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by target eccentricity). We tested each parameter to determine whether
it varied with coherence for each direction of motion, using the model:

S ! "1,uIu # "2C # $, (4A)

where S is the value for Vmax, V! , Tdur, A, RT, or ACC. The null hypothesis
is that motion strength does not affect the saccade parameter (H0: "2 ! 0).

We then tested whether these saccade parameters could explain the
apparent relationship between spike rate and motion stimulus strength.
Equation 2A was expanded to incorporate the potential confounding
variables:

Yt ! "1,uIu # "2Vmax # "3V! # "4 A # "5RT # "6C # $, (4B)

where C is motion strength and Yt is the response on each trial during the
40 msec epoch ending at the median RT for 51.2% coherence trials. Only
saccade metrics that varied as a function of coherence level are included.
The null hypothesis is that motion strength does not affect the level of
LIP activity once saccade metrics are known (H0: "6 ! 0).

Response on single trials. We used a maximum likelihood procedure to
estimate the rate of increase in the spike rate from single trials, using
spikes from 200 msec after dots onset until 100 msec before saccade
initiation. Only correct T1 choices were included in this analysis. The
spike rate, %(t), was approximated as a line:

%"t# ! %0 # kt. (5)

We solved for values of %0 and k that maximize the likelihood of
obtaining the observed spike train assuming that spikes are emitted in
accordance with a nonstationary Poisson point process parameterized by
%(t). The procedure furnishes for each trial an estimate of the change in
spike rate per unit time (k, which we term ramp-slope) along with its
standard error. The latter is obtained by inverting the 2 $ 2 Hessian
matrix of second partial derivatives of the error function (minus log
likelihood) with respect to %0 and k.

To evaluate the relationship between the ramp-slope and RT, we used
weighted multiple regression to factor out the influence of cell identity
and coherence on ramp-slope:

k"C, RT# ! "1,uIu # "2C # "3RT # $, (6)

where k is the ramp-slope for each trial (from Eq. 5), C is motion
coherence, and RT is the reaction time. As above, "1,u represents a list of
constants, one per neuron. When analyzing data from just one neuron,

this term is replaced by a single constant that represents the average
ramp-slope independent of motion strength and RT. The change in
ramp-slope that is related to RT is estimated by "3. The units are spikes
per second squared per second (i.e., spikes per second cubed). The null
hypothesis, that there is no relationship between the neural activity and
RT, is tested by setting "3 ! 0.

Because behavioral and physiological results were similar in the two
monkeys (see Fig. 6, Table 1), all population analyses were performed on
combined data from both monkeys.

RESULTS
We recorded from 54 LIP neurons in two rhesus monkeys while
they performed a direction discrimination task (Fig. 2). We will
first show how the speed and accuracy of the monkeys’ direction
decisions depended on motion strength. Then we will examine
the activity of LIP neurons during the period of decision forma-
tion. Finally, we will expose a weak relationship between RT and
the activity of LIP neurons on single trials.

Speed and accuracy of direction judgments
Performance accuracy on the RT and FD tasks depended on the
motion strength of the stimulus. Accuracy data from a single
recording session are shown in Figure 3A. The monkey’s perfor-
mance varied from chance (50% correct, data not shown) to
perfect discrimination as the motion strength increased from 0 to
51.2% coherence. The fitted psychometric function revealed a
threshold (&RT ) of 6.3% coherence motion and a slope ("RT ) of
1.7 (see Materials and Methods, Eq. 1). This level of performance
on the RT task was comparable with the performance on alter-
nating blocks of trials in which the random dots were viewed for
a full second (Fig. 3A, dashed curve) (&FD ! 7.5% coherence;
"FD ! 1.5). The psychometric functions obtained from FD and
RT trials in this experiment were not statistically different ( p !
0.49; likelihood ratio test).

Overall, the accuracy of the direction discrimination was not
compromised when tested in the RT condition (Table 1). For 38

Figure 2. Direction discrimination tasks. Monkeys discriminated the direction of motion in a dynamic random-dot display. The color of the fixation
point signified whether the experiment follows a reaction time or fixed duration protocol, which were conducted in separate blocks. A, Reaction time
version. After fixation, two choice targets appeared in the periphery. One of the targets was within the response field (RF ) of the neuron, indicated by
the gray shading. After a variable delay period, dynamic random dots appeared in a 5° diameter aperture. The fraction of coherently moving dots and
the direction of motion, toward one of the choice targets, were selected at random from a predetermined list of values. The monkey was allowed to make
a saccadic eye movement to a choice target at any time after onset of random-dot motion to indicate the direction of perceived motion. A liquid reward
was administered for choosing the correct target in the direction of motion and on half the trials in which there was no coherent motion. See Materials
and Methods for additional details. Reaction time (RT ) is defined as the interval from motion onset to saccade initiation. B, Fixed duration version. After
the monkey fixated the central point, two choice targets appeared for 700 msec. The monkey maintained fixation through a 1 sec motion-viewing period
followed by a variable duration memory delay. When the fixation point was extinguished, the monkey reported its judgment by making an eye movement
to a choice target.
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MATERIALS AND METHODS
We recorded from 54 neurons in the LIP of two rhesus monkeys (both
female, 4.5–5 kg) trained to perform a reaction-time direction-
discrimination task. Each monkey was implanted with a head-holding
device, a recording cylinder for transdural introduction of electrodes
(Crist Instruments, Damascus, MD), and a scleral eye coil for monitoring
eye position (Fuchs and Robinson, 1966; Judge et al., 1980). For each
recording session, a plastic grid that held a sterile guide tube through
which a tungsten microelectrode was passed was secured in the recording
chamber. Signals from the electrode were amplified, filtered, and passed
to a dual voltage-time window discriminator (Bak Electronics, German-
town, MD) to discriminate action potentials from a single neuron. A
record of the time of each action potential, marked to the nearest
millisecond, as well as events occurring in the trial were stored on a PC
computer for off-line analysis (Hays et al., 1982). Horizontal and vertical
eye positions were also measured (C-N-C Engineering) and stored to
disk for analysis (250 Hz). All surgical and animal care methods con-
formed to the National Institutes of Health Guide for the Care and Use of
Laboratory Animals and were approved by the University of Washington
Animal Care Committee.

Neurons were selected according to anatomical and physiological cri-
teria. Postoperative MRI was used to identify LIP and to direct the
placement of recording electrodes within the recording chamber. The
three coronal images in Figure 1 show the recording locations from one
of our monkeys. The arrowheads border the sites where neurons were
recorded. A minority of neurons (5–10%) studied in this monkey may
have been located within the histological boundaries of the lateral
occipitoparietal zone (in “A”), whereas most of the neurons were located
in LIPv (“B” and “C”) (Lewis and Van Essen, 2000). Locations from the
second monkey were nearly identical to the images in Figure 1, B and C.

We used a memory-guided saccade task to select LIP neurons that
were active during saccade planning (Hikosaka and Wurtz, 1983; Gnadt
and Andersen, 1988). The monkey fixated a central point while a target
appeared briefly (200 msec) in the periphery. After a delay of 1–2 sec, the
fixation point was extinguished, and the monkey made a saccade to the
remembered location of the target. By varying the location of the target
from trial to trial, we identified the location of the visual field that caused

a sustained response in the LIP neuron during the delay period, termed
the response field (RF). This location determined the position of one of
the choice targets in the direction discrimination task (range, 4.5–15°
eccentric).

Direction discrimination task. Monkeys performed a single-interval,
two-alternative forced-choice direction-discrimination task (Fig. 2).
They were tested in two conditions: reaction time (RT) and fixed dura-
tion (FD). The conditions shared the following features. A trial began
when the monkey fixated a central fixation point. Two choice targets then
appeared, with one located in the RF of the neuron under study (T1) and
the other located in the opposite hemifield (T2). The random-dot motion
stimulus appeared in a 5°-diameter aperture centered at the fixation
point. The stimulus was presented on a computer monitor with a frame
rate of 75 Hz. A set of dots was shown for one video frame and then
replotted three video frames later. When replotted, a subset of dots was
offset from their original location to create apparent motion while the
remaining dots were relocated randomly. Therefore, the first pairing of
coherent dots occurred after three video frames (40 msec), although
random motion was present by the second video frame (13 msec). The
net direction of motion was toward one or the other choice target. Both
the direction and strength of motion (the percentage of coherently
moving dots) were chosen randomly on each trial. The monkey’s task was
to decide the direction of motion and to indicate its decision with a
saccadic eye movement to the appropriate choice target. The monkey
received a liquid reward for correct choices and was rewarded on half the
trials that used 0% coherent motion. Errors were followed by a short time
out (extra 750 msec added to the intertrial interval).

In the RT task (see Fig. 2 A), the choice targets were displayed for a
variable interval before the onset of the motion stimulus. The duration of
this prestimulus interval was randomly selected from an exponential
distribution (mean ! 700 msec). This randomization served to discour-
age anticipation of the onset of the motion stimulus. We found that
randomization of the prestimulus interval in this fashion was essential for
training on the RT task. When the onset of the stimulus was predictable,
RT was faster than in these experiments and varied less across the range
of coherences [see also Green et al. (1983)]. Once the motion stimulus
began, the monkey was free to indicate its choice at any time. When the
computer detected a break in fixation, the random dots were extin-
guished. If the monkey made a saccade to either choice target, the trial
was scored as correct or incorrect. Breaks in fixation that were not
associated with an immediate saccade to a choice target were rare and
are not included in our data set.

In the FD task (Fig. 2 B), the choice targets were displayed for 700
msec followed by the appearance of the random-dot motion stimulus.
The monkey then viewed the motion stimulus for 1 sec. This was
followed by a random delay of 500–1500 msec, followed by the disap-
pearance of the fixation point, which cued the monkey to report its choice
of direction. Until then, the monkey was required to maintain fixation
within a window of "0.5° (monkey N) or "1.5° (monkey B).

The RT and FD tasks were conducted in alternating blocks consisting
of 10–40 trials at each of the six levels of motion strength. The monkeys
were informed of the task condition by the color of the fixation point,
which was red for FD and blue for RT. Note that in the RT trials, the
monkey could take as little or as much time as it needed to make its
decision. However, the reward was withheld for a minimum of 800 msec
(monkey B) or 1200 msec (monkey N) after onset of random-dot motion,
no matter how quickly the monkey indicated its choice. This strategy
created an incentive to respond within #1 sec of motion onset, but no
incentive to go any faster. On each trial we obtained a measurement of
the monkey’s direction judgment and, on the RT version of the task, the
amount of time taken to achieve it. We refer to the period from onset of
random-dot motion to saccade initiation as the reaction time.

Analysis of behavioral data. For each experiment, the monkey’s sensi-
tivity to motion was estimated by plotting the probability ( p) of a correct
choice as a function of motion coherence ( C). The accuracy data were fit
by a cumulative Weibull function (Quick, 1974):

p ! 1 " 1
2

e$!C
#"$

, (1)

using a maximum likelihood fitting procedure. The discrimination
threshold, # is the coherence level at which the monkey would make 82%
correct choices. The second parameter, $, describes the slope of the
psychometric function.

Analysis of neural data. All physiological data reported in this paper
were acquired from trials in which the monkeys completed the direction-

Figure 1. Representative MRI of recording sites from one monkey. The
coronal images show the area of the intraparietal sulcus (ips) studied in
these experiments. The recording grid can be seen above the ips. The
arrowheads next to the ips represent the boundaries of the locations from
which neurons were recorded. Images were obtained using STIR acqui-
sition in 1.5T using carotid RF coils adjacent to the head. Slices are
centered 1.5 mm apart (3 mm thickness). The diagram is a lateral view of
the brain showing the location of the corresponding coronal images.
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experiments in which we obtained data on both the FD and RT
tasks, the ratio of thresholds (!RT /!FD ) was !1 (geometric
mean " 0.74, 95% CI: 0.63–0.87; p " 0.002, paired t test after log
transform). Thus when given the freedom to respond when ready,
the monkeys took the time needed to perform the task slightly
better than the level that they achieved with a full second of
stimulus viewing.

The amount of viewing time required to achieve such perfor-
mance varied inversely as a function of motion strength. Figure
3B shows the mean RT for correct choices in the same experi-
ment depicted in Figure 3A. RT varied from 350 # 9 msec
(mean # SEM) for the strongest motion (51.2% coherence) to
876 # 35 msec for the weakest motion strength. Summary statis-
tics for all 54 experiments are provided in Table 2. RT tended to
be slightly faster for T1 choices than T2 choices, presumably
because of the extensive practice given the monkey during RF

mapping. The distributions of RT associated with any one con-
dition tend to exhibit positive skew. Various statistics have been
advanced to describe the moments and shape of the RT distribu-
tion (Luce, 1986; Carpenter and Williams, 1995; Ratcliff and
Rouder, 1998). For the present purposes, we ask the reader to
consider the values in Table 2 as indicators of central tendencies.
A full account of the distribution of RT will be reported sepa-
rately (Ditterich et al, 2001).

The rapid reaction times accompanying strong motion indicate
that the monkeys did not procrastinate in reporting their deci-
sions once attained. This is remarkable considering that there was
no incentive to respond any faster than 800 or 1200 msec (de-
pending on monkey). In contrast, on the weaker motion strengths,
the monkeys often took more than 1 sec to reach a decision (e.g.,
in 20% of the trials at 3.2% coherence) (Table 2). Presumably, the
ability to view a difficult stimulus for a longer time accounts for

Figure 3. Behavioral data from one experi-
ment. A, Psychometric functions from RT
and FD versions of the direction discrimina-
tion task. RT and FD tasks were performed
in alternating blocks of $60 trials. The prob-
ability of a correct direction judgment is plot-
ted as a function of motion strength and fit by
sigmoid functions (see Materials and Meth-
ods, Eq. 1). Vertical lines indicate psychophys-
ical thresholds (! in Eq. 1): the motion
strength that would support 82% correct
choices (horizontal dashed line). B, Effect of
motion strength on reaction time. Mean RT
(# SEM) was obtained from correct trials in
the experiment in A (RT block). The line is a
least squares regression of RT versus log mo-
tion coherence ( p ! 0.001).

Table 1. Psychophysical performance for RT and FD experiments

Monkey
!RT
Mean # SEM

"RT
Mean # SEM n

!FD
Mean # SEM

"FD
Mean # SEM n !RT/!FD

N 6.82 # 0.49 1.45 # 0.09 31 9.11 # 0.85 1.65 # 0.17 25 0.77
B 7.97 # 0.47 1.62 # 0.10 23 10.92 # 1.00 1.66 # 0.18 13 0.69

Average values of threshold (!) and slope (") from Equation 1 (mean # SEM, based on n experiments) are shown for each monkey. The ratio, !RT/!FD, is derived from
experiments in which data were obtained for both RT and FD conditions. For both monkeys, the geometric mean of !RT/!FD was !1 ( p " 0.002; paired t test after log
transform).

Table 2. Reaction time (msec) on correct and error trials

Motion strength (% coherence)

T1 choice T2 choice

Mean # SEM n Mean # SEM n

0 824.0 # 10.0 502 827.6 # 10.0 517
3.2 Correct 795.0 # 12.8 337 818.3 # 12.5 323

Error 819.2 # 15.8* 193 872.5 # 18.4* 175
6.4 Correct 758.5 # 10.4 409 758.3 # 10.7 387

Error 837.7 # 19.0* 125 823.7 # 23.4* 104
12.8 Correct 671.8 # 8.3 486 678.1 # 8.8 477

Error 776.7 # 43.4* 32 890.7 # 42.4* 28
25.6 Correct 532.4 # 6.1 511 551.1 # 6.1 510

Error 539.0 1 785.3 # 21.1* 4
51.2 Correct 409.3 # 4.9 512 436.9 # 4.6 516

For each coherence, reaction time (mean # SE) and number of trials (n) are listed for trials in which the monkey selected T1 (target in RF) or T2 (target outside of RF),
correctly or in error (combined data from two monkeys). For the 0% coherence stimulus, there is no distinction between correct and error. Asterisks indicate that the reaction
time on error trials differs from that on correct trials ( p ! 0.05; ANOVA).
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MATERIALS AND METHODS
We recorded from 54 neurons in the LIP of two rhesus monkeys (both
female, 4.5–5 kg) trained to perform a reaction-time direction-
discrimination task. Each monkey was implanted with a head-holding
device, a recording cylinder for transdural introduction of electrodes
(Crist Instruments, Damascus, MD), and a scleral eye coil for monitoring
eye position (Fuchs and Robinson, 1966; Judge et al., 1980). For each
recording session, a plastic grid that held a sterile guide tube through
which a tungsten microelectrode was passed was secured in the recording
chamber. Signals from the electrode were amplified, filtered, and passed
to a dual voltage-time window discriminator (Bak Electronics, German-
town, MD) to discriminate action potentials from a single neuron. A
record of the time of each action potential, marked to the nearest
millisecond, as well as events occurring in the trial were stored on a PC
computer for off-line analysis (Hays et al., 1982). Horizontal and vertical
eye positions were also measured (C-N-C Engineering) and stored to
disk for analysis (250 Hz). All surgical and animal care methods con-
formed to the National Institutes of Health Guide for the Care and Use of
Laboratory Animals and were approved by the University of Washington
Animal Care Committee.

Neurons were selected according to anatomical and physiological cri-
teria. Postoperative MRI was used to identify LIP and to direct the
placement of recording electrodes within the recording chamber. The
three coronal images in Figure 1 show the recording locations from one
of our monkeys. The arrowheads border the sites where neurons were
recorded. A minority of neurons (5–10%) studied in this monkey may
have been located within the histological boundaries of the lateral
occipitoparietal zone (in “A”), whereas most of the neurons were located
in LIPv (“B” and “C”) (Lewis and Van Essen, 2000). Locations from the
second monkey were nearly identical to the images in Figure 1, B and C.

We used a memory-guided saccade task to select LIP neurons that
were active during saccade planning (Hikosaka and Wurtz, 1983; Gnadt
and Andersen, 1988). The monkey fixated a central point while a target
appeared briefly (200 msec) in the periphery. After a delay of 1–2 sec, the
fixation point was extinguished, and the monkey made a saccade to the
remembered location of the target. By varying the location of the target
from trial to trial, we identified the location of the visual field that caused

a sustained response in the LIP neuron during the delay period, termed
the response field (RF). This location determined the position of one of
the choice targets in the direction discrimination task (range, 4.5–15°
eccentric).

Direction discrimination task. Monkeys performed a single-interval,
two-alternative forced-choice direction-discrimination task (Fig. 2).
They were tested in two conditions: reaction time (RT) and fixed dura-
tion (FD). The conditions shared the following features. A trial began
when the monkey fixated a central fixation point. Two choice targets then
appeared, with one located in the RF of the neuron under study (T1) and
the other located in the opposite hemifield (T2). The random-dot motion
stimulus appeared in a 5°-diameter aperture centered at the fixation
point. The stimulus was presented on a computer monitor with a frame
rate of 75 Hz. A set of dots was shown for one video frame and then
replotted three video frames later. When replotted, a subset of dots was
offset from their original location to create apparent motion while the
remaining dots were relocated randomly. Therefore, the first pairing of
coherent dots occurred after three video frames (40 msec), although
random motion was present by the second video frame (13 msec). The
net direction of motion was toward one or the other choice target. Both
the direction and strength of motion (the percentage of coherently
moving dots) were chosen randomly on each trial. The monkey’s task was
to decide the direction of motion and to indicate its decision with a
saccadic eye movement to the appropriate choice target. The monkey
received a liquid reward for correct choices and was rewarded on half the
trials that used 0% coherent motion. Errors were followed by a short time
out (extra 750 msec added to the intertrial interval).

In the RT task (see Fig. 2 A), the choice targets were displayed for a
variable interval before the onset of the motion stimulus. The duration of
this prestimulus interval was randomly selected from an exponential
distribution (mean ! 700 msec). This randomization served to discour-
age anticipation of the onset of the motion stimulus. We found that
randomization of the prestimulus interval in this fashion was essential for
training on the RT task. When the onset of the stimulus was predictable,
RT was faster than in these experiments and varied less across the range
of coherences [see also Green et al. (1983)]. Once the motion stimulus
began, the monkey was free to indicate its choice at any time. When the
computer detected a break in fixation, the random dots were extin-
guished. If the monkey made a saccade to either choice target, the trial
was scored as correct or incorrect. Breaks in fixation that were not
associated with an immediate saccade to a choice target were rare and
are not included in our data set.

In the FD task (Fig. 2 B), the choice targets were displayed for 700
msec followed by the appearance of the random-dot motion stimulus.
The monkey then viewed the motion stimulus for 1 sec. This was
followed by a random delay of 500–1500 msec, followed by the disap-
pearance of the fixation point, which cued the monkey to report its choice
of direction. Until then, the monkey was required to maintain fixation
within a window of "0.5° (monkey N) or "1.5° (monkey B).

The RT and FD tasks were conducted in alternating blocks consisting
of 10–40 trials at each of the six levels of motion strength. The monkeys
were informed of the task condition by the color of the fixation point,
which was red for FD and blue for RT. Note that in the RT trials, the
monkey could take as little or as much time as it needed to make its
decision. However, the reward was withheld for a minimum of 800 msec
(monkey B) or 1200 msec (monkey N) after onset of random-dot motion,
no matter how quickly the monkey indicated its choice. This strategy
created an incentive to respond within #1 sec of motion onset, but no
incentive to go any faster. On each trial we obtained a measurement of
the monkey’s direction judgment and, on the RT version of the task, the
amount of time taken to achieve it. We refer to the period from onset of
random-dot motion to saccade initiation as the reaction time.

Analysis of behavioral data. For each experiment, the monkey’s sensi-
tivity to motion was estimated by plotting the probability ( p) of a correct
choice as a function of motion coherence ( C). The accuracy data were fit
by a cumulative Weibull function (Quick, 1974):

p ! 1 " 1
2

e$!C
#"$

, (1)

using a maximum likelihood fitting procedure. The discrimination
threshold, # is the coherence level at which the monkey would make 82%
correct choices. The second parameter, $, describes the slope of the
psychometric function.

Analysis of neural data. All physiological data reported in this paper
were acquired from trials in which the monkeys completed the direction-

Figure 1. Representative MRI of recording sites from one monkey. The
coronal images show the area of the intraparietal sulcus (ips) studied in
these experiments. The recording grid can be seen above the ips. The
arrowheads next to the ips represent the boundaries of the locations from
which neurons were recorded. Images were obtained using STIR acqui-
sition in 1.5T using carotid RF coils adjacent to the head. Slices are
centered 1.5 mm apart (3 mm thickness). The diagram is a lateral view of
the brain showing the location of the corresponding coronal images.
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the small difference in performance on the RT and FD tasks.
Overall, the pattern of results indicates that the monkeys took
about as long as required to achieve the level of performance to
which they had grown accustomed on the 1 sec FD task. Although
we did not attempt to manipulate the tradeoff between speed and
accuracy in these experiments, one of the monkeys tended to
respond with short latencies when first exposed to the RT task.
We observed that this monkey’s performance improved over
weeks as it took more time to respond to weaker stimuli. This
observation suggests that the additional viewing time on difficult
trials was devoted to solving the task, consistent with previous
studies (Gold and Shadlen, 2000). The important point is that the
RT task allows us to deduce the window of time corresponding to
decision formation on each trial, before the monkey is committed
to a particular behavioral response.

Neural response during direction discrimination task
The direction of motion and the location of targets in the dis-
crimination task were arranged so that the activity of the neuron
under study would indicate the monkeys’ decisions. One of the
choice targets (T1) was in the response field of the neuron; the
other choice target (T2) was placed in the opposite hemifield. The
random-dot motion was in a 5° aperture centered at the fovea and
was directed toward either T1 or T2. The monkey was trained to
interpret such motion as an instruction to make an eye movement
to the corresponding target. On the basis of our selection crite-
rion (Materials and Methods), we expected neurons to respond
more when the monkey planned an eye movement to the target in
its RF (Shadlen and Newsome, 1996, 2001). The RT version of
the task allowed us to examine the neural activity in the time
frame of the monkey’s decision formation.

Neural activity increased during the period of decision forma-
tion when the monkey’s judgment resulted in an eye movement to
the choice target in the RF (T1) but not before an eye movement
to the other target (T2). Figure 4 illustrates the responses ob-
tained in the RT condition of the same experiment as Figure 3.
When motion was strong, the monkey made its decision rapidly,
and the response modulation was apparent for only !150 msec
before saccade initiation (Fig. 4, top, 51.2% coherence).

When the motion was weaker, the time required to reach a
decision was prolonged. As shown in Figure 4 (bottom, 6.4%
coherence), the response of the neuron began to increase several
hundred milliseconds before the execution of the saccade to the
target in the RF. The example exposes a dividend of the com-
bined RT threshold-discrimination task. When the task is easy, it
is difficult to interpret the neural data because the sequence of
events from stimulus onset to saccade execution occurs within a
short time frame. However, when the task is more difficult, the
decision is formed over a prolonged period, which can be differ-
entiated from the immediate preparation of an eye movement.

A similar pattern of activation was evident during blocks of
trials in which the monkey viewed motion for a fixed duration.
Figure 5 illustrates the responses obtained in the FD condition of
the same experiment as Figure 3. The activity increased during
the period of motion viewing on trials in which the monkey
judged the direction as toward the RF, and this change in activity
persisted through the delay period until the go signal. When the
monkey judged the direction of motion as away from the RF, the
activity decreased and remained suppressed through the delay
period. This pattern of persistent activity during the delay period
helps to distinguish LIP neurons from visual sensory neurons like
those in area MT (Seidemann et al., 1998). Our hypothesis is that

the buildup and attenuation of activity during motion viewing
represents formation of the monkey’s decision about direction
(Shadlen and Newsome, 2001). To test this, it is necessary to
discern whether the activity modulates in the time period that the
monkey uses to reach a decision. This is not possible using the FD
version of the task because there is no way to tell when the monkey
has reached its decision.

The chief advantage of the RT task is that we can examine the
neural activity during the period of decision formation, before the
monkey is committed to an eye movement response. In particular,
we may ask whether the stimulus has an effect on the neural
activity that cannot be accounted for by the initiation of the
saccade. We examined the spike rate as a function of motion
strength during a short epoch after the onset of random-dot
motion (Fig. 6). We chose for this analysis a 100 msec epoch
ending at the median RT for the strongest motion strength, thus
permitting us to estimate spike rate from at least half of the trials
at every coherence level. Figure 6A shows the spike rates associ-
ated with T1 and T2 choices for the neuron depicted in Figure 4,
plotted as a function of motion strength and fit by a line. For this
neuron, the average response associated with T1 choices in-
creased by 42.2 spikes per second per 100% coherence (CI:
14.6–69.9; p " 0.001) (Eq. 2A, H0: !2 # 0), indicating a profound
effect of stimulus strength on the buildup of activity during
motion viewing. When the monkey chose T2, there was a decrease

Figure 4. Response of an LIP neuron during the RT-direction-
discrimination task. Data were obtained from the block of RT trials
depicted in Figure 3. Only correct choices at two motion strengths are
shown. The diagram at the top indicates whether the monkey’s behavioral
response was an eye movement into or out of the response field ( gray
shading). Spike rasters and response histograms are aligned to the begin-
ning of the monkey’s eye movement response (sac). Carets denote the
onset of random-dot motion. Trial rasters are sorted by RT. The monkey
took longer to decide the direction of the weaker (6.4% coherent) motion.
Notice the buildup and attenuation of activity that occurred during
motion viewing (spike histogram binwidth # 20 msec). Spikes/s, Spikes
per second.
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Time course of activity 

(indicated by color) or the monkey’s choice (solid or dashed lines).
The activity then increased or decreased in a manner that re-
flected the strength of motion and the monkey’s ultimate choice.
On trials that culminated in T1 choices (direction judged as
toward the RF), the activity increased in a ramp-like fashion. The
rate of growth in the response was largest for the strongest motion
and smaller as the coherence decreased. The slopes of the func-
tions ranged from 21.5 spikes per second squared to 88.8 spikes
per second squared as motion strength was varied from 0 to 51.2%
coherence (CI: 16.5–26.6 and 49.2–128.3, respectively; p !
0.0001) (Eq. 3A, H0: !4 " 0). The effect of motion strength on the
rate of change was statistically significant for both monkeys (in-
crease of 59.3 and 40.7 spikes per second squared from 0 to 51.2%
coherence for monkeys N and B; CI: 51.3–67.3 and 31.5–50.0,
both p ! 0.0001) (Eq. 3A, H0: !4 " 0). A similar pattern was
apparent in the declining responses that accompanied T2 choices.
For T2 choices the responses were less ramp-like but tended to
drift toward lower rates in a manner that also depended on the
strength of motion. This inverse relationship between the rate of
change in neural response and motion strength seen in Figure 7A
was also reliable ( p ! 0.0001) (Eq. 3A, H0: !4 " 0).

Importantly, the ramp-like modulation in discharge accompa-
nied motion viewing and was not an immediate antecedent to the
saccadic eye movement. The response averages shown in the lef t
half of Figure 7A are drawn to the median reaction time and do
not include any activity in the 100 msec preceding saccade initi-
ation. These curves therefore exclude any enhancement (or at-

tenuation) that occurred just before the eye movement. They
reveal clear differences in the neural processing that accompanied
the formation of difficult versus easy decisions. It will prove useful
for comparison to tabulate the mean response in the 40 msec
epoch denoted by arrows a and b in Figure 7A. The mean
responses (#SEM) for each coherence level for both directions
are shown in Figure 7B. These means, drawn from at least half of
the trials at all motion strengths, demonstrate a systematic de-
pendency on motion strength: an increase in activity of 38.4
spikes per second per 100% coherence when motion was toward
T1 (a, CI: 23.9–52.8 spikes per second; p ! 0.001) (Eq. 2A, H0:
!2 " 0) and a decrease of $29.9 spikes per second per 100%
coherence when motion was toward T2 (b, CI: $50.2 to $9.6
spikes per second; p ! 0.01) (Eq. 2A, H0: !2 " 0).

Because many LIP neurons modulate their activity in relation
to eye movements (Barash et al., 1991a; Colby and Goldberg,
1999), it is natural to ask whether the effect of motion strength on
neural activity could be explained by differences in the monkeys’
eye movement responses. Except for RT, however, the saccade
parameters that we measured did not vary substantially as a
function of motion strength. Saccadic duration and accuracy did
not show any dependency on motion strength ( p % 0.05) (Eq. 4A,
H0: !2 " 0). The higher coherence stimuli were associated with
saccades that were slightly slower and shorter, but these effects
were very small (&3%); they did not constitute violations of the
main sequence (Fuchs, 1967). Of course, RT was 53.4% faster
across the range of motion strengths ( p ! 0.0001) (Eq. 4A, H0:

Figure 7. Time course of LIP activity in the RT-direction-discrimination task. A, Average response from 54 LIP neurons. Responses are grouped by
motion strength and choice as indicated by color and line type. The responses are aligned to two events in the trial. On the lef t, responses are aligned
to the onset of stimulus motion. Response averages in this portion of the graph are drawn to the median RT for each motion strength and exclude any
activity within 100 msec of eye movement initiation. On the right, responses are aligned to initiation of the eye movement response. Response averages
in this portion of the graph show the buildup and decline in activity at the end of the decision process. They exclude any activity within 200 msec of
motion onset. The average firing rate was smoothed using a 60 msec running mean. Arrows indicate the epochs used to compare spike rate as a function
of motion strength in the next panels. Arrows a and b mark the 40 msec epoch ending at the median RT for 51.2% motion trials (370–410 msec after
stimulus onset); arrows c and d mark the 40 msec epoch ending 30 msec before saccade initiation. Only correct choices are included in these graphs for
motion coherences %0%. B, Effect of motion strength on firing rate during decision formation. Response averages were obtained from 54 neurons in
the 40 msec epochs corresponding to arrows a and b above. When motion was toward the RF (solid line; epoch a), the spike rate increased linearly as
a function of motion strength. When motion was away from the RF (dashed line; epoch b), the spike rate decreased as a function of motion strength.
Note that, for the 0% coherence stimulus, there was no net direction of motion, but the activity was greater when the monkey chose the T1 direction.
Symbols represent weighted means # SEM. Lines are weighted least squares fits to Equation 2A (*p ! 0.05; H0: !2 " 0). C, Effect of motion strength
on firing rate at the end of the decision process. Response averages were obtained from 54 neurons in the 40 msec epochs corresponding to arrows c and
d. The large response preceding eye movements to the RF (solid line, filled circles; arrow c) did not depend on the strength of motion. Responses preceding
eye movements away from the RF were more attenuated with stronger motion stimuli (dashed line; arrow d). Use of weighted means in B and C introduces
small discrepancies from averages indicated by arrows in A.
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Abstract model

Doesn’t specify how neurons achieve the key 
computations: difference, integration, and 
threshold.

Cerebral Cortex November 2003, V 13 N 11 1259

movements represent this integration. For the latter, we focus
on neurons in the lateral intraparietal area (LIP), which have
been studied using both FD and RT versions of the task. We
begin by simulating the well-described responses of MT neurons
to random dot motion, and we model LIP responses as a simple
time-integral of the difference from opposing pools of MT
neurons. We simulate two ensembles of LIP neurons, one for
each of the possible eye movement responses. The decision is
made when the activity of one of the LIP ensembles exceeds a
critical value, that is, when the evidence reaches a threshold.
The model furnishes several novel interpretations of behavioral
and physiological measurements obtained using the random
dots task.

The electrophysiological and behavioral data in this paper
have been described in earlier publications (Britten et al., 1992;
Shadlen and Newsome, 2001; Roitman and Shadlen, 2002).

Model Design
The goal of this modeling exercise is to investigate how well
integration of sensory signals can account for behavioral and
neural data obtained in the random-dot motion task. We address
this question by simulating the responses from two brain
regions: the middle temporal area (MT or V5) and the lateral
intraparietal area (LIP) (Fig. 3). Each brain region consists of an
ensemble of simulated cortical neurons whose firing rates are
determined by the model but whose actual spike times are
random.

The model is divided into three stages: representation of the
evidence, accumulation of the evidence into decision variable,

and comparison of the decision variable to threshold (choice).
In the first stage, we simulate the responses of two opposed
pools of direction selective MT neurons to random dot motion
of varying motion strength. For simplicity, all simulations
assume that the motion is either to the right or to the left. Each
neuron in the two pools produces a sequence of spikes with an
expected rate proportional to the strength of motion, based on
values from Britten et al. (1993). The averaged spike rate from
the two pools furnishes the output of stage 1.

In the second stage we simulate the responses of two pools of
LIP neurons. One of the LIP pools represents a plan to choose
the right choice target (Fig. 3, LIPright choice), whereas the other
represents the opposite plan (Fig. 3, LIPleft choice). Unlike the MT
neurons, the expected firing rates of these neurons are time-
dependent, determined by the time integral of the difference in
the output of the right and left MT pools. The expected LIP
firing rate is calculated by integrating the difference in spike rate
signals from MT starting from when the coherence-dependent
MT response begins (δMT), then delaying the result by δLIP; we do
not simulate the LIP response before the integration begins at
time δMT + δLIP. Because of the temporal fluctuations in the
responses of the MT pools [  and ; see equations A1 and
A2, Supplementary Material], the expected LIP responses
[  and , equations A3 and A4, Supplementary
Material] exhibit random deviations around the motion-
dependent drift, similar to a biased diffusion process. As with
the MT stage, the averaged spike rate from the two pools of LIP
neurons furnishes the output of this stage of the model.

Figure 3. Model of the decision process. The input to the model is a two-parameter description of the random dot motion stimulus shown on one experimental trial: direction and
strength (% coherence). The model predicts the behavioral choice (left or right) and the response time. It also represents neural activity which is intended to simulate the responses
of direction selective neurons in area MT and decision related neurons in area LIP, as shown in Figure 2. The elements shown in the schematic correspond to mathematical
operations that are believed to underlie the neural and behavioral responses. The order of several (linear) operations can be combined or exchanged, but the grouping into stages
(colored background) corresponds to sensory representation, accumulation of evidence for two competing hypotheses, and comparison of the accumulated evidence to a threshold.
Labels below the elements in the schematic show the variable names which appear in the text equations; corresponding values are given in Table A1 (Supplementary Material).
The schematic demonstrates a trial with strong rightward motion. Each Neural simulation block shows simulated spikes from 10 neurons (tic marks) and the smoothed average
spike rates from the full ensemble of 100 simulated neurons (solid curves). The Race to threshold elements show the smoothed average rates from the two LIP ensembles racing
against each other toward the decision threshold; * indicates the time of decision in the winning LIP.
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Circuit model

There are two pyramidal cell populations 
(groups A and B) with strong recurrent 
excitatory connections that compete through 
feedback inhibition from interneurons

Neuron
956

amount of background Poisson inputs and fire sponta-
neously at a few hertz.

During stimulation, both neural groups receive sto-
chastic Poisson inputs at rates sA(t ) and sB(t ), respec-
tively, mimicking the outputs from MT cells. The stimuli
sA(t ) and sB(t ) (Figure 1B) vary in time; their distributions
are Gaussian with a mean of !A and !B, respectively,
and a standard deviation " (equal to 4 unless specified
otherwise). This presentation of MT outputs is clearly
an oversimplication; it ignores such issues as pooling
and noise correlation between MT cells (Zohary et al.,
1994; Shadlen et al., 1996; Bair et al., 2001). However,
the objective here is to study the decision-making be-
havior of the model, with the simplest form stimulus
encoding by MT neurons. It is known that the response
of an MT neuron increases with the input coherence c#
for stimulus in its preferred direction and decreases with
c# for stimulus in the direction 180$ opposite (the “null”
direction) (Britten et al., 1993, 1996). I implemented this
dependence by assuming linear relations !A % !0 & 'Ac#
and !B % !0 ( 'Bc#. For most of the simulations, I used
'A % 'B % !0/100, in which case c# % 100 ) (!A ( !B)/
(!A & !B) (Figure 1B, insert). (In some simulations I used
asymmetrical relations, 'A ! 'B; see below.) Therefore,
at low coherence (small c#), the stimuli to the two groups
are similar and hard to distinguish (Figure 1B, bottom).
Nevertheless, the competition between the two neural
groups will eventually lead to one of the two attractor
states, in which one neural group shows elevated persis-
tent activity while the other neural group’s activity is
suppressed. Such an attractor state is sustained by re-
current network dynamics, and thus it will outlast the

Figure 1. Model Architecture and Coherence-Dependent Stochas- stimulus and persist during a mnemonic delay period.
tic Inputs If neural group A (or B) wins the competition, the model’s
(A) Schematic depiction of the model. There are two pyramidal cell decision choice is said to be A (or B).
groups (A and B), each of which is selective to one of the two stimuli In computer simulations of the delayed visual discrimi-
(mimicking motion to the right or left). Within each pyramidal neural nation experiment, input presentation (1 s) is followed
group there is strong recurrrent excitatory connections that can

by a delay period (2 s); the generation of saccadic motorsustain persistent activity triggered by a transient preferred stimu-
response is not explicitly modeled. Figure 2 shows typi-lus. The two neural groups compete through feedback inhibition
cal network behavior at three levels of input coherencefrom interneurons.

(B) Top: the inputs are Poisson rates that vary in time and obey (c# % 0%, 12.8%, and 51.2%). In all three examples, the
Gaussian distributions, with means !A and !B and with standard neural activity in group A (left) is distinctly higher than
deviation ". The means !A and !B depend on the coherence level that in group B (right), hence the network’s decision
linearly (insert). Bottom: an example of stochastic inputs to neural choice is A (by convention, !A * !B, so A is the correct
groups A and B with !0 % 40 and " % 10 in Hz, c# % 6.4%. At every

choice for any c# + 0%). The neural firing patterns in50 ms, the two stimuli are independently resampled using their
Figure 2 are notable in several respects, all of whichGaussian distributions, so that the inputs vary stochastically in time.
are salient features of decision-correlated neural activityIf " % 0, the two inputs would be constant in time.
observed in LIP (Shadlen and Newsome, 2001). First,
there is a slow time course of activity in pyramidal sub-
population A which, at low coherence, ramps up linearlypersistent activity, consistent with the fact that in work-
for the entire stimulation period of 1 s. The rampinging memory tasks LIP neurons show direction-selective
slope is steeper at a higher coherence, consistent withsustained activity during a delay period (Shadlen and the idea that the network accumulates evidence about

Newsome, 2001; Gnadt and Andersen, 1988; Colby et the input at a faster rate when the signal is stronger.
al., 1996; Chafee and Goldman-Rakic, 1998). For the Second, in all three cases, including the one with zero
sake of clarity, to simulate a two-choice decision task, coherence, the firing patterns of the two pyramidal neu-
I used a minimal version of the model that contains two ral groups diverge dramatically over time during the
neural groups: each is selective to one of the two motion stimulation. This subserves a neural basis for a binary
directions (e.g., A, left motion; B, right motion). Strong decision to be formed by the network. The winner-take-
recurrent excitatory connections within a neural group all competition is a result of the recruitment of feedback
are capable of generating self-sustained persistent ac- inhibition, which develops in parallel with the ramping
tivity. There is also a competition between the two neural activity of the inhibitory neurons (bottom). Third, the
groups, due to the shared feedback inhibition from elevated activity in group A outlasts the transient stimulus

and persists through the mnemonic delay period. Further-interneurons (Figure 1A). All neurons receive a large
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Coin-tossing with neurons

At zero-coherence, either group could win, 
depending on random fluctuations in input 
strength as well as added noise.

Neuron
958

Figure 3. Decision Dynamics with Inputs of
Zero Coherence

(A) Two trial simulations (red, neural group A;
blue, neural group B). From top to bottom:
raster, population firing rates rA and rB, sto-
chastic inputs, and time integrals of inputs.
In these two examples, decision choice (A or
B) is correlated with the larger time integral
of the input.
(B) Network dynamics in the decision space
for the same two trials as in (A). Note the initial
random walk along the diagonal line (when
the population activity is similar for the two
groups); afterwards the network converges
to one of the two attractors (at [rA ! 20 Hz,
rB ! 3 Hz] and [rA ! 3 Hz, rB ! 20 Hz].
(C) Histogram of the difference in the input
time integral for trials in which the decision
choice is A (red curve) or B (blue curve). For
trials where attractor A wins, the average I
standard deviation of "S is 0.8 # 3, whereas
for trials where attractor B wins, it is $0.7 #
3 (n ! 1000, % ! 10 Hz, and stimulus duration
is 1 s).

the two choices were found in about equal numbers of network. Our modeling results suggest that the domi-
nant source of variability in the decision-making processtrials.

If the stimulus strength is the same for the two neural resides not in the sensory stimuli but inside the brain,
such as Poisson-like afferent inputs from MT neuronsgroups, what determines which of the two wins the com-

petition? One possibility is that even if the input distribu- to LIP. However, if external inputs to the two neural
groups are stochastic and slightly different, the networktions are the same, the actual stochastic realizations of

stimuli sA(t ) and sB(t ) in a finite time window are not is capable of accumulating the difference between the
two stimuli, so that decision choice is biased by theidentical. The neural network could perhaps detect the

small difference between the two inputs. This difference time integral of this input difference.
could be amplified if the inputs are integrated over a
long time period T, "S ! !T

0 (sA(t) $ sB(t))dt, the variance Behavioral Performance and Error Trials
of which increases with time as !T. Indeed, I found that, Figure 4A shows the model’s performance, i.e., percent-
in trials where attractor A wins, "S is positive in average, age of correct choices as a function of coherence level.
whereas in trials where attractor B wins, "S is negative The data can be fitted by a Weibull function
in average (Figure 3C). However, the two histograms
for "S are quite broad and overlap considerably. This % correct ! 1 $ 0.5 & exp($(c'/())),
means that in a large fraction of trials, even if "S is
negative (respectively positive), attractor A (respectively where the threshold ( is defined as the coherence level

at which the performance is 1 $ 0.5 & exp($1) ! 82%B) still wins. Therefore, external stimuli cannot be the
main source of randomness in the decision-making pro- correct. For model simulations with a fixed stimulus du-

ration of 2 s, ( ! 9.2, ) ! 1.5. These values are compara-cess of this model. To confirm this conclusion, I simu-
lated the model without stochastic fluctuations in the ble to those of measured psychometric functions of well-

trained monkeys. For example, in Roitman and Shadlenstimuli (% ! 0, thus sA(t ) ! sB(t ) ! const.). In this case,
the network’s behavior is essentially unchanged. The (2002), the mean threshold is 6% and the mean slope

) ! 1.7; in Shadlen and Newsome (2001), the meannetwork still makes the two choices with equal probabil-
ity. The reason is that nonspecific background drives threshold is 15% and the mean slope ) ! 1.1. Further-

more, as expected from the above discussion, when(with an overall rate of 2400 Hz) are much larger than
the weak information-specific stimuli (*100 Hz), and noise is absent in the stimulus (% ! 0), the neurometric

function is virtually unchanged (( ! 8.9, ) ! 1.5). Thisthus they determine the amount of stochasticity in the
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raster, population firing rates rA and rB, sto-
chastic inputs, and time integrals of inputs.
In these two examples, decision choice (A or
B) is correlated with the larger time integral
of the input.
(B) Network dynamics in the decision space
for the same two trials as in (A). Note the initial
random walk along the diagonal line (when
the population activity is similar for the two
groups); afterwards the network converges
to one of the two attractors (at [rA ! 20 Hz,
rB ! 3 Hz] and [rA ! 3 Hz, rB ! 20 Hz].
(C) Histogram of the difference in the input
time integral for trials in which the decision
choice is A (red curve) or B (blue curve). For
trials where attractor A wins, the average I
standard deviation of "S is 0.8 # 3, whereas
for trials where attractor B wins, it is $0.7 #
3 (n ! 1000, % ! 10 Hz, and stimulus duration
is 1 s).

the two choices were found in about equal numbers of network. Our modeling results suggest that the domi-
nant source of variability in the decision-making processtrials.

If the stimulus strength is the same for the two neural resides not in the sensory stimuli but inside the brain,
such as Poisson-like afferent inputs from MT neuronsgroups, what determines which of the two wins the com-

petition? One possibility is that even if the input distribu- to LIP. However, if external inputs to the two neural
groups are stochastic and slightly different, the networktions are the same, the actual stochastic realizations of

stimuli sA(t ) and sB(t ) in a finite time window are not is capable of accumulating the difference between the
two stimuli, so that decision choice is biased by theidentical. The neural network could perhaps detect the

small difference between the two inputs. This difference time integral of this input difference.
could be amplified if the inputs are integrated over a
long time period T, "S ! !T

0 (sA(t) $ sB(t))dt, the variance Behavioral Performance and Error Trials
of which increases with time as !T. Indeed, I found that, Figure 4A shows the model’s performance, i.e., percent-
in trials where attractor A wins, "S is positive in average, age of correct choices as a function of coherence level.
whereas in trials where attractor B wins, "S is negative The data can be fitted by a Weibull function
in average (Figure 3C). However, the two histograms
for "S are quite broad and overlap considerably. This % correct ! 1 $ 0.5 & exp($(c'/())),
means that in a large fraction of trials, even if "S is
negative (respectively positive), attractor A (respectively where the threshold ( is defined as the coherence level

at which the performance is 1 $ 0.5 & exp($1) ! 82%B) still wins. Therefore, external stimuli cannot be the
main source of randomness in the decision-making pro- correct. For model simulations with a fixed stimulus du-

ration of 2 s, ( ! 9.2, ) ! 1.5. These values are compara-cess of this model. To confirm this conclusion, I simu-
lated the model without stochastic fluctuations in the ble to those of measured psychometric functions of well-

trained monkeys. For example, in Roitman and Shadlenstimuli (% ! 0, thus sA(t ) ! sB(t ) ! const.). In this case,
the network’s behavior is essentially unchanged. The (2002), the mean threshold is 6% and the mean slope

) ! 1.7; in Shadlen and Newsome (2001), the meannetwork still makes the two choices with equal probabil-
ity. The reason is that nonspecific background drives threshold is 15% and the mean slope ) ! 1.1. Further-

more, as expected from the above discussion, when(with an overall rate of 2400 Hz) are much larger than
the weak information-specific stimuli (*100 Hz), and noise is absent in the stimulus (% ! 0), the neurometric

function is virtually unchanged (( ! 8.9, ) ! 1.5). Thisthus they determine the amount of stochasticity in the
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Matches RT and % correct 

RT is longer and more variable when coherence is 
low. Neurometric threshold is 8.4 or 10.4% 
coherence for RT and 1s delay, respectively.

 Wang ’01

Neuron
960

Figure 5. Reaction Time Simulations

Same parameters as in Figure 4.
(A) During a 2 s stimulation, at the moment
when one of the two neural groups reaches
a fixed threshold (15 Hz) of population firing
activity, the decision is made and the deliber-
ation or decision time is read out. The deci-
sion time is longer and more variable at low
coherence (left) than at high coherence
(right). This is further quantified by the deci-
sion time histogram (bottom), which has a
larger mean and is broader at low coherence
(left) than at high coherence (right).
(B) Left: Neurometric functions for the reac-
tion time stimulation (circle) and with fixed
stimulus duration of 1 s (square). The coher-
ence threshold (defined by 82% correct) is
!RT " 8.4% and !FD " 10.4%. Right: Average
decision time is linear in the logarithm of the
coherence level, ranging from 200 ms at high
c# to 800 ms at low c#. At very low coherence
there is a saturation. Note the large standard
deviation of decision time, especially at low
coherence.

that obtained in simulations with fixed stimulus duration coherence to 900 ms at low coherence. The extra 100
ms compared to the model can be easily accounted forof 2 s (Figure 4A). This is because, with a sufficiently

high threshold (15 Hz in Figure 5), reaching that firing in the intact animal, by the latency for the signal to
reach LIP and the response time within the saccadicthreshold virtually guarantees that the corresponding

attractor wins. However, it is slightly lower than the co- generation system. Moreover, decision times in the
model can be increased or decreased by changing pa-herence threshold !FD " 10.4 obtained from stimulations

with fixed stimulus duration of 1 s (Figure 5B, left). The rameters such as the recurrent connection strength w$

(see below) and the mean stimulus amplitude %0 (dataratio !RT/!FD ! 0.8, in agreement with the experimental
observations (Roitman and Shadlen, 2002). It was sug- not shown).
gested that the discrepancy can be explained if at zero
or low coherence reaction time is often longer than 1 s, Dependence on Time Integration of Long

Stimulus Signaland hence the network has more time to form a decision
in the reaction-time task (Roitman and Shadlen, 2002). Better performance in reaction-time simulations than

with fixed 1 s stimuli indicates that long stimulus presen-This is indeed the case for the present model (Figure
5A, left). tation is important for the decision process. In visual

motion discrimination experiments, it was found thatThe mean decision time varies linearly with the loga-
rithm of the signal strength from 200 ms at high coher- the coherence threshold increases, and the animal’s

performance deteriorates, steeply with decreased stim-ence to 800 ms at low coherence, and it saturates as
coherence goes to zero (Figure 5B). (Note also the large ulus duration (Britten et al., 1992). I tested directly the

importance of time integration in simulations where thestandard deviation of decision times, especially at low
coherence.) This is in agreement with Roitman and stimulus duration was varied systematically from trial to

trial. The stimulus offset was followed by a fixed delayShadlen (2002), who reported a linear relationship be-
tween the average reaction time and the logarithm of of 2 s and the decision choice was made according to

which of the two attractors wins the competition. Whenthe coherence level. In that experiment, the animal’s
trial-averaged reaction time ranges from 300 ms at high the stimulus is very short (say 200 ms), in many trials
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Mean-field reduction

Results in two-variable model amenable to analysis

7200 Eqs 11 Eqs

8 Eqs2 Eqs

Mean-field 
approach

Simplified FI curves 
and constant NS cells 

Only NMDA 
dynamics

 Wong & 
Wang ’06
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2D model fits the data
Error 
trials

 Wong & Wang ’06
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2D model’s phase-plane

Middle stable 
point becomes 
a saddle-point, 
which defines 
a boundary 
between two 
other stable 
points’ basins 
of attraction. Wong & Wang ’06
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Role of increasing coherence

At sufficiently high coherence, the trajectory 
always goes to the favored attractor.
At even higher coherences, the unfavored 
attractor disappears. 

 Wong & Wang ’06
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Bifurcation diagram

Monostable: 1 stable point
Bistable: 2 stable points
Competition: No hysteresis

 Wong & Wang ’06

Wednesday, April 10, 13



Next week

Balanced networks
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