и ч м	1 of 9
Integrate-and-Fire Neuron	
	20 mV 100 ms
slow transition	
-60 mV	
43.1 pA	

Layer 5 pyramidal cell from rat visual cortex [lzhikevich07].

A minimum current is required for spiking

Spike frequency increases linearly at high rates

K	•	•	н	2 of 9

Integrate-and-Fire Model

Neurons spike when an inward Na current overcomes an outward leak current (inflexion point).

This model does not include spike generation—the spike is pasted on when $V_{\rm m}$ reaches $V_{\rm th}$, the threshold voltage. It only captures the neuron's behavior below threshold (inflexion point).

	K	•	•	M	3 of 9
--	---	---	---	---	--------

Membrane-Voltage Equation

Capacitor models membrane; resistor models leak.

$$In[1] := \mathbf{I}_{C} + \mathbf{I}_{1k} = \mathbf{I}_{in}$$

$$\iff \mathbf{C}_{m} \frac{d\mathbf{V}_{m}}{dt} + \mathbf{g}_{1k} (\mathbf{V}_{m} - \mathbf{E}_{1k}) = \mathbf{I}_{in}$$

$$\iff \tau_{m} \frac{d\mathbf{V}_{m}}{dt} + \mathbf{V}_{m} = \mathbf{V}_{\infty} \text{ where } \tau_{m} = \frac{\mathbf{C}_{m}}{\mathbf{g}_{1k}}, \mathbf{V}_{\infty} = \frac{\mathbf{I}_{in}}{\mathbf{g}_{1k}} \text{ and } \mathbf{E}_{1k} = \mathbf{0}$$

 V_m reaches V_{th} only if $V_{\infty} > V_{\text{th}}$. Thus, $I_{\text{in}} = g_{\text{lk}} V_{\text{th}}$ is the minimum current for spiking.

The membrane voltage is reset when it reaches threshold:

 $V_m[t] := V_{rst}$ when $V_m[t] = V_{th}$

A spike is declared at this time $t \ (\equiv t_n)$.

к к к н 4 of 9

Dimensionless Form

Voltages are expressed as multiples of the threshold voltage.

Dividing both sides by V_{th} and defining $x = V/V_{\text{th}}$ yields

$$In[1]:= \quad \tau_{\rm m} \frac{d\mathbf{x}}{dt} + \mathbf{x} = \mathbf{x}_{\infty} \text{ where } \mathbf{x}_{\infty} = \frac{\mathbf{V}_{\infty}}{\mathbf{V}_{\rm th}} = \frac{\mathbf{I}_{\rm in}}{g_{\rm lk} \mathbf{V}_{\rm th}}$$

Note that x_{∞} must exceed 1 for spiking to occur—because the input current must exceed the leak.

н н н	M	5 of 9
-------	---	--------

Determining the Time-Constant

The initial slope (left) increases linearly with the rest-level (right).

For $x \ll x_{\infty}$, we have

 $In[1]:= \quad \tau_{m} \frac{dx}{dt} \approx x_{\infty} \implies \frac{dx}{dt} = \frac{x_{\infty}}{\tau_{m}}$

The membrane voltage would take τ_m seconds to reach x_∞ at its initial rate of change.

We determine τ_m in lab by measuring the initial slope for different input currents: Data should fall on a straight-line with slope $1/\tau_m$.

	М	•	•	N	6 of 9
--	---	---	---	---	--------

Stability: Phase-Plot

The phase-plot (left) explains the neuron's behavior (right)

We solve the membrane-equation for the derivative and plot it versus *x*:

 $\frac{d\mathbf{x}}{d\mathbf{t}} = \frac{\mathbf{x}_{\infty} - \mathbf{x}}{\tau_{m}} \Longleftrightarrow \frac{d\mathbf{V}_{m}}{d\mathbf{t}} = \frac{\mathbf{I}_{\text{in}} - g_{\text{lk}} \, \mathbf{V}_{m}}{C_{m}}$

The plot reveals that the point $x = x_{\infty}$ is stable: $\dot{x} > 0$ when $x < x_{\infty}$ and $\dot{x} < 0$ when $x > x_{\infty}$.

That is, the derivative's sign is such that x returns to x_{∞} when perturbed.

	K	•	•	M	7 of 9
--	---	---	---	---	--------

Spike Frequency

The time *T* when x = 1 equals the period; frequency is 1/T (plotted for $\tau_m = 10 \text{ ms}$)

Given steady-state x_{∞} , time-constant τ_{m} , and initial condition x(0) = 0:

 $\mathbf{x}[t] = \mathbf{x}_{\infty} + (0 - \mathbf{x}_{\infty}) \mathbf{e}^{-t/\tau_{m}} = \mathbf{x}_{\infty} (1 - \mathbf{e}^{-t/\tau_{m}})$

Setting x(T) = 1 and solving for *T* yields:

$$\mathbf{T} = \mathbf{\tau}_{m} \ln \left(\frac{\mathbf{x}_{\infty}}{\mathbf{x}_{\infty} - 1} \right) \Longrightarrow \mathbf{T} \approx \frac{\mathbf{\tau}_{m}}{\mathbf{x}_{\infty} - 1 / 2} \text{ for } \mathbf{x}_{\infty} \gg 1$$

Using the approximation: $1/\ln(1 + \epsilon) \approx 1/\epsilon + 1/2$. Thus the spike frequency is

$$\mathbf{f}\left[\mathbf{x}_{\infty}\right]\approx\frac{1}{\tau_{\mathfrak{m}}}\left(\mathbf{x}_{\infty}-\frac{1}{2}\right)$$

Question: Does inhibition (i.e., a bigger g_{lk}) have a divisive or a subtractive effect on the firing rate?

Answer: Rewrite the equation

Sodium Channels

An additional (voltage-dependent) inward current I_{Na} models Na channels

The sodium current is modeled as:

$$In[1]:= C_{m} \frac{dV_{m}}{dt} + g_{lk} V_{m} = I_{in} + I_{Na} \text{ where } I_{Na} = \frac{1}{3} \left(\frac{V_{m}}{V_{th}}\right)^{2} g_{lk} V_{m}$$

 I_{Na} causes V_m to increase, which then causes I_{Na} to increase further (positive-feedback).

	M	•	•	M	9 of 9
--	---	---	---	---	--------

Positive-Feedback Neuron