
Design and validation of a real-time spiking-neural-network decoder for brain–machine

interfaces

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2013 J. Neural Eng. 10 036008

(http://iopscience.iop.org/1741-2552/10/3/036008)

Download details:

IP Address: 171.67.216.21

The article was downloaded on 15/04/2013 at 20:53

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1741-2552/10/3
http://iopscience.iop.org/1741-2552
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

IOP PUBLISHING JOURNAL OF NEURAL ENGINEERING

J. Neural Eng. 10 (2013) 036008 (12pp) doi:10.1088/1741-2560/10/3/036008

Design and validation of a real-time
spiking-neural-network decoder for
brain–machine interfaces
Julie Dethier1,6,7,8, Paul Nuyujukian1,2,6, Stephen I Ryu3,4,
Krishna V Shenoy1,2,3,5 and Kwabena Boahen1,3

1 Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
2 Medical Scientist Training Program, Stanford University, Stanford, CA 94305, USA
3 Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
4 Department of Neurosurgery, Palo Alto Medical Foundation, Palo Alto, CA 94301, USA
5 Department of Neurobiology, Stanford University, Stanford, CA 94305, USA

E-mail: boahen@stanford.edu

Received 27 December 2012
Accepted for publication 19 March 2013
Published 10 April 2013
Online at stacks.iop.org/JNE/10/036008

Abstract
Objective. Cortically-controlled motor prostheses aim to restore functions lost to neurological
disease and injury. Several proof of concept demonstrations have shown encouraging results,
but barriers to clinical translation still remain. In particular, intracortical prostheses must
satisfy stringent power dissipation constraints so as not to damage cortex. Approach. One
possible solution is to use ultra-low power neuromorphic chips to decode neural signals for
these intracortical implants. The first step is to explore in simulation the feasibility of
translating decoding algorithms for brain–machine interface (BMI) applications into spiking
neural networks (SNNs). Main results. Here we demonstrate the validity of the approach by
implementing an existing Kalman-filter-based decoder in a simulated SNN using the Neural
Engineering Framework (NEF), a general method for mapping control algorithms onto SNNs.
To measure this system’s robustness and generalization, we tested it online in closed-loop BMI
experiments with two rhesus monkeys. Across both monkeys, a Kalman filter implemented
using a 2000-neuron SNN has comparable performance to that of a Kalman filter implemented
using standard floating point techniques. Significance. These results demonstrate the
tractability of SNN implementations of statistical signal processing algorithms on different
monkeys and for several tasks, suggesting that a SNN decoder, implemented on a
neuromorphic chip, may be a feasible computational platform for low-power fully-implanted
prostheses. The validation of this closed-loop decoder system and the demonstration of its
robustness and generalization hold promise for SNN implementations on an ultra-low power
neuromorphic chip using the NEF.

(Some figures may appear in colour only in the online journal)

1. Cortically-controlled brain–machine interfaces

1.1. The challenge

Neural motor prostheses aim to help disabled individuals to
use computer cursors or robotic limbs by extracting neural

6 These authors contributed equally to this work.
7 Research Fellow.
8 Present address: FRS-FNRS, Systmod Unit, Montefiore Institute, University
of Liege, Belgium.

signals from the brain and decoding them into useful control
signals (figure 1). Several proof-of-concept demonstrations
have shown encouraging results [1–10]. Recently, a cortically-
controlled motor prosthesis capable of quick, accurate, and
robust computer cursor movements by decoding neuronal
activity from 96-channel microelectrode arrays in monkeys has
been reported [11–13]. This prosthesis, similar to other designs
(e.g. [14]), uses a Kalman-filter-based decoder ubiquitous in
statistical signal processing. Such a filter and its variants have

1741-2560/13/036008+12$33.00 1 © 2013 IOP Publishing Ltd Printed in the UK & the USA

http://dx.doi.org/10.1088/1741-2560/10/3/036008
mailto:boahen@stanford.edu
http://stacks.iop.org/JNE/10/036008

J. Neural Eng. 10 (2013) 036008 J Dethier et al

Occipital

Temporal

Frontal
Parietal

FEFFEF

PO sprd

Lu

IO sT

L

Pr

iPd

spcd

OT

EC

FrO

C

iA

sA
spA

IP
S1

MIP

VIP

AIP

LIP

M1

cPMv

cPMd

SMA
preSMA

rPMd

rPMv

7a

7b

Motor
prosthesis

A B C D E F G
H I J K L M N
O P Q R S T U
V W X Y Z

Communication prosthesis

Neural signals

Control signals

Threshold-crossing times

 Decode
algorithm

Threshold

Figure 1. System diagram of a BMI. Electronic neural signals are measured from motor regions of the brain, converted to spike trains by
detecting threshold-crossings, and translated (decoded) into control signals for a computer or prosthetic arm. Current implementations
record neural signals with an implanted silicon microelectrode array, threshold and wirelessly transmit these signals with a battery-powered
head-mounted unit, and decode them with a remote desktop computer.

demonstrated the highest levels of brain–machine interface
(BMI) performance in both humans [14] and monkeys [13].
Even though successes with non-linear alternative decoder
types, such as the unscented Kalman filter [15] and the
population vector algorithm [16], are reported in the literature,
this paper focuses on the linear version of the Kalman
filter because of its ease of implementation in steady-state
and the previous experience with the ReFIT-KF training
algorithm [13].

These decoding systems can be implemented in one of
three general reference designs (figure 2). Each design makes
a tradeoff among available space for electronics, power budget
(both acceptable dissipation and battery capacity), risk of
infection, and cosmetic appearance. The first design implants
only the recording electrodes under the skull, placing the
electronics outside of the skin (see figure 2(A)). Examples
of this approach are the Neurochip [17, 18] and the Hermes
systems [19–23]. This design does not have stringent power
constraints because the electronic systems are not in proximity
of the brain and make little contact with the skin, so there
is little risk for heating tissue. Systems in this class draw
20–200 mW and run on battery power for hours to weeks.

The second design differs from the first one in that electronics
are fully implanted beneath the skin, but are not in direct
contact with the brain [24] (see figure 2(B)). Here again there
is little risk of heating the brain, but the electronics may heat
the cranium. However, since the system is implanted, space
constraints limit the footprint of the electronics and the battery
capacity—inductive power is a viable alternate power source.
Systems of this design decrease the risk of infection due to the
closure of the skin and the lack of a chronic wound margin.
The third design is fully implanted under the skull [25, 26]
(see figure 2(C)). This design has a further decreased infection
risk relative to under-skin implantation because the dura is
completely closed after the device is implanted, minimizing
cerebrospinal fluid leak and maintaining the blood–brain
barrier. This third design has the tightest space constraints
while being the most cosmetically favorable of the three. Power
for this design would be inductively delivered. In this scenario,
because electronics are so close to brain tissue, heat dissipation
is of greatest concern. The need to minimize power dissipation
while providing a high level of computational ability makes
the neuromorphic approach a potentially enabling technology
for the second and third reference designs.

2

J. Neural Eng. 10 (2013) 036008 J Dethier et al

(A) (B) (C)

Figure 2. Cross-section of three reference designs for intracortical neural prostheses. (A) Externally head-mounted. The electrode array is
the only intracortical device. The electronics are externally mounted, fixed against the cranium, with little concern of heating. This system
can take advantage of a large power budget. (B) Fully-implanted beneath the scalp. The electronics, together with the rest of the electronics,
are placed on the skull, but below the skin, allowing for wound closure. (C) Fully-implanted beneath the skull. The electronics are bonded to
the backside of the electrode array and hermetically sealed. This is the only design where the dura is fully closed.

The lack of low-power electronic circuitry to run decoding
algorithms is an obstacle to the successful clinical translation
of implantable cortical motor prostheses. A design constraint
set by the American Association of Medical Instrumentation
for implanted medical devices specifies that a device should
not increase the temperature of tissue chronically by more
than 1 ◦C. This translates to a power dissipation limit of
40 mW cm−2 [27]. For the 4 × 4 mm2 electrode array
commonly used in neural prostheses applications in a 6 ×
6 mm2 hermetically sealed package, this places a power
dissipation limit of about 10 mW for an implanted design
[28]. A modern x86 processor consumes approximately
1.8 mW [29] just to perform 2D Kalman filtering on a 96-
channel array. Thus this approach will not meet the demands
of recording from higher electrode densities and controlling
more degrees of freedom, which require substantially more
computer-intensive decode/control algorithms.

In the first reference design (figure 2(A)), decoding
occurs remotely, enabling the power budget to be allocated
entirely to signal preprocessing (amplifying, filtering and
digitizing), data preconditioning (syncing, scrambling, and
coding), and wireless transmission. For 96 signals sampled
at 31.25 KHz and digitized at 10 bits (30 Mb s−1), a 120 nm-
CMOS FPGA preconditioner consumes 14 mW (scaled from
[22]) and a 65 nm-CMOS UWB transmitter consumes 0.35
mW (8.5 pJ b−1) [30]. Assuming a custom preconditioner
implementation consumes two orders of magnitude less power,
the preconditioning and transmission power for 96 channels
can be reduced to 0.49 mW. Extrapolating this number yields
5 mW for the 1000 channels thought to be needed for fast and
robust control of a six degree-of-freedom robotic arm [31].
This figure can be reduced from 50% to 0.005% of the second
and third reference designs’ (figures 2(A) and (B)) 10 mW
power budget if decoding is performed locally before wireless
transmission. The data rate is reduced from 30 Mb s−1 to 3 Kb
s−1—six signals sampled at 50 Hz and digitized at 10 bits—
with a proportionate reduction in power. A viable approach if

the neural signals can be decoded using a lot less power than
it takes to transmit them in raw form9.

1.2. The neuromorphic alternative

The required power constraints could be met with an innovative
ultra-low power technique: the neuromorphic approach. This
approach follows the brain’s organizing principles and uses
large-scale integrated systems containing microelectronic
analogue circuits to morph neural systems into silicon
chips [34, 35]. It combines the best features of analogue
and digital circuit design—efficiency and programmability—
offering potentially greater robustness than either of them
[34, 35]. With as little as 50 nW per silicon neuron when
spiking at 100 Hz [36], these neuromorphic circuits may yield
tremendous power savings over conventional digital solutions
because they use an analogue approach based on physical
operations to perform mathematical computations.

Before designing and fabricating such a dedicated
neuromorphic decoding chip, we explored the feasibility of
translating decoding algorithms into a spiking neural network
(SNN) in software. Recent studies have highlighted the utility
of neural networks for decoding in both off-line [37] and
online [38] settings. Similarly, we encouragingly achieved off-
line (open-loop) SNN performance comparable to that of the
traditional floating point implementation [29]. We also realized
simulation algorithm enhancements that enable the real-time
execution of a 2000-neuron SNN on x86 hardware and reported
preliminary closed-loop results obtained with a single monkey
performing a single task [39].

In this study, we extended our preliminary closed-loop
tests of the SNN Kalman-filter-based decoder from one to two
monkeys and evaluated its performance on multiple tasks. We
first describe the linear filter we used in our system, the Kalman
filter already presented in [11–13], and how it functions as a

9 Previous studies suggest that low-noise amplification, analogue-to-digital
conversion, and spike sorting do not prevent scaling to 1000 channels as they
can be performed with a total of 3.5 μW per channel if the input-referred
noise specification is relaxed from 2.2 to 13 μV [32, 33, 21].

3

J. Neural Eng. 10 (2013) 036008 J Dethier et al

Ch
an

ne
l

5101

0

0.5

-0.5

-0.5

0

0.5

Time (s)0 5

y-
ve

lo
ci

ty
(m

/s)
x-

ve
lo

ci
ty

(m
/s)

210-12
-12

0

12

Trials: 0322 - 0337

x-position (cm)

y-
po

si
tio

n
(c

m
)

(A)

(B)

(C)

Figure 3. Neural and kinematic measurements (monkey J, 16 April 2011, 16 continuous trials) used to fit the Kalman-filter model. (A) The
192 channel recordings that were fed as input to fit the Kalman-filter matrices (grayscale refers to the number of threshold crossings
observed in each 50 ms bin; black represents 4 spikes/bin). (B) Hand x- and y-velocity measurements that were correlated with the neural
data to obtain the Kalman-filter matrices. (C) Hand position kinematics of the 16 continuous trials recorded using a Polaris Optical
Measurement System (Northern Digital Inc.).

decoder. Next, the Neural Engineering Framework (NEF), the
method we use to map this algorithm on to an SNN, is outlined,
together with the optimizations that enabled the software-
based SNN to operate in a closed-loop experimental setting.
An analysis of the performance achieved in the closed-loop
tests demonstrates the validity of this approach and concludes
this paper.

2. Kalman-filter-decoder algorithm

In the 1960s, Rudolf E Kálmán described a type of linear
filter that will be later called the Kalman filter [40]. This
filter tracks the state of a dynamical system throughout time
using a weighted average of two types of information: a
value predicted from the output state’s dynamics and a value
measured from external observations, both subject to noise and
other inaccuracies. More weight is given to the value with the
lower uncertainty as calculated by the Kalman gain, K, which
is computed as follows.

The system is modeled by the following set of equations:

xt = Axt−1 + wt (1)

yt = Cxt + qt (2)

where A is the state matrix modeling the output state’s
dynamics, C is the observation matrix, and wt and qt are
additive, multivariate Gaussian noise sources that are modeled
with wt ∼ N (0,W) and qt ∼ N (0, Q). The model provides
an estimate of the output at time t by propagating the state
at time t − 1. This estimate is then corrected using the noisy
observations at time t to arrive at a final estimate:

xt = (I − KC)Axt−1 + Kyt = Mxxt−1 + Myyt (3)

where K = (I + WCQ−1C)−1WCTQ−1 is the steady-state
formulation of the Kalman gain. Mx and My are the two
matrices in the steady-state Kalman-filter-update equations.

It is this steady-state equation that we implemented in the
SNN using the NEF.

For neural prosthetic applications [13], the system’s state
vector, xt , was the kinematic state of the cursor: xt =[
posx

t , posy
t , posz

t , velxt , velyt , velzt
]

and the measurement vector,
yt , was the neural spike rate (binned threshold-crossing counts
of measured neural potential) of the recorded neurons. For
our system, the state vector was limited to velocities in
two directions

(
xt = [

velxt , velyt
])

to limit the amount of
computational resources required (Kim et al [14] compare
position and velocity decoders and finds that velocity decoders
tend to outperform position decoders in tetraplegic patients).
This velocity was integrated to yield the 2D position. The bin
width of the decoder, a tradeoff between rapidity and accuracy
[13], was 50 ms long. To allow for a fixed offset compensation
(baseline firing rates), a constant 1 was added to the state
vector: xt = [

velxt , velyt , 1
]
. The neural spike rate observations

yt came from 96-channel silicon electrode arrays implanted in
areas of cortex responsible for arm movement (M1 and PMd).

The model parameters (A, C, W and Q) were fit
by correlating recorded neural signals and measured arm
kinematics, obtained during training trials. Arm measurements
were captured by a Polaris Optical Measurement System
(Northern Digital Inc), with a passive reflective bead tied
to the tip of the monkey’s finger. The measurements were
sampled at 60 Hz and were plotted directly to the screen. For
our application, we assumed that neural signals recorded under
arm control were similar to neural signals recorded under brain
control, and that the observed arm kinematics matched the
desired neural cursor kinematics. Therefore, the parameters
could be fit from observed arm kinematics (figure 3).

For neuroprosthethic applications, the Kalman filter
converges to its steady-state matrices, Mx and My,
rapidly—typically less than 100 iterations [41]. The steady-
state implementation differs from the full Kalman-filter
implementation by less than 1% in the first few seconds, for
both open-loop and closed-loop systems [41]. The steady-state
update equations decrease execution time for typical decoding

4

J. Neural Eng. 10 (2013) 036008 J Dethier et al

Figure 4. NEF’s three principles. Top row represents the control-theory level and lower rows the neural level. Representation. Encoded
signal, spikes raster, and decoded signal with a population of 200 leaky integrate-and-fire neurons. The neurons’ tuning curves map the
encoded signal (x) to spike rates (ai(x)); this nonlinear transformation is inverted by linear weighted decoding to retrieve the decoded signal
(x̂). G() is the neurons’ nonlinear current-to-spike-rate function. Transformation. SNN with populations ai(t) and bj(t) representing x(t)
and y(t), respectively, with decoding, transformation, and encoding performed via the feedforward weights ω ji = α j〈φ̃y

j · Aφx
i 〉. Dynamics.

The system’s dynamics is captured in a neurally plausible fashion by replacing integration with the synapses’ spike response, h(t), and
replacing the matrix with its neurally plausible equivalent, A′ = τA + I, to compensate.

by approximately a factor seven [41], a critical difference for
real-time applications. Thus, efficiency is improved without
any meaningful loss of accuracy.

To map the steady-state version of this linear neural
decoder on to an SNN, we used the NEF: a formal methodology
for mapping control-theory algorithms onto SNNs.

3. Mapping onto spiking neural networks

The SNNs employed in the NEF are composed of
highly heterogeneous spiking neurons characterized by a
nonlinear multi-dimensional vector-to-spike-rate function—
ai(x(t)) for the ith neuron—with parameters (preferred
direction, maximum firing rate, and x-axis intercept) drawn
randomly from a wide distribution (standard deviation
comparable to mean) and with connection strengths
programmed to perform the desired computations. To map
control-theory algorithms onto SNNs, three principles—
neural representation, transformation, and dynamics—apply
[42–45].

3.1. Representation

Neural representation is defined by nonlinear encoding of a
stimulus, x(t), as a spike rate, ai(x(t)), combined with optimal
weighted linear decoding of ai(x(t)) to recover, in the stimulus
space, an estimate of x(t), x̂(t) = ∑

i ai(x(t))φx
i , where φx

i are
the optimal decoding weights (figure 4 representation).

3.1.1. Nonlinear encoding. The nonlinear encoding process
is exemplified by the neuron tuning curve, which captures the
overall encoding process from a multi-dimensional stimulus,
x(t), to a one-dimensional soma current, Ji(x(t)), and finally
to a firing rate, ai(x(t)):

ai(x(t)) = G(Ji(x(t))), (4)

where G() is the nonlinear function describing the firing rate’s
dependence on the current’s value. In the case of the leaky
integrate-and-fire neuron model (LIF) that we used for this
application, this function G() is given by:

G(Ji(x(t))) = [τ ref − τRC ln(1 − Jth/Ji(x(t)))]−1, (5)

where Ji is the current entering the soma of the cell, i indexes
the neuron, τ ref is the absolute refractory period, τRC is the
membrane RC time constant, and Jth is the threshold current.
The LIF neuron has two behavioral regimes: sub-threshold and
super-threshold. The sub-threshold regime is described by an
RC circuit with time constant τRC. When the sub-threshold
soma voltage reaches the threshold, Vth, the neuron emits a
spike δ(t −tn). After this spike, the neuron is reset and rests for
τ ref seconds before it resumes integrating. Ignoring the soma’s
RC time-constant when specifying the SNN’s dynamics is
reasonable because the neurons cross threshold at a rate that
is proportional to their input current, which thus sets the spike
rate instantaneously, without any filtering [42].

The conversion from a multi-dimensional stimulus, x(t),
to a one-dimensional soma current, Ji, is performed by

5

J. Neural Eng. 10 (2013) 036008 J Dethier et al

assigning to the neuron a preferred direction, φ̃x
i , in the

stimulus space and taking the dot-product:

Ji(x(t)) = αi
〈
φ̃x

i · x(t)
〉 + Jbias

i , (6)

where αi is a gain or conversion factor, and Jbias
i is a bias current

that accounts for background activity. In the one-dimensional
case, the preferred direction vector reduces to a scalar, either
1 or −1, resulting in a positive or negative slope, respectively
(i.e. ON neurons that increase their firing rate as the value of
the stimulus variable increases and OFF neurons that do the
opposite).

3.1.2. Linear decoding. The linear decoding process converts
spike trains back into a relevant quantity in the stimulus space.
This process is characterized by the synapses’ spike response,
h(t) (i.e. post-synaptic current waveform), and the decoding
weights, φx

i , which are found by a least-squares method [42],
described next.

A single noise term, η, amalgamates all sources of noise,
as they all have the effect of introducing uncertainty into any
signal sent by the transmitting neuron. With this noise term,
the transmitted firing rate can be written as ai(x(t)) + ηi.
That is, the firing rate that the receiving neuron actually
perceives is the noiseless firing rate, ai(x(t)), plus some
variation introduced into that neuron’s activity by the noise
sources, ηi. The noise sources are modeled by a random
variable drawn from a normal distribution. Consequently, the
mean square error between the actual stimulus, x(t), and its
estimate, x̂(t) = ∑

i (ai(x(t)) + ηi) φx
i , can be written as [42]:

E = 1

2
〈[x(t) − x̂(t)]2〉x,η,t (7)

= 1

2

〈[
x(t) −

∑
i

(ai(x(t)) + ηi) φx
i

]2〉
x,η,t

(8)

where 〈·〉x,η denotes integration over the range of x and η, the
expected noise. We assume that the noise is independent and
has the same variance for each neuron [42], yielding:

E = 1

2

〈[
x(t) −

∑
i

ai(x(t))φx
i

]2〉
x,t

+ σ 2
∑

i

(
φx

i

)2
, (9)

where σ 2 is the noise variance. This expression is minimized
by choosing the decoding weights such that:

φx
i =

N∑
j

	−1
i j ϒ j, (10)

with 	i j = 〈ai(x)a j(x)〉x + σ 2δi j, where δ is the Kronecker
delta function, and ϒ j = 〈a j(x)x〉x [42]. One consequence
of modeling noise in the neural representation is that the
matrix 	 in (10) is invertible despite the use of a highly
overcomplete representation. In a noiseless representation, 	

would be generally singular because, due to the large number
of neurons, there would be a high probability of having two
neurons with similar tuning curves leading to two similar rows
in 	.

Figure 5. SNN implementation of a Kalman-filter-based decoder
with populations bk(t) and aj(t) representing y(t) and x(t).
Feedforward and recurrent weights, ω jk and ω ji, were determined by
B′ and A′, respectively.

3.2. Transformation

Neural transformation is a special case of neural representation
performed by using alternate decoding weights in the decoding
operation. The transformation, f (x(t)), is mapped directly into
transformations of ai(x(t)) by using the appropriate linear
decoders, φ

f (x(t))
i , to extract the function from the encoded

information. For example, y(t) = Ax(t) is represented by
the spike rates b j(Ax̂(t)) (figure 4 transformation), where
unit j’s input is computed directly from unit i’s output using
Ax̂(t) = ∑

i ai(x(t))Aφx
i , an alternative linear weighting.

3.3. Dynamics

Neural dynamics brings the first two principles together and
adds the time dimension to the circuit. This principle aims at
reuniting the control-theory and neural levels by modifying
the matrices to render the system neurally plausible, thereby
permitting the synapses’ spike response, h(t), to capture the
system’s dynamics.

For example, in control-theory, an integrator is written
ẋ(t) = Ax(t) + By(t) with Laplace transform x(s) =
1/s[Ax(s) + By(s)]. In the neural space, convolution replaces
integration and the system takes the form x(t) = h(t) ∗
[A′x(t) + B′y(t)] and its Laplace transform is x(s) =
h(s)[A′x(s)+ B′y(s)]. The synapses’ spike response takes the
form h(t) = τ−1e−t/τ where τ is the synaptic time constant,
and the transfer function is h(s) = 1/ (1 + sτ). The two
systems are therefore equivalent if A′ = τA + I and B′ = τB,
so called neurally plausible matrices (figure 4 dynamics).

4. Spiking neural network decoder

To implement the Kalman filter in an SNN by applying the
NEF, we used the three principles described in the previous
section (figure 5). To render the system neurally plausible as
explained in section 3.3, we started from a continuous time
(CT) system in the control-theory space, and we therefore
converted (3) from discrete time to CT:

ẋ(t) = MCT
x x(t) + MCT

y y(t) (11)

6

J. Neural Eng. 10 (2013) 036008 J Dethier et al

where MCT
x = (Mx − I) /�t and MCT

y = My/�t are the CT
Kalman matrices and �t is the discrete time step (50 ms).

From (11), by applying the dynamics’ principle, we
replaced integration with convolution by the synapse’s spike
response and the CT matrices with neurally plausible ones,
which yielded:

x(t) = h(t) ∗ (A′x(t) + B′y(t)), (12)

where A′ = τMCT
x +I = τ (Mx −I)/�t +I and B′ = τMCT

y =
τMy/�t.

The jth neuron’s input current (see (6)) was computed
from the system’s current state, x(t), which was computed
from estimates of the system’s previous state (x̂(t) =∑

i ai(t)φx
i) and current measurements (ŷ(t) = ∑

k bk(t)φ
y
k)

using (12). These quantities were decoded from the firing
rates of the corresponding neural populations using the
representation principle. This procedure yielded:

Jj(x(t)) = α j
〈
φ̃x

j · x(t)
〉 + Jbias

j (13)

= α j
〈
φ̃x

j · h(t) ∗ (
A′x̂(t) + B′ŷ(t)

) 〉 + Jbias
j (14)

= α j

〈
φ̃x

j · h(t) ∗
(

A′ ∑
i

ai(t)φ
x
i + B′ ∑

k

bk(t)φ
y
k

)〉
+ Jbias

j .

(15)

This last equation can be written in a neural network form
(figure 5):

Jj(x(t)) = h(t) ∗
(∑

i

ω jiai(t) +
∑

k

ω jkbk(t)

)
+ Jbias

j (16)

where ω ji = α j
〈
φ̃x

j · A′φx
i

〉
and ω jk = α j

〈
φ̃x

j · B′φy
k

〉
are the

recurrent and feedforward weights, respectively.

4.1. Efficient implementation

A software SNN implementation involves two distinct steps
[39]: network creation and real-time execution. The network
does not need to be created in real-time and therefore has
no computational time constraints. However, executing the
network has to be implemented efficiently for successful
deployment in closed-loop experimental settings. To speed-
up the simulation, we exploited the NEF mapping between
the high-dimensional neural space and the low-dimensional
control space. This mapping updated neuron interactions
circuitously, using the decoding weights φx

j , dynamics matrix
A′, and preferred direction vectors φ̃x

j from (15), rather than
directly using the recurrent and feedforward weights in (16).
The circuitous approach yielded an almost 50-fold speedup
[39], enabling real-time execution of a 2000-neuron network.

Other improvements to the basic SNN consisted of using
two one-dimensional integrators instead of a single three-
dimensional one, feeding the constant 1 into the two integrators
continuously rather than obtaining it internally through
integration, and connecting the 192 neural measurements
directly to the recurrent pool of neurons, without using the
bk(t) neurons as an intermediary (figure 5) [29].

Table 1. Model parameters.

Symbol Range Description

max G(Jj(x)) 200–400 Hz Maximum firing rate
G(Jj(x)) = 0 −1 to 1 Normalized x-axis intercept
Jbias

j Satisfies first two Bias current
α j Satisfies first two Gain factor

φ̃x
j

∥∥∥φ̃x
j

∥∥∥ = 1 Preferred direction vector

σ 2 0.1 Gaussian noise variance
τRC

j 20 ms RC time constant
τ ref

j 1 ms Refractory period
τ PSC

j 20 ms PSC time constant

4.2. Choice of parameters

Various parameters needed to be set for this network. They
are recapitulated in table 1. Neural spike rates were computed
in 50 ms time-bins and, therefore, the sum τRC

j + τ ref
j + τ PSC

j
had to be smaller than 50 ms, which was indeed the case.
It was important for heterogeneity to be included [42, 43].
Therefore, neural parameters were randomly selected from a
wide distribution. Specifically, the preferred direction vectors,
φ̃x

j , were randomly assigned to −1 and 1. The maximum
firing rate, max G(Jj(x)), and the normalized x-axis intercept,
G(Jj(x)) = 0, were drawn from a uniform distribution on
[200, 400] Hz and [−1, 1], respectively. The gain and bias
current, α j and Jbias

j , were chosen to satisfy these constraints.
τRC

j was chosen at 20 ms, close to typical membrane time
constant values, and τ ref

j was set to 1 ms, again a typical
value [44] . The time constant for the synapses’ spike response
dynamics, τ PSC

j , was set to 20 ms, dynamics consistent with
post-synaptic currents [44].

Noise was not explicitly added. It arose naturally from
the fluctuations produced by representing a scalar through the
filtering of spike trains, which has been shown to have effects
similar to Gaussian noise [42]. For the purpose of computing
the linear decoding weights (i.e.), we modeled the resulting
noise as Gaussian with a variance of 0.1 [42].

5. Off-line open-loop implementation

We first performed an off-line open-loop validation of our SNN
decoder [29] by using a previously recorded BMI experiment
that utilized a standard Kalman filter (SKF) with floating
point computations. An adult male rhesus macaque (monkey
L) was trained to perform a point-to-point arm movement
task in a 3D experimental apparatus for a juice reward [13].
All animal procedures and experiments were approved by
the Stanford Institutional Animal Care and Use Committee.
A 96-electrode silicon array (Blackrock Microsystems) was
implanted in the dorsal pre-motor (PMd) and motor (M1)
cortex areas responsible for hand movement as guided by
visual cortical landmarks. Array recordings (−4.5× RMS
threshold crossing applied to each channel) yielded tuned
activity for the direction of arm movements. For both monkeys
(monkey L and J) the electrode array used in these experiments
spanned approximately 4–6 mm of anterior–posterior distance
on the pre-central gyrus associated with primary motor cortex

7

J. Neural Eng. 10 (2013) 036008 J Dethier et al

Time (s)
0 1 2 3 4 5

−0.2
0

0.2

Time (s)

x
−

v
el

o
ci

ty

(m
/s

)

0 1 2 3 4 5y
−

v
el

o
ci

ty

(m
/s

)

200 neurons - RMS: 21%(A)

(B)

Standard Kalman Filter Spiking Neural Network

(C)

−0.2
0

0.2

Time (s)
0 1 2 3 4 5

2000 neurons - RMS: 6% 20 000 neurons - RMS: 3%

(D)

(E)

(F)

Figure 6. Comparing the x and y-velocity estimates decoded from 96 recorded cortical spike trains (5 s of data) by the SKF (red) and the
SNN (blue). Networks with ((A) and (B)) 200, ((C) and (D)) 2000, and ((E) and (F)) 20 000 spiking neurons. RMS error normalized by
maximum velocity is indicated above each plot.

(M1). Electrical stimulation and/or manual arm palpation
further localized the area to the upper shoulder region/muscles
(monkey J) and forearm (monkey L). It should be kept in mind
that the border between M1 and the PMd cortex is not sharp
neurophysiologically, and it is possible that the anterior aspect
of either array could be within PMd. In addition, for monkey J,
we also recorded simultaneously from a second array, which
is the same as the first array except that it was implanted
1–2 mm anterior to the first array, and is thus nominally in PMd
(see [46], supplementary figure 5, for an intraoperative photo
of the arrays). For the purposes of the current experiments
the distinction between these two areas is not of primary
importance since both areas have robust movement-related
activity and modulation.

As detailed in [13], a Kalman filter was fit by correlating
the observed hand kinematics with the simultaneously
measured neural signals (figure 3). The resulting model was
used online to control an on-screen cursor in real time.
This model and 500 of these trials (L20100308) served
as the standard against which the SNN implementation’s
performance is compared. Starting with the steady-state
Kalman-filter matrices derived from this experiment, we built
an SNN using the NEF methodology and simulated it in Nengo,
a freely available software, using the parameter values listed
in table 1.

To highlight solely the computational differences between
traditional floating point calculations and an SNN, the steady-
state Kalman filter was run in both the SKF and SNN
experimental blocks. This approach avoided any discrepancies
in convergence of the Kalman filter that may have arisen
from mathematical approximations by the SNN, leaving the
deviation from floating point across time steps as the only
source of computational variability. It also greatly simplifies
the computational demands in the SNN implementation,
enabling more efficient computations per neuron in the
network. This approach required precomputing the steady-
state Kalman-filter matrices, Mx and My shown in equation (3),
and was prepared at the time of model fitting after regressing
the four Kalman-filter matrices of equations (1) and (2).

The SNN performed better as we increased the number of
neurons (figure 6). For 20 000 neurons, the x and y-velocity
decoded from its two 10 000-neuron populations matched
the standard decoder’s prediction to within 3% (RMS error
normalized by maximum velocity) [29]. There was a tradeoff

(A) (B) (C)

Figure 7. Experimental setup and tasks. (A) Data are recorded from
silicon electrode arrays implanted in motor regions of cortex of
monkeys performing a center-out-and-back (to one of eight targets)
or pinball task for juice rewards with a 500 ms hold time. (B)
Center-out and back task. (C) Pinball task.

between accuracy and network size. If the network size was
decreased to 2000 neurons, the network’s error increased to
6%; an even bigger decrease to 200 neurons led to an error
of 21% [29]. Even with a 6% RMS error at 2000 neurons, we
believed that this may provide sufficient accuracy to use in
closed-loop experiments.

6. Online closed-loop performance

These off-line results encouraged us to test our SNN decoder in
an online closed-loop setting. Despite the error, we suspected
that the monkeys would actively compensate for any noticeable
cursor deviation. Two adult male rhesus macaques (monkey L
and J) were trained to perform a point-to-point arm movement
task in a 3D experimental apparatus for a juice reward using the
ReFIT-KF training protocol as detailed in the methods section
of [13] (figure 7(A)). Unlike monkey L who only had one
array, monkey J had two 96-electrode silicon arrays (Blackrock
Microsystems) implanted, one in PMd and the other in M1.
The Kalman filter was built as described in prior work [13].
The resulting models were used in a closed-loop system to
control an on-screen cursor in real-time (figure 7(A), decoder
block) and once again served as the base performance against
which the SNN’s performance was compared.

A 2000-neuron SNN decoder was built using the
simulation algorithm enhancements mentioned earlier and
simulated on an xPC Target (Mathworks) x86 system (Dell
T3400, Intel Core 2 Duo E8600, 3.33 GHz). It ran in closed-
loop, replacing the SKF as the decoder block in figure 7(A).
Real-time execution constraints with our hardware limited the
network size to no more than 2000 neurons.

8

J. Neural Eng. 10 (2013) 036008 J Dethier et al

6.1. Center-out and back task

Once the Kalman filter was trained and the SNN was built,
we tested the two Kalman filter implementations (SKF and
SNN) against each other. Each test was composed of 200
trials of target acquisition on a center-out-and-back task. The
target alternated from the center of the workspace to one of
eight peripheral locations chosen at random (see figure 7(B)).
A successful trial is one in which the monkey navigates the
cursor to the target and holds within the 4 cm square acquisition
region for 500 ms during the allotted 3 s. Once a block of 200
trials was completed with one implementation, the decoder
was switched to the other implementation and another block
was collected. This ABA block switching was continued until
the monkey was satiated and enabled an accurate comparison
of just the relative difference in implementations. This ABA
block style experimentation was repeated for at least three days
with each monkey.

Success rates were higher than 94% on all blocks for
the SNN implementation (94.9% and 99.6% for monkey L
and J, respectively) and 98% for the SKF (98.0% and 99.7%
for monkey L and J, respectively). Thousands of trials were
collected and analyzed (5235 with monkey L and 5187 with
monkey J). These reflect only center-out trials, not those that
returned to the center from the periphery. The latter were
not included in the analysis because the monkey anticipated
the return to the center after navigating out to the periphery
and thus initiated movement earlier than when the target
location is unknown. About half of the trials, 2615 (2484),
were performed with the SNN for monkey L (monkey J) and
2518 (2599) with the SKF (see figure 8 for BMI position
kinematics examples). The average time to acquire the target
was moderately slower for the SNN for both monkeys—
1067 ms versus 830 ms for monkey L and 871 ms versus
708 ms for monkey J. Around 100 trials under hand control
were used as a baseline comparison for each monkey.

Although the speed of both implementations was
comparable, as evidenced by the traces being nearly on top
of each other up until the first acquire time, the SNN has
more difficulty settling into the target (figure 9). Whereas
the time at which the target was first successfully acquired
(average indicated by trace becoming thicker) is comparable
for both BMI implementations, the time at which the target
was successfully last acquired (average indicated by trace’s
cutoff) occurs latter for SNN. That is, the monkey spent more

Trials: 1748 - 1763

210-12
-12

0

12

x-position (cm)

Trials: 2180 - 2195

21021-
-12

0

12

y-
po

si
tio

n
(c

m
)

x-position (cm)

(B)(A)

Figure 8. Center-out and back task (monkey J, 16 April 2011). (A)
BMI position kinematics of 16 continuous trials for the SKF
implementation. (B) BMI position kinematics of 16 continuous
trials for the SNN implementation.

time wandering in and out of the acquisition region, before
subsequently successfully staying inside it for the required
hold time. This longer dial-in time (indicated by length of
thick trace) suggests that the SNN provides less precise control
when attempting to stop.

Towards the end of the day’s experiments, the SNN
decoder would occasionally fall to edge of the workspace and
the monkey would lose interest in the task. The cursor was
reset to the center of the screen so the monkey would continue
the block. This happened infrequently and counted against
the monkey’s success rate on center-out trials. The off-line
results shown earlier (see figure 6) suggest that this difference
in usability, as well as the difference in performance, is a
result of the network’s neuron count, which was limited by
the real-time execution capacity of the x86 hardware. These
performance issues could be improved by using more neurons,
as would be the case in a neuromorphic chip. Nevertheless,
even with only 2000 neurons, the success rate and acquire
times of the SNN decoder are comparable to that of the SKF
decoder.

6.2. Pinball task

Another important measure when evaluating decoders is
generalization and stability. To test this, we instructed a
new pinball task under the SNN decoder. In this task,
targets appeared randomly in a 16 cm square workspace
without any systematic structure to target placement (see
figure 7(C)). The monkey received a reward by navigating

0 500 1000
0

5

10

Time after target onset (ms)

D
is

ta
nc

e
to

 ta
rg

et
 (

cm
)

0 500 1000

Hand

SNN

SKF

(B)(A)

Figure 9. SNN (red) performance compared to SKF (blue) (hand trials are shown for reference (yellow)). The SNN achieves similar results
as the SKF implementation. Plot of distance to target versus time after target onset for different control modalities. The thicker traces
represent the average time when the cursor first enters the acceptance window until successfully beginning the 500 ms hold time. Results for
monkey L (A) and results for monkey J (B).

9

J. Neural Eng. 10 (2013) 036008 J Dethier et al

(A) (B)

Figure 10. Sustained performance plots for both monkeys using the SNN decoder under the pinball task. The sharp falloff represents a loss
of interest in the task, which occurred when the monkey was satiated. Results for monkey L (A) and for monkey J (B).

to the target and holding within the 4 cm acquisition region for
500 ms. Successfully performing this task highlights the SNN
decoder’s generalization. There was no block structure in this
set of experiments. The monkeys were started on this task and
were allowed to run continuously without interruption until
satiated. Successfully performing this task for long durations
highlights the SNN decoder’s stability over an extended period
of time.

Both monkeys sustained performance at around 40 targets
per minute for over an hour on the pinball task (figure 10).
On the day tested, monkey L lost interest in the task after
approximately 61 min and monkey J after approximately
85 min. The sustained performance of the SNN decoder
across both monkeys in a more generalized task demonstrates
the robust performance of the system over uninterrupted
periods, suggesting that the decoder is capable of sustained
performance across long stretches of time. This performance
is comparable to the hit rate and session duration achieved
under hand control [38].

7. Conclusions and future work

The SNN decoder’s performance was comparable to that
produced by a SKF. The 2000-neuron network had success
rates higher than 94% on all blocks but took moderately
longer to hold the cursor still over targets. Performance was
sustainable for at least an hour under a generalized acquisition
task. As the Kalman filter and its variants are the state-
of-the-art in cortically-controlled motor prostheses [11–14],
these simulations increase confidence that similar levels of
performance can be attained with a neuromorphic chip, which
can potentially overcome the power constraints set by clinical
applications. A neuromorphic chip could implement a 10 000-
neuron network while dissipating a fraction of a milliwatt,
likely increasing the performance of the system compared to
the simulated SNN shown here.

This demonstration is an important proof-of-concept that
highlights the feasibility of mapping existing control theory
algorithms onto SNNs for BMI applications. For BMIs to
gain widespread clinical deployment, they must packaged
in low-power, completely implantable, wireless systems. The
computational demands of BMI decoding are high, and thus
present a problem for low-power applications. Implementing
the SNN decoder presented here onto neuromorphic chips may
be a possible answer, performing complex and demanding

computations at a fraction of the power draw of conventional
processors. Translating the SNN from software to ultra-
low-power neuromorphic chips is the next step in the
development of a fully-implantable neuromorphic chip for
cortical prosthetic applications. Currently, we are exploring
this mapping with Neurogrid, a hardware platform with 16
programmable neuromorphic chips that can simulate up to a
million spiking neurons in real-time [35].

Acknowledgments

The authors would like to thank the support of Joline M
Fan and Jonathan C Kao for assistance in collecting monkey
data; Mackenzie Mazariegos, John Aguayo, Clare Sherman,
and Erica Morgan for veterinary care; Hua Gao for help for
figure 2; Kimberly Chin, Sandra Eisensee, Evelyn Castaneda,
and Beverly Davis for administrative support. We also thank
Chris Eliasmith and Terry Stewart for valuable help with
Nengo.

This work was supported in part by the BAEF
and FRS-FNRS (JD), Stanford NIH Medical Scientist
Training Program (MSTP) and Soros Fellowship (PN),
DARPA Revolutionizing Prosthetics program (N66001-06-
C-8005, KVS), two NIH Director’s Pioneer Awards (DP1-
OD006409, KVS; DPI-OD000965, KB), and an NIH/NINDS
Transformative Research Award (R01NS076460, KB).

References

[1] Taylor D M, Tillery S I and Schwartz A B 2002 Direct
cortical control of 3D neuroprosthetic devices Science
296 1829–32

[2] Carmena J M, Lebedev M A, Crist R E, O’Doherty J E,
Santucci D M, Dimitrov D F, Patil P G, Henriquez C S
and Nicolelis M A 2003 Learning to control a
brain–machine interface for reaching and grasping by
primates PLoS Biol. 1 193–208

[3] Musallam S, Corneil B D, Greger B, Scherberger H
and Andersen R A 2004 Cognitive control signals for neural
prosthetics Science 305 258–62

[4] Hochberg L R, Serruya M D, Friehs G M, Mukand J A,
Saleh M, Caplan A H, Branner A, Chen D, Penn R D
and Donoghue J P 2006 Neuronal ensemble control of
prosthetic devices by a human with tetraplegia Nature
442 164–71

[5] Santhanam G, Ryu S I, Yu B M, Afshar A and Shenoy K V
2006 A high-performance brain-computer interface Nature
442 195–8

10

http://dx.doi.org/10.1126/science.1070291
http://dx.doi.org/10.1371/journal.pbio.0000042
http://dx.doi.org/10.1126/science.1097938
http://dx.doi.org/10.1038/nature04970
http://dx.doi.org/10.1038/nature04968

J. Neural Eng. 10 (2013) 036008 J Dethier et al

[6] Velliste M, Perel S, Spalding M C, Whitford A S
and Schwartz A B 2008 Cortical control of a prosthetic arm
for self-feeding Nature 453 1098–101

[7] Ganguly K, Dimitrov D F, Wallis J D and Carmena J M 2011
Reversible large-scale modification of cortical networks
during neuroprosthetic control Nature Neurosci. 14 662–7

[8] O’Doherty J E, Lebedev M A, Ifft P J, Zhuang K Z, Shokur S,
Bleuler H and Nicolelis M A 2011 Active tactile exploration
using a brain–machine–brain interface Nature 479 228–31

[9] Ethier C, Oby E R, Bauman M J and Miller L E 2012
Restoration of grasp following paralysis through
brain-controlled stimulation of muscles Nature 485 368–71

[10] Hochberg L R et al 2012 Reach and grasp by people with
tetraplegia using a neurally controlled robotic arm Nature
485 372–5

[11] Nuyujukian P, Gilja V, Chestek C A, Cunningham J P,
Fan J M, Yu B M, Ryu S I and Shenoy K V 2010
Generalization and robustness of a continuous
cortically-controlled prosthesis enabled by feedback control
design Meeting of Society for Neuroscience 2010 (San
Diego, CA) Program No. 20.7

[12] Gilja V, Chestek C A, Diester I, Henderson J M, Deisseroth K
and Shenoy K V 2011 Challenges and opportunities for
next-generation intra-cortically based neural prostheses
IEEE Trans. Biomed. Eng. 58 1891–9

[13] Gilja V et al 2012 A high performance neural prosthesis
enabled by control algorithm design Nature Neurosci.
15 1752–7

[14] Kim S P, Simeral J D, Hochberg L R, Donoghue J P
and Black M J 2008 Neural control of computer cursor
velocity by decoding motor cortical spiking activity in
humans with tetraplegia J. Neural Eng. 5 455–76

[15] Li Z, O’Doherty J E, Hanson T L, Lebedev M A,
Henriquez C S and Nicolelis M A L 2009 Unscented
Kalman filter for brain–machine interfaces PLoS One
4 e6243

[16] Chase S M, Kass R E and Schwartz A B 2012 Behavioral and
neural correlates of visuomotor adaptation observed
through a brain-computer interface in primary motor cortex
J. Neurophysiol. 108 624–44

[17] Jackson A, Mavoori J and Fetz E E 2006 Long-term motor
cortex plasticity induced by an electronic neural implant
Nature 444 56–60

[18] Zanos S, Richardson A G, Shupe L, Miles F P and Fetz E E
2011 The Neurochip-2. An autonomous head-fixed
computer for recording and stimulating in freely behaving
monkeys IEEE Trans. Neural Syst. Rehabil. Eng. 19 427–35

[19] Santhanam G, Linderman M D, Gilja V, Afshar A, Ryu S I,
Meng T H and Shenoy K V 2007 HermesB: a continuous
neural recording system for freely behaving primates IEEE
Trans. Biomed. Eng. 54 2037–50

[20] Chestek C A, Gilja V, Nuyujukian P, Kier R J, Solzbacher F,
Ryu S I, Harrison R R and Shenoy K V 2009 HermesC:
low-power wireless neural recording system for freely
moving primates IEEE Trans. Neural Syst. Rehabil. Eng.
17 330–8

[21] Hua G, Walker R M, Nuyujukian P, Makinwa K A A,
Shenoy K V, Murmann B and Meng T H 2012 HermesE: a
96-channel full data rate direct neural interface in 0.13 μ
m CMOS IEEE J. Solid-State Circuits 47 1043–55

[22] Miranda H, Gilja V, Chestek C A, Shenoy K V and Meng T H
2010 HermesD: a high-rate long-range wireless
transmission system for simultaneous multichannel neural
recording applications IEEE Trans. Biomed. Circuits Syst.
4 181–91

[23] Gilja V, Chestek C A, Nuyujukian P, Foster J D
and Shenoy K V 2010 Autonomous head-mounted
electrophysiology systems for freely-behaving primates
Curr. Opin. Neurobiol. 20 676–86

[24] Borton D A, Yin M, Aceros J and Nurmikko A 2013 An
implantable wireless neural interface for recording cortical
circuit dynamics in moving primates J. Neural Eng.
10 026010

[25] Harrison R R, Watkins P T, Kier R J, Lovejoy R O, Black D J,
Greger B and Solzbacher F 2007 A low-power integrated
circuit for a wireless 100-electrode neural recording system
IEEE J. Solid-State Circuits 42 123–33

[26] Harrison R R 2008 The design of integrated circuits to observe
brain activity Proc. IEEE 96 1203–16

[27] Wolf P D 2008 Thermal considerations for the design of an
implanted cortical brain–machine interface (BMI)
Indwelling Neural Implants: Strategies for Contending with
the In Vivo Environment ed W M Reichert (Boca Raton, FL:
CRC Press) chapter 3

[28] Kim S, Tathireddy P, Normann R A and Solzbacher F 2007
Thermal impact of an active 3-D microelectrode array
implanted in the brain IEEE Trans. Neural Syst. Rehabil.
Eng. 15 493–501

[29] Dethier J, Gilja V, Nuyujukian P, Elassaad S A, Shenoy K V
and Boahen K 2011 Spiking neural network decoder for
brain–machine interfaces Proc. 5th Int. IEEE EMBS Conf.
on Neural Engineering (Cancun, Mexico) pp 396–9

[30] Miranda H and Meng T H 2010 A programmable pulse UWB
transmitter with 34% energy efficiency for multichannel
neurorecording systems CICC: Custom Integrated Circuits
Conf. pp 1–4

[31] Laubach M, Wessberg J and Nicolelis M A L 2000 Cortical
ensemble activity increasingly predicts behaviour outcomes
during learning of a motor task Nature 405 567–71

[32] Zumsteg Z S, Kemere C, O’Driscoll S, Santhanam G,
Ahmed R E, Shenoy K V and Meng T H 2005 Power
feasibility of implantable digital spike sorting circuits for
neural prosthetic systems IEEE Trans. Neural Syst. Rehabil.
Eng. 13 272–9

[33] Harrison R R and Charles C 2003 A low-power low-noise
CMOS amplifier for neural recording applications IEEE J.
Solid-State Circuits 38 958–65

[34] Boahen K 2005 Neuromorphic microchips Sci. Am. 292 56–63
[35] Silver R, Boahen K, Grillner S, Kopell N and Olsen K L 2007

Neurotech for neuroscience: unifying concepts, organizing
principles, and emerging tools J. Neurosci. 27 11807–19

[36] Arthur J V and Boahen K 2011 Silicon neuron design: the
dynamical systems approach IEEE Trans. Circuits Syst. I
58 1034–43

[37] Fang H, Wang Y and He J 2010 Spiking neural networks for
cortical neuronal spike train decoding Neural Comput.
22 1060–85

[38] Sussillo D, Nuyujukian P, Fan J M, Kao J C, Stavisky S D,
Ryu S I and Shenoy K V 2012 A recurrent neural network
for closed-loop intracortical brain–machine interface
decoders J. Neural Eng. 9 026027

[39] Dethier J, Nuyujukian P, Eliasmith C, Stewart T,
Elassaad S A, Shenoy K V and Boahen K 2011 A
brain–machine interface operating with a real-time spiking
neural network control algorithm Advances in Neural
Information Processing Systems vol 24, ed J Shawe-Taylor
et al (Cambridge: MIT Press) pp 2213–21

[40] Kalman R E 1960 A new approach to linear filtering and
prediction problems Trans. ASME D 82 35–45

[41] Malik W Q, Truccolo W, Brown E N and Hochberg L R 2011
Efficient decoding with steady-state Kalman filter in neural
interface systems IEEE Trans. Neural Syst. Rehabil. Eng.
19 25–34

[42] Eliasmith C and Anderson C H 2003 Neural Engineering:
Computation, Representation, and Dynamics in
Neurobiological Systems (Cambridge: MIT Press)

11

http://dx.doi.org/10.1038/nature06996
http://dx.doi.org/10.1038/nn.2797
http://dx.doi.org/10.1038/nature10489
http://dx.doi.org/10.1038/nature10987
http://dx.doi.org/10.1038/nature11076
http://dx.doi.org/10.1109/TBME.2011.2107553
http://dx.doi.org/10.1038/nn.3265
http://dx.doi.org/10.1088/1741-2560/5/4/010
http://dx.doi.org/10.1371/journal.pone.0006243
http://dx.doi.org/10.1152/jn.00371.2011
http://dx.doi.org/10.1038/nature05226
http://dx.doi.org/10.1109/TNSRE.2011.2158007
http://dx.doi.org/10.1109/TBME.2007.895753
http://dx.doi.org/10.1109/TNSRE.2009.2023293
http://dx.doi.org/10.1109/JSSC.2012.2185338
http://dx.doi.org/10.1109/TBCAS.2010.2044573
http://dx.doi.org/10.1016/j.conb.2010.06.007
http://dx.doi.org/10.1088/1741-2560/10/2/026010
http://dx.doi.org/10.1109/JSSC.2006.886567
http://dx.doi.org/10.1109/JPROC.2008.922581
http://dx.doi.org/10.1109/TNSRE.2007.908429
http://dx.doi.org/10.1038/35014604
http://dx.doi.org/10.1109/TNSRE.2005.854307
http://dx.doi.org/10.1109/JSSC.2003.811979
http://dx.doi.org/10.1038/scientificamerican0505-56
http://dx.doi.org/10.1523/JNEUROSCI.3575-07.2007
http://dx.doi.org/10.1109/TCSI.2010.2089556
http://dx.doi.org/10.1162/neco.2009.10-08-885
http://dx.doi.org/10.1088/1741-2560/9/2/026027
http://dx.doi.org/10.1109/TNSRE.2010.2092443

J. Neural Eng. 10 (2013) 036008 J Dethier et al

[43] Singh R and Eliasmith C 2006 Higher-dimensional neurons
explain the tuning and dynamics of working memory cells
J. Neurosci. 26 3667–78

[44] Eliasmith C 2005 A unified approach to building and
controlling spiking attractor networks Neural Comput.
17 1276–314

[45] Eliasmith C 2007 How to build a brain: from function to
implementation Synthese 159 373–88

[46] Churchland M M, Cunningham J P, Kaufman M T,
Foster J D, Nuyujukian P, Ryu S I and Shenoy K V 2012
Neural population dynamics during reaching Nature
487 51–6

12

http://dx.doi.org/10.1523/JNEUROSCI.4864-05.2006
http://dx.doi.org/10.1162/0899766053630332
http://dx.doi.org/10.1007/s11229-007-9235-0

	1. Cortically-controlled brain–machine interfaces
	1.1. The challenge
	1.2. The neuromorphic alternative

	2. Kalman-filter-decoder algorithm
	3. Mapping onto spiking neural networks
	3.1. Representation
	3.2. Transformation
	3.3. Dynamics

	4. Spiking neural network decoder
	4.1. Efficient implementation
	4.2. Choice of parameters

	5. Off-line open-loop implementation
	6. Online closed-loop performance
	6.1. Center-out and back task
	6.2. Pinball task

	7. Conclusions and future work
	Acknowledgments
	References

