
Relating coupling strength (K ) to the PRC
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The Kuramoto model's sinusoidal phase-coupling corresponds to a PRC that is a flipped sinusoid. To obtain 
the Kuramoto model's coupling strength, K, we must multiply the PRC's maximum advance/delay, DTmax, by 
the network's total spike rate.

Consider only the jth oscillator's effect on the ith oscillator:
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If the ith  oscillator's phase is Q when the jth  oscillator's phase is 0 — which, by definition, is when it spikes — then we have
Θi = Q + Θ j, or  Θ j - Θi = -Q. This assumes that the phase-difference remains constant throughout that cycle. In which case, the

total change in the ith oscillator's phase over the complete cycle — which, by definition, is the PRC — will be: 
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where the PRC is in seconds while the phase is in radians, thus the 2 Π �T  conversion factor. Hence, the Kuramoto model's "PRC"
is a flipped sinusoid. 

The PRC's maximum delay/advance, DTmax, is related to the coupling strength, K, by

2 Π
DTmax

T
= T

K

N
� K = N

2 Π

T

DTmax

T

In the presence of inhibition (g), the epression we obtained for DTmax in Lab 4 (Phase Response) can be rewritten as:
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And the expression we gave for the neuron's spike rate in Lab 2 (A Spiking Neuron) can be rewritten as:
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Hence we can express DTmax as:
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Substituting this expression into our expression for K above yields:
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Hence, we must multiply inhibition's synaptic strength HAI µ DG) by the square-root of the average firing rate — and the number
of active neurons (N) — to convert it into the Kuramoto model's coupling strength (K).
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