

Synchrony: Delayed inhibition is key

Period proportional to rise-time (linear fit plus offset); purple-mean interneuron period [Arthur07].

Period is twice the delay, which is the sum of two terms:

Rise-time contributes half of the rise-time.

Decay-constant contributes up to a quarter of the period.

Asynchronous state

The two steady-state curves' intersection determines the asynchronous state.

In the fully-connected network, the neurons receives the same amount of inhibition, *G*, and fire at the rate $A(G) = N f(G, r)$, where *N* is the number of neurons, $f(G, r)$ is their individual firing-rate curve, and *r* is their common excitatory drive (no heterogeneity).

The network activity *A* determines the inhibitory conductance $G(A)$ (similar to a single adaptive neuron), which in turn determines the network activity $A(G)$.

In the *asynchronous state*, network activity remains constant, at a level *c* that satisfies:

Delay destabilizes asynchronous state

Changes in inhibition ($g(t)$) impact activity ($a(t)$) immediately; changes in activity impact inhibition with a delay (*d*).

These deviations $(a(t)$ and $g(t)$) from the asynchronous-state (*c* and $G(c)$) are related by:

 $a[t] = -mg[t]$ and $g[t] = sa[t-d] \Rightarrow a[t] = -(ms) a[t-d]$

where *m* and *s* are the steady-state-curves' slopes at $A = c$.

Thus, deviations grow if $m s > 1$, destabilizing the asynchronous state.

Period and amplitude of network rhythm

Inhibition overshoots and undershoots repeatedly.

We assume $a(t) = A_0 \sin(2 \pi t / T)$ and solve for A_0 and *T*:

$$
A_0 \sin\left[\frac{2\pi t}{T}\right] = -(\text{m s}) A_0 \sin\left[\frac{2\pi (t-d)}{T}\right]
$$

$$
= (\text{m s}) A_0 \sin\left[\frac{2\pi (t-d)}{T} + \pi\right]
$$

$$
\Rightarrow -\frac{2\pi d}{T} + \pi = 0 \Rightarrow T = 2d
$$
and $\text{m s} = 1$

The second condition determines A_0 : the amplitude grows if $m s > 1$ and shrinks if $m s < 1$.

Both rise-time and decay-constant contribute delay

How long does it take for half the inhibition to show up?

If the decay-constant is fast, the delay is half the rise-time (i.e., neurotransmitter pulse's width).

If the decay-constant is slow, the delay is longer, because the input is smeared out.

However, the rise-time's contribution is still $t_{\text{rise}}/2$; a frequency-domain analysis shows this.

Decay-constant's contribution ($t_{rise} = 0$ **)**

The maximum delay is a quarter-period when the rise-time is zero.

When the decay-constant is very slow, inhibition is the integral of activity:

$$
\int \sin\left[\frac{2\pi t}{T}\right] dt \propto -\cos\left[\frac{2\pi t}{T}\right] = \sin\left[\frac{2\pi t}{T} - \frac{\pi}{2}\right] = \sin\left[\frac{2\pi}{T}\left(t - \frac{T}{4}\right)\right]
$$

Thus, the longest delay is a quarter of the period. Adding this to the rise-time's contributions yields:

$$
\frac{\mathtt{t}_{\mathtt{rise}}}{2} < d < \frac{\mathtt{t}_{\mathtt{rise}}}{2} + \frac{\mathtt{T}}{4}
$$

Doubling the delay gives the period, which falls in the range:

How inhibition is delayed by $T/2$ (180° lag)

Delays due to rise-time (green), decay-constant (blue), and their sum (red) The rise-time contributes $2 \pi \left(\frac{t_{\text{rise}}}{2} \right)$ $\frac{1}{2}$ T – the delay normalized by the period (in radians). The decay-constant contributes $\tan^{-1}(2\pi\tau_{\text{decay}}/T)$ —which cannot exceed 90 °. There is a unique frequency $f = 1/T$ that makes these two contributions sum to 180°.

This is the frequency that the network synchronizes at.

Lab 5: Set-up

Lab 5: Data

Next week: Attention

