Synapse Model

Neurotransmitter is released into cleft between axonal button and dendritic spine

- **Binding and unbinding are modeled by first-order kinetics**
- **Concentration must exceed receptor affinity**

Dumping neurotransmitter

Neurotransmitter concentration in cleft increases rapidly and then decays slowly

 $In[1]:=$ **d X dt = -Ileak** with **X@0D = Q** $\mathsf{In}[1]:=\ \implies \mathbf{X}\left[\,\mathbf{t}\,\right]\ =\ \mathbf{Q}-\mathbf{I}_{\text{leak}}\ \mathbf{t}$

Neurotransmitter remains in the cleft for some time:

 $\ln[1]:$ **X** $\left[t_{xmt}\right] = 0 \implies t_{xmt} = Q / I_{\text{leak}}$

Binding and unbinding rates

Channels do not open or close instantaneously; it takes time

Neurotransmitter (X) binds to receptors (R) at a rate α and unbinds from them at a rate β :

$$
R + X \underset{\beta}{\overset{\alpha}{\rightleftharpoons}} R X^*
$$

The number of open channels changes at the rate:

$$
\frac{d [RX^*]}{dt} = \alpha [R] [X] - \beta [RX^*]
$$

Dividing both sides by $[R] + [RX^*]$, the total number of channels, which is constant, yields:

$$
\frac{dr}{dt} = \alpha [X] (1 - r) - \beta r \Leftrightarrow \frac{dr}{dt} + (\alpha [X] + \beta) r = \alpha [X]
$$

where $r = [RX^*]/([R] + [RX^*])$ is the fraction of channels that are open.

Receptor affinity (K_D **)**

To open over half the channels, the neurotransmitter concentration must exceed K_{D} Setting $dr/dt = 0$, and replacing [X] with X, yields this steady-state solution to the ODE:

$$
r_{\infty}[X] = \frac{\alpha X}{\alpha X + \beta} = \frac{X}{X + K_{D}}
$$

where $K_D \equiv \beta/\alpha$ is the receptors' affinity. Half the channels open when $X = K_D$ and most of them open when $X \gg K_D$.

Response to rectangular pulse $(p(t))$

The difference between the initial and steady-state levels decreases exponentially with time

We can solve the ODE if *X* is constant, making $\tau[X]$ constant, which yields:

 $\mathbf{r}[\mathbf{t}] = \mathbf{r}_{\infty} + (\mathbf{r}[\mathbf{t}_0] - \mathbf{r}_{\infty}) e^{-(\mathbf{t}-\mathbf{t}_0)/\tau[\mathbf{X}]}$

where the time-constant is given by:

$$
\tau [x] = \frac{1}{\alpha x + \beta} = \frac{1}{\alpha} \frac{1}{x + \kappa_D}
$$

Its dependence on the neurotransmitter concentration introduces an asymmetry: Because τ increases as X decreases, the channels take longer to close (*X* \ll *K_D*) than they take to open (*X* \gg *K_D*).

Reaching steady-state (tbnd > 3 Τ)

It takes three time-constants to reach steady-state

How long does $p(t)$ have to be for $r(t)$ to reach steady-state (r_{∞}) ? In fact, when $t = 3 \tau$, starting with $r[0] = 0$ at $t_0 = 0$, we have:

 \mathbf{r} [3 τ] = \mathbf{r}_{∞} $(1 - e^{-3})$ = $(1 - 0.0498) \mathbf{r}_{\infty}$

Thus, only 5% of the channels that are going to open remain unopened when the pulse's duration is 3τ. So steady-state is essentially reached within three time-constants.

Rise-Time

Rise-time equals the time-to-steady-state (3τ) or the pulse length, whichever is shortest.

For long pulses, $r(t)$ stops rising once steady-state is reached, which essentially occurs at 3τ. Hence, the rise-time is 3τ. For short pulses, $r(t)$ stops rising when the pulse ends, failing to reach steady-state. Hence, the rise-time is t_{bnd} .

Decay-Constant

In a time equal to the decay-constant, the number of open channels to drops by a factor of e .

Starting with $r[t_0] = r_{\text{peak}}$ at $t_0 = t_{\text{bnd}}$, and setting $r_{\infty} = 0$ for $t > t_{\text{bnd}}$, we have:

 \mathbf{r} [t] = $\mathbf{r}_{\text{peak}} e^{-(t-t_{\text{bnd}})/\tau_{\beta}}$ where $\tau_{\beta} = \tau$ [0] = 1 / β

Thus, the open fraction decays by a factor of e (63% decrease) when $t = t_{\text{bnd}} + \tau_{\beta}$. Hence, the decay-constant is τ_{β} — it is entirely determined by the unbinding rate β .

Overlapping Pulses

A second spike builds up neurotransmitter concentration and extends $p(t)$.

The second spike extends the time neurotransmitter is in the cleft from t_{x} and the time its concentration is above K_D from t_{bnd} to $t_{\text{bnd}} + t_{\text{xmt}}$ — more than 2 t_{bnd} . It acheives this higher efficacy (facilitation) by riding atop the dollop of neurotransmitter the first spike evoked.

Pulse Extension

Temporal Integration

Responses summate over time

The responses to the pulses $p_1(t)$ and $p_2(t)$, evoked by the first and second spike, are $r_1(t)$ and $r_2(t)$, respectively, when they are presented separately. Will the response be $r_1(t) + r_2(t)$ when the spikes are presented together (this is called <u>linear</u> behavior)? For this to be the case, $p_1(t) + p_2(t)$ and $r_1(t) + r_2(t)$ should satisfy the ODE, just like the individual pairs do:

$$
\frac{1}{\tau} \frac{d}{dt} (r_1[t] + r_2[t]) + (r_1[t] + r_2[t]) = p_1[t] + p_2[t]
$$
\n
$$
\Leftrightarrow \left(\frac{1}{\tau} \frac{d}{dt} r_1[t] + r_1[t]\right) + \left(\frac{1}{\tau} \frac{d}{dt} r_2[t] + r_2[t]\right) = p_1[t] + p_2[t]
$$
\n
$$
\Leftrightarrow p_1[t] + p_2[t] = p_1[t] + p_2[t]
$$

This requires two assumptions to be true:

1. τ is the same in all three cases $(p_1(t), p_2(t)$ and $p_1(t) + p_2(t)$ — true if neurotransmitter levels are the same.

2. Summing does indeed yield the third case's steady-state — true if pulses don't overlap.

Linear Behavior

Question: If the amount of neurotransmitter released increased but the number of receptors remained the same, how could I tell from the measured postsynaptic current trace?

