Synapse Model

Neurotransmitter is released into cleft between axonal button and dendritic spine

- Binding and unbinding are modeled by first-order kinetics
- Concentration must exceed receptor affinity

Dumping neurotransmitter

Neurotransmitter concentration in cleft increases rapidly and then decays slowly

 $\ln[1]:= \frac{dX}{dt} = -I_{leak} \text{ with } X[0] = Q$ $\ln[1]:= \implies X[t] = Q - I_{leak} t$

Neurotransmitter remains in the cleft for some time:

 $\ln[1]:= X[t_{xmt}] = 0 \implies t_{xmt} = Q / I_{leak}$

Binding and unbinding rates

Channels do not open or close instantaneously; it takes time

Neurotransmitter (X) binds to receptors (R) at a rate α and unbinds from them at a rate β :

$$\mathbf{R} + \mathbf{X} \stackrel{\alpha}{\rightleftharpoons} \mathbf{R}\mathbf{X}^*$$

The number of open channels changes at the rate:

$$\frac{d[RX^*]}{dt} = \alpha [R] [X] - \beta [RX^*]$$

Dividing both sides by [R] + [RX*], the total number of channels, which is constant, yields:

$$\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}\mathbf{t}} = \alpha [\mathbf{X}] (\mathbf{1} - \mathbf{r}) - \beta \mathbf{r} \iff \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}\mathbf{t}} + (\alpha [\mathbf{X}] + \beta) \mathbf{r} = \alpha [\mathbf{X}]$$

where $r = [RX^*]/([R] + [RX^*])$ is the fraction of channels that are open.

Receptor affinity (K_D)

To open over half the channels, the neurotransmitter concentration must exceed K_D Setting dr/dt = 0, and replacing [X] with X, yields this steady-state solution to the ODE:

$$\mathbf{r}_{\infty}[\mathbf{X}] = \frac{\alpha \mathbf{X}}{\alpha \mathbf{X} + \beta} = \frac{\mathbf{X}}{\mathbf{X} + \mathbf{K}_{\mathrm{D}}}$$

where $K_{\rm D} \equiv \beta / \alpha$ is the receptors' affinity. Half the channels open when $X = K_{\rm D}$ and most of them open when $X \gg K_{\rm D}$.

Response to rectangular pulse (p(t))

The difference between the initial and steady-state levels decreases exponentially with time

We can solve the ODE if *X* is constant, making τ [X] constant, which yields:

 $r[t] = r_{\infty} + (r[t_0] - r_{\infty}) e^{-(t-t_0)/\tau[X]}$

where the time-constant is given by:

$$\tau[X] = \frac{1}{\alpha X + \beta} = \frac{1}{\alpha} \frac{1}{X + K_{D}}$$

Its dependence on the neurotransmitter concentration introduces an asymmetry: Because τ increases as X decreases, the channels take longer to close ($X \ll K_D$) than they take to open ($X \gg K_D$).

Reaching steady-state ($t_{bnd} > 3\tau$)

It takes three time-constants to reach steady-state

How long does p(t) have to be for r(t) to reach steady-state (r_{∞}) ? In fact, when $t = 3\tau$, starting with r[0] = 0 at $t_0 = 0$, we have:

 $r[3\tau] = r_{\infty} (1 - e^{-3}) = (1 - 0.0498) r_{\infty}$

Thus, only 5% of the channels that are going to open remain unopened when the pulse's duration is 3τ . So steady-state is essentially reached within three time-constants.

Rise-Time

Rise-time equals the time-to-steady-state (3τ) or the pulse length, whichever is shortest.

For long pulses, r(t) stops rising once steady-state is reached, which essentially occurs at 3τ . Hence, the rise-time is 3τ . For short pulses, r(t) stops rising when the pulse ends, failing to reach steady-state. Hence, the rise-time is t_{bnd} .

Decay-Constant

In a time equal to the decay-constant, the number of open channels to drops by a factor of e.

Starting with $r[t_0] = r_{\text{peak}}$ at $t_0 = t_{\text{bnd}}$, and setting $r_{\infty} = 0$ for $t > t_{\text{bnd}}$, we have:

 $\texttt{r[t]} = \texttt{r}_{\texttt{peak}} \, \texttt{e}^{-(\texttt{t-t}_{\texttt{bnd}}) \, / \, \tau_{\beta}} \quad \text{where } \mathtt{\tau}_{\beta} = \mathtt{\tau}[\texttt{0}] = \texttt{1} \, / \, \beta$

Thus, the open fraction decays by a factor of *e* (63% decrease) when $t = t_{bnd} + \tau_{\beta}$. Hence, the decay-constant is τ_{β} — it is entirely determined by the unbinding rate β .

Overlapping Pulses

A second spike builds up neurotransmitter concentration and extends p(t).

The second spike extends the time neurotransmitter is in the cleft from t_{xmt} to $2t_{xmt}$ and the time its concentration is above K_D from t_{bnd} to $t_{bnd} + t_{xmt}$ — more than 2 t_{bnd} . It achieves this higher efficacy (facilitation) by riding atop the dollop of neurotransmitter the first spike evoked.

Pulse Extension

Temporal Integration

Responses summate over time

The responses to the pulses $p_1(t)$ and $p_2(t)$, evoked by the first and second spike, are $r_1(t)$ and $r_2(t)$, respectively, when they are presented separately. Will the response be $r_1(t) + r_2(t)$ when the spikes are presented together (this is called <u>linear</u> behavior)? For this to be the case, $p_1(t) + p_2(t)$ and $r_1(t) + r_2(t)$ should satisfy the ODE, just like the individual pairs do:

$$\frac{1}{\tau} \frac{d}{dt} (r_1[t] + r_2[t]) + (r_1[t] + r_2[t]) = p_1[t] + p_2[t]$$

$$\Leftrightarrow \left(\frac{1}{\tau} \frac{d}{dt} r_1[t] + r_1[t]\right) + \left(\frac{1}{\tau} \frac{d}{dt} r_2[t] + r_2[t]\right) = p_1[t] + p_2[t]$$

$$\Leftrightarrow p_1[t] + p_2[t] = p_1[t] + p_2[t]$$

This requires two assumptions to be true:

1. τ is the same in all three cases $(p_1(t), p_2(t) \text{ and } p_1(t) + p_2(t))$ — true if neurotransmitter levels are the same.

2. Summing does indeed yield the third case's steady-state — true if pulses don't overlap.

Linear Behavior

Question: If the amount of neurotransmitter released increased but the number of receptors remained the same, how could I tell from the measured postsynaptic current trace?

