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Lab 3 January 5, 2010

Frequency Adaptation and Bursting

In the last lab, we explored spiking due to sodium channels. In this lab, we explore adapta-
tion and bursting due to potassium and calcium channels. To realize adaptation the model
uses a population of slow potassium channels (M current). During the spike, the neuron’s
depolarized potential activates the potassium channels. These channels hyperpolarize the
membrane, which delays subsequent spikes, adapting the neuron’s spike rate.

To realize bursting, the neuron uses a population of calcium channels. During the spike,
these calcium channels activate, and remain active for a short time. While they are active
they strongly excite the neuron, causing a high frequency train of spikes. Each spike also
increases the potassium channels’ conductance, which overcomes the calcium current after
several spikes, terminating the burst. Potassium activation then decreases until it is low
enough to allow another burst of spikes.

We will analyze and experiment with the adapting–bursting neuron, observing the role of
the potassium and calcium channels in spiking behavior, focusing on:

• The adapted spike rate

• The interaction between spike frequency and potassium conductance in bursting

3.1 Reading

Adaptation and bursting come in several varieties and can be realized by many combinations
of ion channels. The book below introduces adaptation and explains the requirements for
the type of bursting neuron in this lab (Section 7.3). It also reviews bursting in general,
emphasizing its utility and the relevant mathematics (Section 9.2).

• E. M. Izhikevich. Dynamical systems in neuroscience: The geometry of excitability
and bursting. MIT Press, 2007, Section 7.3, pp. 252-63, and Section 9.2, pp. 335-47.

3.2 Prelab

This prelab analyzes the frequency behavior of the adapting–bursting neuron.

1. M Current

(a) We model potassium channels (K) as a conductance (Gk) in parallel with the leak
conductance, Glk (to zero potential) (Figure 3.1). A spike causes a change in K
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Figure 3.1: A potassium conductance, GK, in parallel with a leak conductance, Glk, produces
adaptation. Adding a Ca current (ICa) results in bursting.

conductance similar to our synapse model, a brief rise followed by an exponential
decay. Here we approximate the rise as instantaneous, thus, if gK(tn) ≡ Gk/Glk

is the value of the conductance immediately before the nth spike, which occurs
at tn, we have:

gK(t) = (gK(tn) + ∆gK)e−(t−tn)/τK (3.1)

where τK is the time constant and gK(t) increases by ∆gK immediately after the
nth spike. A neuron spikes regularly with period T in steady-state. Solve for
the conductance, gK∞, by obtaining gK(tn + T ) from Equation 3.1 and setting it
equal to gK(tn).

(b) We can obtain the steady-state spike frequency using our result from Prelab
Question 1a. In steady state, the potassium conductance goes to gK∞. Rearrange
the expression from the previous question to find gK∞ in terms of f . Simplify
this function by using the approximation 1

log(1+x) ≈ 1
x + 1

2 .
We can approximate potassium’s influence on frequency as:

f =
37/6

2πτm

(
r2/3 − 1 + gK

2

)
(3.2)

which is valid for gK ¿ r2/3. Substitute your result into Equation 3.2 to show
that the steady-state frequency is given by:

f ≈ 1
τK

(
2r2/3

∆gK
+

1
2

)
(3.3)

Assume r À 1 and τK À τm to simplify the expression.

2. Phase Plot

We model calcium channels (Ca) as an inward current (ICa) in parallel with the sodium
current (Figure 3.1). A spike causes a brief rise in ICa followed by an exponential decay
(described by τCa), similar to the potassium conductance but faster. ICa adds to the
neuron’s input current, causing an increase in spike rate, until the potassium overcomes
it, ending the burst. To visualize this interaction, we use a phase portrait (Figure 3.2).
We consider two distinct behaviors, adaptation and bursting. For adaptation, ∆ICa

is small; for bursting, ∆ICa is large; the other parameters remain unchanged (r = 10,
∆gK = 0.25, τK = 180ms, τCa = 10ms, and τm = 10ms). Sketch the neuron’s
trajectory starting from the initial conditions f = 400 and gK = 4 in these two cases:

(a) f responds instantaneously to changes in gK. In this case, the trajectory follows
the f -nullcline (thick light-red or light-blue lines, with ∆rCa = 1 or 6, respec-
tively), moving along it to approach the gk-nullcline (thick gray line). Sketch
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Figure 3.2: A neuron’s behavior is set by the strength of its calcium current (∆rCa). When
the calcium current is weak (∆rCa = 1) the neuron adapts, settling at a stable spike fre-
quency. When the calcium current is strong (∆rCa = 6) the neuron bursts, alternating
between high frequency spiking and quiescence.

the adapting and bursting trajectories in this case, starting from the given initial
conditions. In practice, f does not respond instantaneously because ICa, which
is responsible for boosting the spike rate, takes time to build up, or to decay,
which leads to the second part of this question.

(b) f does not respond instantaneously to changes in gK. In this case, the trajec-
tory deviates from the f -nullcline (dotted deep-red and deep-blue lines, with
∆rCa = 1 or 6, respectively). Before you sketch the adapting and bursting tra-
jectories, starting from the same initial conditions, explain why the trajectories
in Figure 3.2 are horizontal when they cross the f -nullcline and vertical when
they cross the gK-nullcline.

(c) After a burst terminates, it is followed by a silent period during which gK decays.
For a given input, r, the smallest value of gK capable of preventing spiking is
called gKmin (dashed–dotted line). This value makes ẋ’s minimum value zero:

τmẋ = r − x (1 + gKmin) +
x3

3
(3.4)

Show that:

gKmin =
(

3r

2

)2/3

− 1 (3.5)

3.3 Setup

As with previous labs, there will be a folder on the Desktop named AdaptBurstLab. This
folder contains the instrument control program to acquire and view the neuron membrane
potential and spikes in real-time. The TA will instruct you on the use of the software.
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In this lab, the contents of parameters.txt of interest are:

• Input current (IIN)

• Leak conductance (Glk)

• Potassium conductance amplitude (∆GK)

• Calcium current amplitude (ICa)

As you increase the input current and the leak conductance biases, IIN and Glk increase
exponentially. As you decrease the potassium conductance amplitude and calcium current
biases, ∆GK and ICa increase exponentially. The potassium (τK) and calcium (τCa) decay-
constants are set to reasonable values such that τK is about four times τCa.

3.4 Experiments

In the first experiment, we will characterize the neuron’s adapted spike rate in response to
K-channel activity. In the second, we will turn on the model’s calcium channels and observe
the neuron’s various behaviors—bursting, bursting followed by adapting, and adapting.

Experiment 1: Spike-Frequency Adaptation

In this experiment, we will

• Measure the neuron’s adapted spike rate for various (constant) input currents.

Turn on the K channels by decreasing the potassium amplitude bias (to about 1.85V). Turn
on the Ca channels by decreasing the calcium amplitude bias (to about 1.45V). Increase
the input current bias until bursting is observed (to about 0.5V). Adjust the potassium and
calcium biases until the burst trajectory fills the available plotting window. Record the K
bias at this point: this should remain fixed at this level for the remainder of the experiments.

Now turn off the Ca current by setting the bias to 2.4V. Calculate the spike frequency for
several values of input current (10-20), which we normalize and approximate as:

r = rth e(VIN−VIN0) κ/0.0256 (3.6)

where as before (Lab 2) rth = 2/3, κ is a transistor fit parameter (0.7 generally works), VIN

is the input current bias in volts, and VIN0 is the smallest input current bias (smallest input
current) that causes the neuron to spike. Plot steady-state f versus r, fitting the plot with
the appropriate equation from the prelab. The value of κ may need to be adjusted to create
a decent fit. What are τK and ∆gK?

For the next experiment measure the K waveforms and calculate the value of ∆GK (the
increase in potassium conductance due to a single spike). Do you expect this value to be
the same for all input currents used? Does it make more sense to measure this value using
the data from high or low frequencies?
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Experiment 2: Bursting Phase Portrait

In this experiment, we will

• Collect phase portraits from a neuron in different regimes.

Set the input current to obtain a frequency around 50Hz with adaptation. Turn on the Ca
channels by decreasing the calcium amplitude bias (to about 1.45V). Observe the spike fre-
quency versus potassium trajectory for several values (10-20) of calcium amplitude. Ensure
that the calcium current amplitude range is sufficient to realize both adapting (small cal-
cium amplitude) and bursting (large calcium amplitude). Use the measured ∆GK value to
calculate Glk using the value of ∆gK = ∆GK/Glk determined in Experiment 1. Normalize
GK by Glk to calculate gK.

On a single graph, plot a phase-portrait curve for each calcium current amplitude: Plot
the inverse of each interspike interval (instantaneous spike frequency) versus the average
normalized potassium amplitude during that interval. Be sure to include both adpating and
bursting waveforms. What is the Ca current at the transition point? Label each phase-
portrait curve with its corresponding calcium amplitude bias. From the bursting phase
portraits estimate gKmin. Does this gKmin yield a reasonable value for r, compared to one
calculated from Equation 3.6?

From the adapting phase portraits fit gK∞ as a function of frequency to an approximation
of the expression derived in Prelab Question 1a, given by:

gK∞ ≈ ∆gKτKf (3.7)

Use the slope of this curve and the value of ∆gK from Experiment 1 to find τK. How similar
is this to your previous estimate of τK. Comment on any deviation.

3.5 Postlab

In this Postlab you will design an experiment similar to Experiment 2. In Experiment 2,
you varied ∆rCa, which enabled you trace the gK-nullcline, gK∞. How would you trace
the f -nullcline (for fixed ∆rCa and τCa values)? What parameter(s) would you vary? Can
you trace the unstable regions as well? How would you calibrate your measurements? For
instance, if you varied r, how would you determine the actual value that was applied? Sketch
phase plots similar to Figure 3.2 to illustrate your plan.


