K	•	•	M	1 of 10

Synchrony: Delayed inhibition is key

Period proportional to rise-time (linear fit plus offset); purple-mean interneuron period [Arthur07].

Period is twice the delay, which is the sum of two terms:

Rise-time contributes half of the rise-time.

Decay-constant contributes up to a quarter of the period.

	М	•	•	M	2 of 10
--	---	---	---	---	---------

Asynchronous state

The two steady-state curves' intersection determines the asynchronous state.

In the fully-connected network, the neurons receives the same amount of inhibition, G, and fire at the rate A(G) = N f(G, r), where N is the number of neurons, f(G, r) is their individual firing-rate curve, and r is their common excitatory drive (no heterogeneity).

The network activity A determines the inhibitory conductance G(A) (similar to a single adaptive neuron), which in turn determines the network activity A(G).

In the *asynchronous state*, network activity remains constant, at a level *c* that satisfies:

Delay destabilizes asynchronous state

Changes in inhibition (g(t)) impact activity (a(t)) immediately; changes in activity impact inhibition with a delay (d).

These deviations (a(t) and g(t)) from the asynchronous-state (c and G(c)) are related by:

a[t] = -mg[t] and $g[t] = sa[t-d] \implies a[t] = -(ms)a[t-d]$

where *m* and *s* are the steady-state-curves' slopes at A = c.

Thus, deviations grow if m s > 1, destabilizing the asynchronous state.

	м	4	•	M	4 of 10
--	---	---	---	---	---------

Period and amplitude of network rhythm

Inhibition overshoots and undershoots repeatedly.

We assume $a(t) = A_0 \sin(2\pi t/T)$ and solve for A_0 and T:

$$A_0 \sin\left[\frac{2 \pi t}{T}\right] = -(m s) A_0 \sin\left[\frac{2 \pi (t-d)}{T}\right]$$
$$= (m s) A_0 \sin\left[\frac{2 \pi (t-d)}{T} + \pi\right]$$
$$\Rightarrow -\frac{2 \pi d}{T} + \pi = 0 \Rightarrow T = 2 d$$
and $m s = 1$

The second condition determines A_0 : the amplitude grows if m s > 1 and shrinks if m s < 1.

	5 of 10		M	•	•	М	
--	---------	--	---	---	---	---	--

Both rise-time and decay-constant contribute delay

How long does it take for half the inhibition to show up?

If the decay-constant is fast, the delay is half the rise-time (i.e., neurotransmitter pulse's width).

If the decay-constant is slow, the delay is longer, because the input is smeared out.

However, the rise-time's contribution is still $t_{rise}/2$; a frequency-domain analysis shows this.

	K	•	•	M	6 of 10
--	---	---	---	---	---------

Decay-constant's contribution ($t_{rise} = 0$)

The maximum delay is a quarter-period when the rise-time is zero.

When the decay-constant is very slow, inhibition is the integral of activity:

$$\int \sin\left[\frac{2\pi t}{T}\right] dt \propto -\cos\left[\frac{2\pi t}{T}\right] = \sin\left[\frac{2\pi t}{T} - \frac{\pi}{2}\right] = \sin\left[\frac{2\pi}{T} \left(t - \frac{T}{4}\right)\right]$$

Thus, the longest delay is a quarter of the period. Adding this to the rise-time's contributions yields:

$$\frac{t_{\text{rise}}}{2} < d < \frac{t_{\text{rise}}}{2} + \frac{T}{4}$$

Doubling the delay gives the period, which falls in the range:

How inhibition is delayed by T/2 (180° lag)

Delays due to rise-time (green), decay-constant (blue), and their sum (red) The rise-time contributes $2\pi \left(\frac{t_{\text{rise}}}{2}/T\right)$ —the delay normalized by the period (in radians). The decay-constant contributes $\tan^{-1}(2\pi \tau_{\text{decay}}/T)$ —which cannot exceed 90°. There is a unique frequency f = 1/T that makes these two contributions sum to 180°.

This is the frequency that the network synchronizes at.

_	М	•	•	M	8 of 10
---	---	---	---	---	---------

Lab 5: Set-up

Lab 5: Data

