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Network Structures	



Pool	



• Neurons of the same model	



• Integer width by height	



• Each neuron identified by 

unique integer coordinate	



• Disable neurons to get custom 

shapes and/or densities	



>>> p = Pool(nrn_quad, width = 65, 
height = 65) 

Group	



• A collection of network 

structures (pools, groups, 

arrays)	



>>> t = Group() 
>>> t.AddChild(p) 

Array	



• An array of a base network 

structure (pools, groups, 

arrays) with specified 

repetitions in width and 

height	



>>> a = Array(base = t, w = 2, h = 2) 



FI Curve with a Pool of Neuron	



Pool	

 • Neurons of the same model	



• Integer width by height	



• Each neuron identified by unique integer coordinate	



• Disable neurons to get custom shapes and/or densities	



>>> # Set the input value 
>>> x0 = .5 
>>> 
>>> # Create the quadratic neuron model 
>>> som_quad = Soma(“quadratic”, {“tau”: 10e-3}) 
>>> nrn_quad = Neuron(“quad_neuron”, som_quad) 
>>> 
>>> # Make a Pool of 64 by 64 quadratic neurons 
>>> p = Pool(nrn_quad, 64, 64) 
>>>  
>>> # Map the Pool to hardware 
>>> MapNetwork(p) 



Output port is the block of 
spike trains	



Connecting Pools Through Ports	



Input port is the block of 
synaptic arbors (next slide)	



up to 4 of these	



•  Connect output port to input port = Projection (later slides)	


•  Ports are attached to pools, therefore, they inherit width and height 

of the pool	


•  A port’s arbors and spike trains have the same coordinate system as 

its pool’s neurons	





Taking Ports to the Next Level	



p1.Output(0) 

p1.Input(0) 

p2.Input(0) 

p2.Output(0) 

>>> t = Group() 
>>> t.AddChild(p1) 
>>> t.AddChild(p2) 

Create a group:	



>>> t.AddInput(p1.Input(0)) 

t.Input(0) 

>>> t.AddOutput(p1.Output(0)) 

>>> t.AddOutput(p2.Output(0)) 

t.Input(0) 

t.Input(1) 



Vertical Projections	



• Sends spike train at (x, y) in the output port to 
arbor at (x, y) in the input port (topographic)	



• Input/output ports must have same widths and 
heights, but don’t have to have the same number of 
neurons	



>>> # Making a Group 
>>> g = Group(“2pop”) 
>>> g.AddChild(p1) 
>>> g.AddChild(p2) 
>>> 
>>> # Mutually connect 
>>> g.VerticalProject(p1.Output(0), p2.Input(0)) 
>>> g.VerticalProject(p2.Output(0), p1.Input(1)) 



Horizontal Projections	


• Sends spike train at (x1, y1) in the output port to 

arbor at (x2, y2) in the input port (point-to-point)	


• Input/output ports must have same widths and 

heights, but don’t have to have the same number of 
neurons	



• You can specify a weight w < 1 that specifies the 
probability that a spike is delivered	



• Requires the daughterboard	


>>> # Making a Group 
>>> g = Group(“2pop”) 
>>> g.AddChild(p1) 
>>> g.AddChild(p2) 
>>> 
>>> # Point-to-point connection 
>>> g.HorizontalProject(p2.Output(0), x1, y1, p1.Input(0), x2 , y2 , 0.1)



Projections are owned by network structures, and are only to be made between ports 

at the same level of network hierarchy	



OK	

 NOT OK	





2 Population Interaction	



>>> # Making model for first population 
>>> syn1 = Synapse(“syn_generic”, {“erev”: .1, “tau_syn”: 10e-3, “lambda”: .6}) 
>>> som1 = Soma(“quadratic”, {“x0”: .7,’ “tau”: 10e-3}) 
>>> som1.AddSynapse(syn1) 
>>> nrn1 = Neuron(“pop1_nrn”, som1) 
>>> p1 = Pool(nrn1, 64, 64) 
>>> 
>>> # Making model for second population 
>>> syn2 = Synapse(“syn_generic”, {“erev”: .1, “tau_syn”: 10e-3, “lambda”: .6}) 
>>> som2 = Soma(“quadratic”, {“x0”: .7, “tau”: 10e-3}) 
>>> som2.AddSynapse(syn2) 
>>> nrn2 = Neuron(“pop2_nrn”, 64, 64) 
>>> p2 = Pool(nrn2, 64, 64) 
>>> 
>>> # Making a Group 
>>> g = Group(“2pop”) 
>>> g.AddChild(p1) 
>>> g.AddChild(p2) 
>>> 
>>> # Mutually connect 
>>> g.VerticalProject(p1.Output(0), p2.Input(0)) 
>>> g.VerticalProject(p2.Output(0), p1.Input(1)) 
>>> 
>>> # Map the network 
>>> MapNetwork(g) 


