	K	4	•	M	1 of 11

Positive-Feedback Neuron

A cortical fast-spiking interneuron's phase-plot, computed from its membrane voltage trace (insert) [Izhikevich07].

Has an inflection in its membrane-voltage trace

Spike frequency increases sublinearly at high rates

	н	•	•	м	2 of 11
--	---	---	---	---	---------

Membrane-voltage equation

Comparison

Matches neuron's behavior in -70 to -5mV range (rat cortex L5 pyramidal cell) [Izhikevich07].

	М	•	•	M	4 of 11
--	---	---	---	---	---------

Fixed points: Rest and threshold

Two equilibria (left), corresponding to rest and threshold (right); r is set to zero.

We solve the membrane-equation for the derivative. It is proportional to the net current (Input + Na - Leak):

 $\frac{d\mathbf{x}}{d\mathbf{t}} = \mathbf{r} + \frac{1}{3} \mathbf{x}^3 - \mathbf{x} \text{ where } \tau_m \equiv \mathbf{1} \quad (\text{time is in units of } \tau_m)$

Plotting the derivative versus x for r = 0 reveals two fixed points:

Rest: A stable point at x = 0 — x moves toward 0 ($\dot{x} > 0$ when x < 0 and $\dot{x} < 0$ when x > 0).

Threshold: An unstable point at $x = \sqrt{3} - x$ moves away from $\sqrt{3}$ ($\dot{x} < 0$ when $x < \sqrt{3}$ and $\dot{x} > 0$ when $x > \sqrt{3}$).

That is, if you initialize x above $\sqrt{3}$ (i.e., peg $V_{\rm m}$ above $\sqrt{3}$ $V_{\rm th}$ and release it), the neuron will spike.

м	4	•	M	5 of 11

Adding input brings fixed points together

The equilibria move together (left); rest rises and threshold drops (right).

Increasing *r* shifts the phase-plot up, moving the equilibria closer. That is, the neuron rests at a higher voltage and has a lower threshold — the value above which *x* must be initialized to get a spike is now less than $\sqrt{3}$.

	м	•	•	M	6 of 11
--	---	---	---	---	---------

Saddle-node bifurcation

The two equilibria coalesce into a saddle point (left); x increases below it and increases above it (right).

Eventually, the fixed points meet at x = 1. They coalesce into a *saddle point*—a fixed-point that is neither stable nor unstable — x may move toward it or away from it, depending on whether x is above or below ($\dot{x} > 0$ when x < 1 and $\dot{x} > 0$ when x > 1). Thus, when x is reset to 0, it approaches 1, and sits there (similar to rest). However, with a little nudge (from noise), it takes off, producing a full-blown spike (similar to threshold). Thus, the current level at which the saddle point appears is the minimum input required for spiking.

A **bifurcation** is said to occur when the number (or nature) of fixed points changes. This particular type—where a stable and unstable point coalesce—is called a *saddle-node bifurcation*. When it occurs, the neuron goes from resting queiscently to spiking rhythmically.

	н	•	•	M	7 of 11
--	---	---	---	---	---------

Determining the minimum input

How far up must the phase-plot move for the minimum to touch the x-axis?

For the system $\dot{x} = f(x, r)$, the input r_{th} at which the bifurcation occurs and the membrane voltage x_{th} at which the saddlepoint appears must satisfy:

 $f[x_{th}, r_{th}] = 0$ and $f'[x_{th}, r_{th}] = 0$

First find where f'(x, r), f's derivative with respect to x, is 0:

$$\frac{d}{dx}\left(r+\frac{1}{3}x^3-x\right)=0 \implies x^2-1=0 \implies x_{th}=\pm 1$$

Then find the value of *r* that makes $f(x_{\text{th}}, r)$ equal to 0:

$$\mathbf{r} + \frac{1}{3} - 1 = 0 \implies \mathbf{r}_{th} = \frac{2}{3}$$

$$\mathbf{R} \qquad \mathbf{R} \qquad \mathbf{$$

Model membrane-voltage traces

\sim		1.1		• •			
5	conor	w/lth	Incroseina	inniit	current_onco	minimi im ic	AAAAAAAA
0	SUULIEL	VVILII	Increasing	IIIDUL		111111111111111111	exceeded.
_							

14	• •	M	9 of 11
----	-----	---	---------

Spike frequency

2/3-power law (red) holds above five times the minimum input (r = 2/3).

The period *T* is obtained as:

$$\int_0^T d\mathbf{t} = \int_0^\infty \frac{d\mathbf{x}}{\dot{\mathbf{x}}} = \tau_m \int_0^\infty \frac{1}{\mathbf{r} - \mathbf{x} + \mathbf{x}^3 / 3} d\mathbf{x}$$
$$\approx \tau_m \int_0^\infty \frac{1}{\mathbf{r} + \mathbf{x}^3 / 3} d\mathbf{x} \text{ when } \mathbf{r} \gg 1$$
$$\approx \frac{2\pi}{3^{7/6}} \frac{\tau_m}{\mathbf{r}^{2/3}}$$

This result produced the red fit.

	м	•	•	M	10 of 11
--	---	---	---	---	----------

Lab Set-up

In this lab, you will use the slow synapse to drive the positive-feedback neuron.

	K	•	•	M	11 of 11
--	---	---	---	---	----------

Next lecture: Adaptive neuron

Frequency adaptation (rat cortex L5 pyramidal cell) due to M-current.

Requires an outward current that is proportional to spike frequency