

Positive-Feedback Neuron

A cortical fast-spiking interneuron's phase-plot, computed from its membrane voltage trace (insert) [Izhikevich07].

Has an inflection in its membrane-voltage trace

Spike frequency increases sublinearly at high rates

Membrane-voltage equation

The inward currents $(I_{in}$ plus I_{Na}) equal the outward currents $(I_{ik}$ plus I_C). **Cm dV^m** $\frac{1}{\text{dt}}$ **+** g_{1k} **V**_m = I_{1n} + I_{Na} where I_{Na} = **1 3 Vm Vth 2 glk V^m Τ^m dx dt + x = r + 1 3 x**³ where $\tau_m = \frac{C_m}{C_m}$ **glk** $\mathbf{x} = \frac{\mathbf{V_m}}{m}$ **Vth** $\mathbf{r} = \frac{\mathbf{I}_{in}}{e}$ **glk Vth** ^Ç ^Å ¡ 3 of 11

Comparison

Matches neuron's behavior in -70 to -5mV range (rat cortex L5 pyramidal cell) [Izhikevich07].

Fixed points: Rest and threshold

Two equilibria (left), corresponding to rest and threshold (right); *r* is set to zero.

We solve the membrane-equation for the derivative. It is proportional to the net current (Input + $Na - Leak$):

$$
\frac{dx}{dt} = r + \frac{1}{3}x^3 - x
$$
 where $\tau_m \equiv 1$ (time is in units of τ_m)

Plotting the derivative versus x for $r = 0$ reveals two fixed points:

Rest: A stable point at $x = 0 - x$ moves toward 0 ($\dot{x} > 0$ when $x < 0$ and $\dot{x} < 0$ when $x > 0$). ׇ֦֦ׅ֘֡֡֡ :

Threshold: An unstable point at $x = \sqrt{3} - x$ moves away from $\sqrt{3}$ ($\dot{x} < 0$ when $x < \sqrt{3}$ and $\dot{x} > 0$ when $x > \sqrt{3}$). ׇ֦ׅ֘֡֡֡֡֡ $\ddot{}$

That is, if you initialize *x* above $\sqrt{3}$ (i.e., peg V_m above $\sqrt{3}$ V_{th} and release it), the neuron will spike.

Adding input brings fixed points together

The equilibria move together (left); rest rises and threshold drops (right).

Increasing *r* shifts the phase-plot up, moving the equilibria closer. That is, the neuron rests at a higher voltage and has a lower threshold — the value above which *x* must be initialized to get a spike is now less than $\sqrt{3}$.

Saddle-node bifurcation

The two equilibria coalesce into a saddle point (left); x increases below it and increases above it (right).

Eventually, the fixed points meet at $x = 1$. They coalesce into a *saddle point*—a fixed-point that is neither stable nor unstable — *x* may move toward it or away from it, depending on whether *x* is above or below $(x > 0$ when $x < 1$ and $\dot{x} > 0$ when : $x > 1$). Thus, when *x* is reset to 0, it approaches 1, and sits there (similar to rest). However, with a little nudge (from noise), it takes off, producing a full-blown spike (similar to threshold). Thus, the current level at which the saddle point appears is the minimum input required for spiking.

A **bifurcation** is said to occur when the number (or nature) of fixed points changes. This particular type—where a stable and unstable point coalesce—is called a *saddle-node bifurcation*. When it occurs, the neuron goes from resting queiscently to spiking rhythmically.

Determining the minimum input

How far up must the phase-plot move for the minimum to touch the x-axis?

For the system $\dot{x} = f(x, r)$, the input r_{th} at which the bifurcation occurs and the membrane voltage x_{th} at which the saddle-: point appears must satisfy:

f $[\mathbf{x}_{\text{th}}, \mathbf{r}_{\text{th}}] = 0$ **and f** $[\mathbf{x}_{\text{th}}, \mathbf{r}_{\text{th}}] = 0$

First find where $f'(x, r)$, f' s derivative with respect to x , is 0:

$$
\frac{d}{dx}\left(r+\frac{1}{3}x^3-x\right)=0 \implies x^2-1=0 \implies x_{\text{th}} = \pm 1
$$

Then find the value of *r* that makes $f(x_{\text{th}}, r)$ equal to 0:

r + 1 3 - 1 = 0 rth = 2 3 ^Ç ^Å ¡ 8 of 11

Model membrane-voltage traces

Spike frequency

2/3-power law (red) holds above five times the minimum input ($r = 2/3$).

The period T is obtained as:

$$
\int_0^T dt = \int_0^\infty \frac{dx}{x} = \tau_m \int_0^\infty \frac{1}{r - x + x^3 / 3} dx
$$

$$
\approx \tau_m \int_0^\infty \frac{1}{r + x^3 / 3} dx \text{ when } r \gg 1
$$

$$
\approx \frac{2 \pi}{3^{7/6}} \frac{\tau_m}{r^{2/3}}
$$

This result produced the red fit.

Lab Set-up

In this lab, you will use the slow synapse to drive the positive-feedback neuron.

Next lecture: Adaptive neuron

Frequency adaptation (rat cortex L5 pyramidal cell) due to M-current.

Requires an outward current that is proportional to spike frequency