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Lab 6 February 11, 2010

Attention: Controlling Synchrony

In Lab 5, we studied many interconnected inhibitory neurons and determined that synaptic
rise-time sets the network period. In this lab we study the onset of synchrony, exploring the
effect of increasing inhibitory strength.

We will drive a population of 256 interneurons with constant input current and have them in-
hibit each other; the strength of inhibition determines whether or not synchrony occurs. We
will model the neurons in the network as phase-coupled oscillators (a method introduced by
Kuramoto). When coupling is weak, the oscillators run at their natural frequencies. When
coupling is strong, as would happen when attention is present, the network synchronizes.

6.1 Reading

• B. Daniels. Synchronization of Globally Coupled Nonlinear Oscillators: the Rich
Behavior of the Kuramoto Model. Ohio Wesleyan Physics Dept., Essay, pp. 7-20,
2005.

6.2 Prelab

1. Phase-Coupled Oscillators

Modeling each neuron as an oscillator, we can describe the rate at which the kth
oscillator’s phase changes by:

θ̇k = ωk +
K

N

N
∑

n=1

sin(θn − θk) (6.1)

where ωk is its natural frequency, K is the degree of coupling, and N is the number of
oscillators.

(a) Show that this equation can be rewritten as:

θ̇k = ωk +Kr sin(ψ − θk) (6.2)

Where ψ and r are defined by:

r eiψ =
1

N

N
∑

n=1

eiθn (6.3)

The identity 2i sinx = eix − e−ix may be helpful.

(b) Sketch the relationship between ωk and θk in steady state (θ̇k = 0) on the range
0 < θk < 2π.
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Figure 6.1: The phase of a spiking neuron over time.

2. Dealing with Spiking Neurons

Vector strength (VS) of a population of neurons is given by

VS =
1

N

N
∑

n=1

ei2π
tn0

T̃ (6.4)

where tn0 is the spike time of the nth neuron in the interval [0, T̃] (refer to Figure 6.1).

(a) By relating tn0 to θn(0) (defined in Figure 6.1), show that

VS =
1

N

N
∑

n=1

e−iθn(0) (6.5)

(b) From the expression derived above, how is VS related to r?

3. Predicting Kc

The Kuramoto model predicts that Kc = 2
πg(0) , where g(0) is the peak of the frequency

density function g(ω). We could obtain g(0) from the peak of a histogram of the
measured neuron frequencies. But this is problamatic: if the bins are too small, the
count per bin will be too low; on the other hand, larger bins will smoothen the peak.
A better strategy is to avoid binning altogether and use the cumulative distribution
defined as:

G(ω) =
1

N
count({ω1, ω2, . . . , ωN}, ω) (6.6)

where count(list,val) returns the number of elements in list less than or equal to val

and N is the total number of firing neurons.

Assuming g(ω) is gaussian, sketch G(ω) for very large N. Show graphically how you
would determine g(0) from this plot.

6.3 Setup

As in previous labs, there will be a folder on the Desktop; this one is named Attention Lab.
This folder contains the instrument control program to acquire and view the interneuron
membrane potential and spikes in real-time. The TA will instruct you on the use of the
software.

Before each test edit the contents of parameters.txt. In this lab, the parameters of interest
are:
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• Input current (IIN)

• Leak conductance (Glk)

• Inhibitory rise-time (Tr)

• Inhibitory spread (λI)

• Inhibitory conductance amplitude (GI)

As you increase the input current, leak conductance, rise-time, and spread biases, IIN, Glk,
Tr, and λI increase exponentially. As the inhibitory conductance amplitude bias is increased,
GI decreases exponentially. Other biases can be changed dynamically while running the
program (press the F1 key for help). These can be used to further explore synchrony, but
they are not required in the lab.

6.4 Experiments

In the first experiment, we will explore the amount of inhibition necessary to synchronize a
population of inhibitory interneurons. In the second experiment, we will examine the phase
of the individual neurons within the population. Specifically, we will study how the natural
frequency of each neuron affects its synchronized phase.

Experiment 1: Synchrony Onset

In this experiment, we will

• Observe the amount of inhibition required for the network to synchronize

Disconnect the interneurons from each other by setting the inhibitory spread to 0.750V.
Leave the other biases at default levels (Glk = 0.0; Tr = 2.286, GI = 1.97). Adjust IIN
to get a mean network frequency of about 40 Hz. Note this level of IIN and use it for
subsequent experiments.

Globally connect the interneurons by setting the inhibitory spread bias to 1.750V. Vary
the inhibitory synapse’s strength (20-30 values). Be sure that synchrony is not seen at the
highest voltage, but is seen at the smallest. The total range should be about 300 mV. For
each strength, take data for about one second.

As was done in Lab 5, compute the vector strength (VS) for the entire network at each GI

value. In addition, measure the total number of active neurons, Nf, and the average firing
rate, µf, at each GI value. We approximate the coupling between the neurons as:

Kapprox = αcNf µf (5.0 × 10−9) e0.7 (2.5−VB)/0.0256 (6.7)

where VB is the GI voltage bias value and αc is a proportionality constant. Set αc = 1 for
this experiment. Plot the calculated VS vs the Kapprox value. Fit the following equation to
your data

r =

√

1 −
Kc

K
(6.8)

What value of Kc did you find?
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Experiment 2: Frequency–Phase Relationship

In this experiment, we will

• Establish how the phases of individual neurons relate to their natural frequencies

Using your data from Experiment 1, pick a GI value with a high VS and a relatively large
number of active neurons (those with a frequency greater then 4 Hz). For this value, find
the phase of each neuron and plot its sine against that neuron’s natural frequency (measure
this frequency at a GI value just before the estimated Kc point to closely match the average
frequency of the neurons when they are synchronous). Only plot neurons that are not
drifting (use the VS of each neuron to determine whether or not it can be included). From
a linear fit determine the value of K.

Using the measured K value and Equation 6.7 find a corrected value of αc such that
Kapprox = K. Report the value of αc found.

We would like to relate the value of Kc to an intrinsic network property. Determine g(0)
from the neurons’ natural frequencies using the method you proposed in the prelab. Use
this to calculate Kc. How close is this calculated value to the number derived from the
previous experiment? Can you think of any reasons for the deviation?

Experiment 3: Full K Measurement (Extra Credit)

Using the same method described above, calculate K values for all GI values. Plot this vs
the Kapprox values and fit a linear equation to the data. Is the data linear as assumed?
How close was the calculated αc value to the slope of the fit? On a new figure, plot VS
against K, and fit this using Equation 6.8. How do the new plot and Kc value compare to
the previous results?


