
BioE 332 Lecture 8:	

Programming Neurogrid -- the python way	

Peiran Gao	

Spring 2011	

Updated by Kwabena Boahen	

Spring 2012	

Ben Varkey Benjamin	

Spring 2013	

Neurogrid is Designed for 	

Hierarchical and Modular Networks	

Nick Steinmetz	

 Christine Lee	

Network Structures	

Pool	

• Neurons of the same model	

• Integer width by height	

• Each neuron identified by

unique integer coordinate	

• Disable neurons to get custom

shapes and/or densities	

>>> p = Pool(nrn_quad, width = 65,
height = 65)

Group	

• A collection of network

structures (pools, groups,

arrays)	

>>> t = Group()
>>> t.AddChild(p)

Array	

• An array of a base network

structure (pools, groups,

arrays) with specified

repetitions in width and

height	

>>> a = Array(base = t, w = 2, h = 2)

FI Curve with a Pool of Neuron	

Pool	

 • Neurons of the same model	

• Integer width by height	

• Each neuron identified by unique integer coordinate	

• Disable neurons to get custom shapes and/or densities	

>>> # Set the input value
>>> x0 = .5
>>>
>>> # Create the quadratic neuron model
>>> som_quad = Soma(“quadratic”, {“tau”: 10e-3})
>>> nrn_quad = Neuron(“quad_neuron”, som_quad)
>>>
>>> # Make a Pool of 64 by 64 quadratic neurons
>>> p = Pool(nrn_quad, 64, 64)
>>>
>>> # Map the Pool to hardware
>>> MapNetwork(p)

Output port is the block of
spike trains	

Connecting Pools Through Ports	

Input port is the block of
synaptic arbors (next slide)	

up to 4 of these	

•  Connect output port to input port = Projection (later slides)	

•  Ports are attached to pools, therefore, they inherit width and height

of the pool	

•  A port’s arbors and spike trains have the same coordinate system as

its pool’s neurons	

Taking Ports to the Next Level	

p1.Output(0)

p1.Input(0)

p2.Input(0)

p2.Output(0)

>>> t = Group()
>>> t.AddChild(p1)
>>> t.AddChild(p2)

Create a group:	

>>> t.AddInput(p1.Input(0))

t.Input(0)

>>> t.AddOutput(p1.Output(0))

>>> t.AddOutput(p2.Output(0))

t.Input(0)

t.Input(1)

Vertical Projections	

• Sends spike train at (x, y) in the output port to
arbor at (x, y) in the input port (topographic)	

• Input/output ports must have same widths and
heights, but don’t have to have the same number of
neurons	

>>> # Making a Group
>>> g = Group(“2pop”)
>>> g.AddChild(p1)
>>> g.AddChild(p2)
>>>
>>> # Mutually connect
>>> g.VerticalProject(p1.Output(0), p2.Input(0))
>>> g.VerticalProject(p2.Output(0), p1.Input(1))

Horizontal Projections	

• Sends spike train at (x1, y1) in the output port to

arbor at (x2, y2) in the input port (point-to-point)	

• Input/output ports must have same widths and

heights, but don’t have to have the same number of
neurons	

• You can specify a weight w < 1 that specifies the
probability that a spike is delivered	

• Requires the daughterboard	

>>> # Making a Group
>>> g = Group(“2pop”)
>>> g.AddChild(p1)
>>> g.AddChild(p2)
>>>
>>> # Point-to-point connection
>>> g.HorizontalProject(p2.Output(0), x1, y1, p1.Input(0), x2 , y2 , 0.1)

Projections are owned by network structures, and are only to be made between ports

at the same level of network hierarchy	

OK	

 NOT OK	

2 Population Interaction	

>>> # Making model for first population
>>> syn1 = Synapse(“syn_generic”, {“erev”: .1, “tau_syn”: 10e-3, “lambda”: .6})
>>> som1 = Soma(“quadratic”, {“x0”: .7,’ “tau”: 10e-3})
>>> som1.AddSynapse(syn1)
>>> nrn1 = Neuron(“pop1_nrn”, som1)
>>> p1 = Pool(nrn1, 64, 64)
>>>
>>> # Making model for second population
>>> syn2 = Synapse(“syn_generic”, {“erev”: .1, “tau_syn”: 10e-3, “lambda”: .6})
>>> som2 = Soma(“quadratic”, {“x0”: .7, “tau”: 10e-3})
>>> som2.AddSynapse(syn2)
>>> nrn2 = Neuron(“pop2_nrn”, 64, 64)
>>> p2 = Pool(nrn2, 64, 64)
>>>
>>> # Making a Group
>>> g = Group(“2pop”)
>>> g.AddChild(p1)
>>> g.AddChild(p2)
>>>
>>> # Mutually connect
>>> g.VerticalProject(p1.Output(0), p2.Input(0))
>>> g.VerticalProject(p2.Output(0), p1.Input(1))
>>>
>>> # Map the network
>>> MapNetwork(g)

