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Rise-time(s)
Period proportional to rise-time (linear fit plus offset); purple-mean interneuron period [ArthurQ7].
Period is twice the delay, which is the sum of two terms:
Rise-time contributes half of the rise-time.

Decay-constant contributes up to a quarter of the period.
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Asynchronous state
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The two steady-state curves' intersection determines the asynchronous state.

In the fully-connected network, the neurons receives the same amount of inhibition, G, and fire at the rate A(G) = N (G, r),
where N is the number of neurons, f(G, r) is their individua firing-rate curve, and r is their common excitatory drive (no
heterogeneity).

The network activity A determines the inhibitory conductance G(A) (similar to a single adaptive neuron), which in turn
determines the network activity A(G).

In the asynchronous state, network activity remains constant, at alevel c that satisfies:
c = Nf [G[c], r]
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Delay destabilizes asynchronous state
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Changes in inhibition (g(t)) impact activity (a(t)) immediately; changes in activity impact inhibition with a delay (d).

These deviations (a(t) and g(t)) from the asynchronous-state (c and G(c)) are related by:
a[t] =-mg[t]land g[t] =sa[t -d] = a[t] = -(ms) a[t -d]
where mand s are the steady-state-curves slopesat A= c.

Thus, deviations grow if ms> 1, destabilizing the asynchronous state.
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Period and amplitude of network rhythm
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Inhibition overshoots and undershoots repeatedly.

Weassume a(t) = Agsin(2xt/T) and solvefor Agand T:

27 (t -d)

Aos.in[27Trt ] ==-(ms)AOSin[

|
]

27w (t -d)
= (ms) AOSin[—

2nd

= -

+n=0=T = 2d

and ms =1

The second condition determines Ag: the amplitude grows if ms > 1 and shrinksif ms < 1.
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Both rise-time and decay-constant contribute delay

Fast decay Slow decay
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How long does it take for half the inhibition to show up?
If the decay-constant is fast, the delay is half the rise-time (i.e., neurotransmitter pulse's width).
If the decay-constant is slow, the delay is longer, because the input is smeared out.

However, the rise-time's contribution is still tjs/2; a frequency-domain analysis shows this.
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Fast decay Slow decay

The maximum delay is a quarter-period when the rise-time is zero.

When the decay-constant is very slow, inhibition is the integral of activity:

o[ 2 a « -cos[ 2]« sin[ 28T wsia[ 2

Thus, the longest delay is a quarter of the period. Adding this to the rise-time's contributions yields:
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Doubling the delay gives the period, which fallsin the range:
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Delays due to rise-time (green), decay-constant (blue), and their sum (red)
The rise-time contributes Zn(t’% / T)—the delay normalized by the period (in radians).
The decay-constant contributes tan™!(2 7 7qecay / T)—which cannot exceed 90°.
Thereisauniquefrequency f = 1/ T that makes these two contributions sum to 180°.

Thisisthe frequency that the network synchronizes at.
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Lab 5: Set-up

@ Vrefd2a reference voltage - leave at 2.530 @ VMAGGABA (-) increases inhibitory synapse strength (inhibitory interneuron input)
@VQAPRE (-) increases LTP-side of STDP curve's height @ VQAAMPAZ (-) increases fast excitatory synapse strength pulse-width (pyramidal neuran input)
VLEAKDNMDA (+) increases slow excitatory synapse rise-time gVLEAKREFRACT (+) increases absolule refractory period
(@) VMAGK {-) increases m-type potassium channel strength VLEAKK (+) increases m-type potassium decay-constant (and strength)
@VLEAKDGAEAZ (+) increases inhibitory synapse rise-lime (extemal input) @ VRI (+) increases spread of inhibition
(€) VLEAKDGABA (+) increases inhibitory synapse rise-time (inhibitory interneuron input) VRRC (+) increases spread of fast excitalion to pyramidal neurons
(@ VLEAKSOMA (+) increases somatic leak current VLEAKPOST (+) increases LTP-side of STDP curve's decay
® VQAAMPA (-) increases fast excitatory synapse strength pulse-width (extemal input) € VMAGNMDA (-) increases slow excitatory synapse strength
8VQAPOST (-) increases LTD-side of STDP curve's height VLEAKPRE (+) increases LTD-side of STDP curve's decay
VLEAKLTP not used VRE (+) increases spread of fast excitation to inteneurons
@VMAGGABM (-) increases inhibitory synapse strength (extemal input) @ VMAGAMPARC (+) increases fast excitatory synapse strength to pyramidal neurons
SVDADNMDAZ creases slow excitatory synapse rise-time 8 VLEAKAMPA (-) increases fast excitatory synapse strength pulse-width
VANP (+) increases pyramidal neuron sodium threshold VQANMDA (+) increases slow excitatory synapse rise-time
@VLEAKLTD not used @ VMAGAMPAINT (+) increases fast excitatory synapse strength to interneurons
8VLEAKNMDA (+) increases slow excitatory synapse decay-constant (and strength) SVQADGAEA (+) increases inhibitory synapse rise-time
VG leave at 1.250 VANI (+) increases interneuren sodium threshold
@VLEAKGABA (+) increases inhibitory synapse decay-constant (and strength)
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Lab 5: Data

Tvs. T (n=29773, dy = 0.005021s)
[y =0.522v, T = 2.18:2.35V, G = OV, & = 1.75V]
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Next week: Attention
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