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Lab 4 January 6, 2010

Neuron Phase Response

In this lab, we study the effect of one neuron’s spikes on another’s, combined synapse and
neuron behavior. In Lab 2, we characterized a neuron’s response to a constant input current.
Here, we augment the neuron’s constant input with synaptic stimulation.

We explore how much spikes from one neuron advance (or delay) the spikes of another,
focusing on:

• How the input spike’s phase (i.e., when in the neuron’s cycle it is applied) influences
its efficacy

• How the neuron’s phase-response enables it to phase-lock to the input (i.e., spike at a
fixed delay)

4.1 Reading

The following book chapter, located on the class website, discusses the response of model
neurons similar to the one in this class to synaptic input, defining the concept of phase and
introducing the phase response (Section 10.1). It also provides specific examples (Section
10.4.2).

• E. M. Izhikevich. Dynamical systems in neuroscience: The geometry of excitability
and bursting. MIT Press, 2007, Section 10.1, pp. 444-57, and Section 10.4.2, pp.
477-9.

4.2 Prelab

This prelab is meant to familiarize you with analyzing the phase response of simple neurons,
providing intuition into why an input spike’s phase matters.

1. Phase Response

(a) We examine how an input’s phase influences its effect on a neuron’s subsequent
spike times, the neuron’s phase-response curve (PRC). Consider the positive-
feedback neuron, which we excite with a very brief current pulse that moves
the membrane up by AE. If the pulse arrives when the neuron’s membrane is
changing quickly (high membrane slope), it only advances the neuron’s phase a
small amount, ∆T ; however, if the pulse arrives when the neuron’s membrane
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is changing slowly (low membrane slope), ∆T is large. Why does exciting the
neuron while the membrane slope is low, skipping that portion of its period,
advance phase more effectively than while the membrane slope is high?

(b) The neuron’s phase response is inversely proportional to its membrane slope. For
weak pulses that move the membrane little, we can approximate the advance in
the neuron’s phase as:

∆T =
AE

ẋ
(4.1)

where we define ẋ as in Lab 2:

ẋ =
1
τm

(
r − x +

x3

3

)
(4.2)

When does ∆T equal its maximum, ∆TA? What is its value at this point? For
r slightly greater than 2/3 (and AE ¿ 1), we can approximate the PRC as:

∆T (θ) ≈ ∆TA

2

(
1− cos

(
2πθ

T

))
, 0 < θ < T (4.3)

where a spike arrives at phase θ (in units of time) and T is the neuron’s period
in the absence of the spike. For AE = 0.1, r = 1, and τm = 10ms, calculate ∆TA

and sketch the PRC.

2. Entrainment

(a) Knowing a neuron’s PRC enables us to predict how it will respond to a periodic
stimulus.

θn+1 = (θn + ∆T (θn) + Ts)mod T (4.4)

where Ts is the stimulus period and θn is the phase at which the stimulus’ nth
spike occurs. The neuron phase-locks to the stimulus if a stable fixed point exists
(similar to a stable equilibrium). At a fixed point, θn+1 = θn, which we replace
with θlock. Show that:

∆T (θlock) = T − TS (4.5)

Using the value you calculated for ∆TA, solve for the smallest value of TS that
will entrain the neuron.

(b) If TS is larger than the minimum value, there are two fixed points. Show this
using your PRC sketch and determine the stability of each fixed point. That is,
reason about what happens when an input spike occurs near a fixed point. Will
the next input spike move closer or farther? If it moves closer, the fixed point is
stable; if it moves farther, it is unstable.

4.3 Setup

As in previous labs, there will be a folder on the Desktop; this one is named Phase Re-
sponse Lab. This folder contains the instrument control program to acquire and view the
neuron membrane potential and phase response in real-time. The TA will instruct you on
the use of the software.

Before each test, edit the contents of parameters.txt. In this lab, the parameters of interest
are:

• Input current (IIN)



BioE332A Lab 4, 2010 3

• Leak conductance (Glk)

• Excitatory current amplitude (AE)

• Inhibitory conductance amplitude (AI)

• Stimulus period in ms (TS)

As you increase the input current and the leak conductance biases, IIN and Glk increase
exponentially. As you decrease the excitatory conductance amplitude and inhibitory current
amplitude biases, AE and AI increase exponentially. The excitatory (τE) and inhibitory (τI)
decay-constants are set to reasonable values such that both are fast. Use the F1 key to
display a list of available key commands.

4.4 Experiments

Experiment 1: Phase Response Curves

We study the interaction between the synapse and the neuron. Specifically, we will measure
the effects of

• a single excitatory spike on a postsynaptic neuron

• a single inhibitory spike on a postsynaptic neuron

We will inject a constant current into the neuron by stimulating an excitatory synapse at a
high rate (see Lab 1). Adjust this background current (IIN) until the neuron spikes at 30Hz
for both experiments.

We will stimulate a separate excitatory synapse set to deliver a brief current pulse to the
neuron at a low rate (once every 250ms); therefore, set TS = 250. This synapse will excite
the neuron at a random phase, advancing spiking. We will record this time advance, ∆T ,
induced by excitation and build up a plot of ∆T versus input phase; this is the PRC.
Measure AE directly from the increase in membrane potential, using an event that occured
near the center of the neuron’s cycle. Normalize this measurement by a visual estimate of
the inflection point. Be sure to remove any ADC offset from your estimate.

Repeat this experiment several (5-10) times, with a different synaptic strength selected each
time, such that the measured AE ranges between about 0.1 and 0.6 (normalized). Be sure
to run the experiment long enough to sketch out the full PRC (try 40-50s). If your data is
very noisy you may need to use a longer run time and average the data. A good starting
point for the AE bias is about 1.35V; the inhibition bias should be set to 2.4V to remove
any inhibition. On a single graph, plot all of the PRCs aligned to the end of the period. On
a seperate figure, plot the maximum (absolute) value of ∆T versus AE. What is the trend?
Fit the data accordingly and show your equation.

Repeat the preceding procedure for the inhibitory synapse, changing AI. A good starting
point to try is about 1.65V. Be sure to set the AE bias to 2.4V to turn off excitation. Note
the similarities and differences between the excitatory and inhibitory synapses. Why are
they different?
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Experiment 2: Entrainment

In this experiment, we will phase-lock the neuron’s spike to the input spike train. In par-
ticular, we will determine the

• criteria for synaptic excitation or inhibition to entrain a neuron.

This experiment is similar to the last, except we will stimulate the neuron at higher rates.
Apply three rates of stimulation to the neuron: 25Hz, 32Hz, and 40Hz. At each rate, choose
two values for AE, a small and large value that increase x by approximately 0.1 and 0.3,
respectively; refer to your measurements from Experiment 1. Plot the phase that the spikes
arrive versus the spike number for all six cases and label each case. At which frequencies
does the neuron phase lock? At which does it fail to phase lock? How does the large value
of AE influence the phase locking?

Repeat the preceding procedure for the inhibitory synapse at rates: 20Hz, 28Hz, and 35Hz.
Note the similarities and differences between the excitatory and inhibitory synapses. Why
are they different?

4.5 Postlab

Reyes and Fetz (1993) stimulated a cat layer V sensorimotor cortical neuron with a constant
background current and additional excitatory current pulses (Figure 4.1 top). When a pulse
arrived late, the period decreased up to 15 % (relative to its unstimulated value). When a
pulse arrived early, the period did not change. The adapting positive-feedback neuron we
studied in Lab3 behaves similarly (Figure 4.1 bottom).

Notice that both of these neurons’ membrane voltages exhibit a nearly constant slope; yet,
their PRCs are similar to the ones you recorded. This is not what you would expect based
on this lab. However, there is an important difference between these neurons and the one we
studied in this lab: in the latter r is always greater than rth whereas in the former r is less
than rth for most of the period due to the action of the potassium conductance. Unlike the
situation in Lab 3, the potassium conductance activates strongly after a spike (large ∆gk)
and decays quickly (small τk). Explain how this potent potassium could account for the
observed PRC, including the large zero-region. Hint: Think about and sketch the neuron’s
phase plot (ẋ versus x), focusing on how it changes as the potassium conductance increases
after a spike and decreases thereafter.

• A. D. Reyes and E. E. Fetz. Two modes of interspike interval shortening by brief tran-
sient depolarizations in cat neocortical neurons. Journal of Neurophysiology, 69:1661-
72, 1993.
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Figure 4.1: Current pulses decrease the period of a cat layer V sensorimotor cortical neuron
up to 15 % (top) [Modified from Reyes and Fetz (1993)]. The adaptive positive-feedback
neuron expresses a similar response (bottom).


