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The Kuramoto Model: From Asynchrony to Synchrony

Phases of coupled oscillators with weak (left) and strong (right) coupling. Color and ball-size indicate the oscillators' differ-
ent intrinsic frequences; dashed circle and marker indicate the order parameter's magnitude and phase (i.e., vector 
strength) [Kuramoto84,Wordsworth??]. 

Features
— Sinusoidal phase-coupling (instead of pulse-coupling)
— Accounts for heterogeneity (unlike rate models)

Assumptions
— Coupling is global (allows mean-field approach)
— Coupling is weak (doesn't change oscillation's amplitude)

Results
— Synchrony emerges for K > Kc (critical coupling strength)
— Like a phase transition from liquid to solid
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Kuramoto's model (1984)
DT

Q (þ)

The Kuramoto model's sinusoidal phase-coupling corresponds to a PRC that is a flipped sinusoid. To obtain the Kuramoto 
model's coupling strength, K, we must multiply the PRC's maximum advance/delay, DTmax, by the network's total spike rate.
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The Kuramoto model's sinusoidal phase-coupling corresponds to a PRC that is a flipped sinusoid. To obtain the Kuramoto 
model's coupling strength, K, we must multiply the PRC's maximum advance/delay, DTmax, by the network's total spike rate.

Instead of pulse-coupling, this model uses phase-coupling:

Θ
•

i = Ωi +
K

N
â
j=1

N

sin@Θj-ΘiD, i = 1... N

Instead of vector strength, an order parameter is defined:

reäΨ =
1

N
â
j=1

N

eäΘj
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Mean Field Description
Consider multiplying the order parameter by ã-ä Θi :

r eä HΨ-ΘiL =
1

N
â
j=1

N

eä IΘj-ΘiM, i = 1 … N

whose imaginary part equals:

r sin HΨ - ΘiL =
1

N
â
j=1

N

sinAΘj - ΘiE, i = 1 … N

substitute into the phase equation:

Θ
•

i = Ωi + K r sin@Ψ-ΘiD, i = 1 … N

This result  shows that the order parameter’s magnitude (r) and phase (Ψ) summarizes the effect all  the oscillators have on
any particular oscillator.  
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Steady-state analysis
If the oscillator’s synchronize, their phases will change at the same rate, and so will the order parameter’s phase (Ψ). Thus
we will have:

Ψ@tD = W t + Ψ@0D

where  W  is  the  locked  frequency.  It  is  convenient  to  redefine  the  ith  oscillator’s phase  Θi  in  this  rotating  reference  frame.
That is:
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where  W  is  the  locked  frequency.  It  is  convenient  to  redefine  the  ith  oscillator’s phase  Θi  in  this  rotating  reference  frame.
That is:

Θi = Φi - Ψ@tD = Φi - W t - Ψ@0D
� Φi = Θi + W t + Ψ@0D

where Φi is it’s absolute phase.  Thus, the original equation

Φ
 
i = Ωi + K r Sin@Ψ@tD - ΦiD

is transformed into

Θ
 
i = Ωi - W - K r Sin@ΘiD

Therefore, in steady-state (i.e., Θ
 

= 0), we have

Ωi = W + K r Sin@ΘD

Hence, only oscillators whose natural frequencies fall in the range 

W - K r < Ωlocked < W + K r

will lock, with their phases distributed in the range

-Π � 2 < Θlocked < Π � 2
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Relating coupling strength to frequency-density
To obtain the critical coupling strength, Kc, it is convenient to treat drop Ωi’s subscript and treat it as a continuous variable
instead, which is true if N is very large (continuum limit). In that case, the order parameter is given by 

r =
1

N
à

-
Π

2

Π

2
eiΘ N g@ΘD dΘ

where  is  NgHΘL dΘ  is  the  number  of  oscillators  with  phases  between  Θ  and  Θ + dΘ.  This  number  is  given  by

NgHΩL dΩ = NgHΩL HdΩ �dΘL dΘ,   where gHΩL  is the probability density function of the oscillators’ natural frequencies. Thus,

we have

r = à
-

Π

2

Π

2
eiΘ g@Ω@ΘDD

dΩ

dΘ
dΘ

We obtain dΩ/dΘ from the steady-state solution: As the sinHΘL term is odd, it drops out, leaving 

Ω = W + K r Sin@ΘD Þ
dΩ

dΘ
= K r Cos@ΘD

Substituting into the previous equation and replacing ãiΘwith cosHΘL + ä sinHΘL yields 

r = K r à
-

Π

2

Π

2
g@Ω@ΘDD HCos@ΘD + ä Sin@ΘDL Cos@ΘD dΘ

If gHΩL is symmetric around W, the sinHΘL term drops out, and dividing by r leaves us with 
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If gHΩL is symmetric around W, the sinHΘL term drops out, and dividing by r leaves us with 

1 = K à
-

Π

2

Π

2
g@Ω@ΘDD Cos2@ΘD dΘ

� K = à
-

Π

2

Π

2
g@Ω@ΘDD Cos2@ΘD dΘ

-1

This  is  interesting:  r  dropped  out  and  we  are  left  with  an  inverse  relationship  between  the  coupling  strength  and  the
frequency density Ñ  if the density is low, the coupling strength must be high. 
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Critical coupling (Kc)

The oscillators whose frequencies are space most closely Ñ  where the probability density peaks Ñ  are the first ones to 
synchronize.

To  find  the  critical  coupling,  KC,  we  need  to  pick  the  most  favorable  conditions  for  synchrony.  This  corresponds  to
gHΩL’s peak, where the oscillators are spaced most closely in frequency. These oscillators will  be the first  to synchronize,

locking at the frequency W where g(Ω) peaks. As they span a small range, we can set gHΩL = gHWL, and obtain

1 = KC g@WD à
-

Π

2

Π

2
Cos2@ΘD dΘ Þ KC =

2

Π g@WD

We can obtain an approximate result for higher coupling strengths by expanding g(Ω) to second-order. This yields a result
that describes r’s initial growth:

g HK r sin HΘLL » g HWL +
1

2
g
•• H0L HK r sin HΘLL2

This yields the following result for r’s initial growth:
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r =
16

Π KC
3 g
••@WD

1 -
KC

K

For the Lorentzian distribution, g HΩL =
Γ

Π IΓ2+Ω2M
,  g
•• HWL =

2

Π Γ3
 for which the solution is:

r = 1-
K

KC

In fact, this solution holds for the whole distribution.
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Vector Strength (VS) versus Order Parameter (r)

In many cases, VS and r are similar.

Both quantify synchrony in terms of vector sums of phase differences. 

Vector strength sums spike phases across time, over at least on period.

The order parameter sums neuron phases at a point in time.
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Does Kuramoto Apply?
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Does Kuramoto Apply? Yes, but ...
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