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Phase Locking
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A neuron phase-locks to a periodic input—it spikes at a fixed delay [Izhikevich07].
The PRC's amplitude determines which frequencies a neuron locks to
The PRC's slope determines if locking is stable

Some neurons (resonators) phase-lock better than others (integrators)
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Short stimulus intervals (Ts<T)

<> PRC(6,)

-

Stimulus n advances phase by PRC(6,) if it occurs at phase 6,; T and Tg are the neuron's and stimulus' periods, respectively.

We can find the neuron's phase 6,1 just before stimulus n + 1 if we know its phase 6, just before stimulus n:
6h,1 = 6n + PRC[6,] + Ts
Note that, by definition, PRC(6,) is positiveif it advances the spike, negativeif it delaysit.
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Long stimulus intervals (Tg>T)
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Subtract neuron's period (T) from previous result for 6,,,;.

In this case, we must substract the neuron's period (T) to reset the phase to zero after the spike:
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Ons1 = (6n + PRC[6,] +Ts) - T
For arbitrarily long inter-stimulus intervals, tjwe use the modulo function:
6hs1 = (6nh +PRC[E] +Tg) nDd T

This phase iteration function—how the stimulus phase evolves from period to period—s called the Poincare phase map.
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Poincare phase map (6,41 =f(6,))

The phase iteration function and a unity-slope line enables phase updates to be obtained graphically [IzhikevichQ7].

The Poincare phase map enables phase updates are obtained graphically:
Move vertically from the line (6, := 6.1) to the curve (6,1 := f(6,)) to obtain the next value of 6.

Move horizontally from the curve (6,1 := f(6n)) to theline (6, := 6,,1) to update 6 to this value.

In our case:

f[e] = (6+PRC[E] +Tg) nod T
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Stability of fixed-points
stable fixed points

unstable fixed points
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f(0)'s slope determines if a fixed-point is stable or not [Izhikevich07].
Fixed-points occur at intersections of the f(6) curve and the unity-siope line: 6y, = f(6rp).
A fixed-point 6, is stable if f(6)'s slope isless than unity (in magnitude) at 6.
2 | ] | » | M | 6 Of 11

Fixed-points from the PRC
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Stability is determined by the PRC's slope [Izhikevich07].
Setting | f'(6hp) | <1 predictsyields:

| o (6rp+PRC[Erp] +Ts-nT) | <1 = -2< aor

PRC[61,] <0
Therefore, the PRC's slope must be between 0 and -2 for stability.

The PRC also tells us the range of stimulus frequencies that the neuron can phase-lock to. Setting 6, = f(efp) tells us that
fixed points must satisfy:

O1p = 6rp + PRC[61,] + Ts -n T = PRC[6,] =nT-Ts

Therefore, the difference in period between the neuron and the stimulus must be within the PRC's delay range for fixed
pointsto exist.
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The ghost of an attractor
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A stimulus frequency at the edge of a neuron's locking range [Izhikevich0Q7].

As the stimulus frequency approaches the edge of the neuron's locking range, a bifurcation occurs: The stable and unstable

points annihilate each other and disappear. However, a ghost attractor remains that traps tragjectories and keeps them near
the synchronized state for long periods of time.
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Two coupled neurons
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N, advances N;'s spike by PRC(6,); N; advances N,'s spike by PRC(¢p).

Two neurons, N; and Ny, with different intrinsic periods, T, and T, are coupled together. As pictured above, Ny's spike
arrives at N; when the N;'s phase is 6,, whereas N;'s spike arrives at N, when N,'s phaseis ¢,. Thus, we have:

T1 -PRC[61] = 6n + ¢n
T, -PRC[¢n] = én + 6ns1

Subtracting the first equation from the second gives:
T2 - Ty + PRC[6n] - PRC[¢n] = 6,1 - 61

At afixed point 6,1 = 6, = 6, Which requires:
T, - Ty +PRC[6f,] - PRC[41,] =0

We can eliminate ¢, by observing that ¢, + 65, = T, where T is the period the network converges to:
PRC[6fp] -PRC[T-61p] = T1 - T,
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It's the odd part that matters
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Odd part of Quadratic Neuron's PRCs for excitation and inhibition (A = £0.1, 0.2, 0.3, 0.4).
We can dliminate T from our previous result by definining the PRC as a periodic function (i.e., PRC(6 + T) = PRC(9)):
PRC[61p] - PRC[-61p] =T1 - T,

The LHS is 0 if the PRC is even (i.e., PRC(6) = PRC(-6)) and is twice the PRC if it isodd (i.e., PRC(6) = —PRC(-#6)). If
the PRC is neither even nor odd, we can write it as the sum of an odd and an even function (this is true for any function),
and drop the even part:

2 Odd [PRC[61,]] = T1 - T, where odd[f [x]1] = (f [x] -f [-x]) /2

This equation is identical to that for the single neuron: The odd part of the PRC plays the same role for coupled neurons as
the PRC itself plays for asingle neuron.

The stability condition is aso the same: The neuron's synchronize if

d
-2< " Odd [PRC[e5,]] <0

fp
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Neurons with Class | and Il excitability
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A Class | neuron's PRC is mostly positive (left); a Class Il neuron's is not (right). The membrane-voltage (blue) and the K-
activation variable's PRC (dashed) are also shown [IzhikevichQ7].

Whereas Class | excitability arises from a saddle-node bifurcation, Class |l excitability arises from a Hopf bifurcation—a
small oscillation appears, grows as the input increases, and leads to spiking. Such neurons are also called resonators, as
opposed to integrators (Class ).
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Next week: Synchrony

e
< 150F
5
o 7957
Q O e e NN m. m
L A A A A R A
R ANE S S AR S N AT A G
T S TS A
H: T A o A O VI
o (7 O VI I (O VI I
SR A S S A
E L& i ] £ i r i ’ r i
3100 bbbk b bbbkl
= AL N O N B SO S O
Aow R R R R R A&
o S CRS T (R

0 100 200 0 100
Time(ms) Rate(Hz)

Interneurons synchronize in gamma band.

Going beyond two neurons, and the PRC, we analyze synchrony in a inhibitory
population using a mean firing-rate approximation.
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