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Attention

Red traces

Top-down attention: Information in working memory selectively enhances neural representations of sensory stimuli
[Desimone01].

Top-down

— Goal-directed

— Relevant stimuli
Bottom-up

— Stimulus-driven

— Salient stimuli
Neuronal signatures

— Enhanced sensitivity

— Enhanced selectivity
Network signatures

— Enhanced gamma rhythyms

— Enhanced spike synchrony
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Macaque brain

Visual areas in the macaque brain.

T 30f10

©1988-2008Wolfram Research, Inc. All rights reserved.



Printed from the Mathematica Help Browser

Visual Cortex (V4): Spatial attention
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Recordings from a V4 cell showing enhanced responses in the attended mode (black) relative to the unattended mode
(gray). Spike rates are affected multiplicatively [Maunsell1999].
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Visual Cortex (MT): Feature attention
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Attention to the neuron's preferred direction of motion increased the neuron's response, but attention to the null direction of
motion decreased its response. Thus, attention to a particular direction of motion does not increase responses across all

neurons. Rather, it has a push- pulleffect that increases responses only for neurons that prefer motion close to the attended
direction [Treue06].
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Visual cortex (V4): Gamma increases
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Simultaneously recorded spikes and local field potential (LFP) with attention directed inside (red) or outside (blue) the cell's
receptive field. The LFPs' spike-triggered averages (STA) and the STAS' power spectra were computed
[Sejnowski01,Steinmetz00].

R 60f 10

Somatosensory cortex (Sll): Synchrony increases

Red traces Blue traces
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Spike trains recorded from a pair of neurons (red and green) in secondary somatosensory cortex with (a) and without (b)
attention. Synchronous spikes (within 2.4ms) are indicated (blue) and quantified in the cross-correlation histogram above,
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with (red) and without (blue) attention (excess over Poisson) [Sejnowski01,Steinmetz00].
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Cholinergic modulation
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Acetylcholine enhances the effect of attention (green — black vs red - blue) in V1; bars of various lengths were presented
[Thiele08]. It may act by enhancing both excitatory and inhibitiory synaptic transmission, as has been shown in vitro.
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Controlling synchrony

(# | Inhibitory Interneuron Synchronys
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When inhibition's strength (AG) surpasses a critical level, synchrony appears (left, demo; right, Gnax, Gmin, @and (G) over a

cycle versus AG). Rate-based models predict that synchrony appears when the loop-gain exceeds unity (i.e., ms> 1, where
mand 1/sare the A(G) and G(A) curves' slopes, respectively. However, these models ignore heterogeneity, which makes
synchrony more difficult to achieve.
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Kuramoto model addresses heterogeneity
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Phases of coupled oscillators with weak (left) and strong (right) coupling. Color and ball-size indicate the oscillators' differ-
ent intrinsic frequences; dashed circle and marker indicate the order parameter's magnitude and phase (i.e., vector
strength).

Read tutorial: http://tutorials.silam.org/dsweb/cotutorial/index.php?s=4& p=0
Download Java applet: http://www.johnwordsworth.com/tutorial /K uramoto/media/appl et/K uramoto.jnlp

Instead of pulse-coupling, this model uses phase-coupling:

6 = wi +

ZI X

N
Dsingej-ei1, i =1...N
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Instead of vector strength, an order parameter is defined:

re'v =

ZlP

N .
Ze'ei, i =1...N
j=1
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The Kuramoto model's sinusoidal phase-coupling corresponds to a PRC that is a flipped sinusoid. To obtain the Kuramoto
model's coupling strength, K, we must multiply the PRC's maximum advance/delay, ATma, by the network's total spike rate.

Consider only the j oscillator's effect on the i oscillator:

. K
6 = ...+ —sIn[e -6] + ..
N

If the i™" oscillator's phase is ® when the j™ oscillator's phase is 0 — which, by definition, is when it spikes — then we have
6 =0+6;, or 6; —6 =—-0. This assumes that the phase-difference remains constant throughout that cycle. In which case,
the total change in the i oscillator's phase over the complete cycle — which, by definition, isthe PRC — will be:

T TK K
PRC[@] =Jei dt =J —sin[-0e]dt =-T —sin[e]
0 o N N
Hence, this model assumes the PRC is a flipped sinusoid. The PRC's maximum delay/advance, AT, is related to the
coupling strength, K, by

ATrax = TK/N
= K= NATymx / T

Hence, we must multiply the PRC's amplitude — or inhibition's synaptic strength (AG) — by the network's total firing rate
to convert it into the Kuramoto model's coupling strength (K).
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