics: Percent correct and reaction time

* Weibull function fits with $\alpha = 7-11$ and $\beta = 1.4-1.7$

LIP neuron responses (RT)

motion sac 51.2%

and the state of the black of

6.4%

أرجع والمحاد المحاداته والر

* Spike trains aligned to saccade; stimulus onset indicated by claret; only correct choices shown

* Spike rate builds up when target is in cell's RF

* RT is longer when

coherence is low

Roitman & Schadlen '02

500 ms

Wednesday, April 10, 13

Spikes/s

Abstract model

Doesn't specify how neurons achieve the key computations: difference, integration, and threshold.

Circuit model

Coin-tossing with neurons

Matches RT and % correct

Mean-field reduction

20 model fits the data

20 model's phase-plane

 $l_{stim} = 0$

I_{stim} > 0

 $I_{stim} > 0$

D

Time

Middle stable point becomes a saddle-point, which defines a boundary between two other stable points' basins $I_{stim} = 0$ of attraction. Wong & Wang '06

Role of increasing coherence

Wong & Wang '06

* At sufficiently high coherence, the trajectory always goes to the favored attractor.

* At even higher coherences, the unfavored attractor disappears.

Bifurcation diagram

