	м	4	•	H	1 of 10

Synchrony

Rhythmic firing (30-80Hz, gamma) and silence (4-8Hz, theta) in basket cell (hippocampus) [Buzsaki 95].

Rhythmic activity is common in hippocampus and neocortex

Rhythms are nested: slower ones modulate faster ones

Basket-cell network synchronizes in the gamma band

н н н 2 of 10	
---------------	--

Brain rhythms

A, Spectrum of hippocampal EEG shows peaks. B, Frequency peaks in rat cortex. [Buzsaki 04].

	н	•	•	M	3 of 10
--	---	---	---	---	---------

Basket cells (parvalbumin +ve) make connections (circles) to other basket cells locally [Buzsaki 95].

H + >	M	4 of 10
-------	---	---------

Basket cell electrophysiology

Basket cells show frequency adaptation and rebound spikes [Buzsaki 95]

For gamma synchrony, we model basket cell with positive-feedback neuron plus M-current.

It's reasonable to ignore the rebound current; it requires prolonged hyperpolarization (theta inhibition).

	к	4	•	M	5 of 10
--	---	---	---	---	---------

Synaptic physiology

Hippocampal BCs are chemically ($GABA_A$) and electrically (gap junctions) coupled [Jonas 02]

Post-synaptic currents rise fast ($\tau = 0.16$ ms) and decay rapidly ($\tau = 1.2$ to 2.5ms; slower in pyramidal cells).

Delay arises from axonal conduction (0.25m/s) and synaptic latency (0.5ms).

Nearby basket-cells are coupled by gap-junctions; coupling ratio is 0.1 (fraction of voltage).

We use rise-time as a surrogate for delay and ignore electrical coupling.

М	•	•	N	6 of 10
---	---	---	---	---------

Ivy Cells

A lvy cell (soma/dendrites in orange, axon in yellow) and the pyramidal cell (soma/dendrites in light blue, axon in white) (100um). **B** Responses of the lvy cell to injected current pulses (20mV,40ms). **C** Action potentials in the pyramidal (mauve), lvy (orange), and a bistratified cells (gray) (20mV,2ms). **D** Composite averages of excitatory postsynaptic potentials (EPSPs) elicited by pyramidal cell in lvy cell (2mV,20mV,20ms) and **E** inhibitory postsynaptic potentials (IPSPs) elicited by lvy cell in pyramidal cell (20mV,1mV,50ms). **F** Putative synaptic input from pyramidal cell to interneuron (red arrows) [Klausberger08].

	H 4	•	M	7 of 10
--	-----	---	---	---------

Interneuron network model: Mutual Inhibition

Interneurons synchronize in gamma band.

About half of the neurons are silenced; these are the least excitable neurons.

The rest fire once per cycle, except for a few that skip cycles or fire twice per cycle.

Spike-rates have a CV (standard-deviation/mean) of 0.24 when the neurons are unconnected.

This variability is introduced by fabrication process.

	K	•	•	M	8 of 10
--	---	---	---	---	---------

Each spike is assigned a vector by mapping the period onto a circle

Each spike is represented by a unit-length vector:

$$\vec{U}_{i} = (Cos[\theta_{i}], Sin[\theta_{i}]) \text{ where } \theta_{i} = 2\pi \left(\frac{t_{i} \mod T}{T}\right)$$

 t_i is the spike-time; T is the rhythms period. The normalized vector sum

$$\vec{\mathbf{v}} = \frac{1}{N} \sum_{i=1}^{N} \vec{\mathbf{U}}_{i}$$

is computed: Its magnitude ranges from 0 (independent spiking) to 1 (coincident spiking).

	М	•	•	M	9 of 10
--	---	---	---	---	---------

Synaptic rise-time determines rhythms period

Period is proportional to rise-time (linear fit includes offset); purple-mean interneuron period

K	•	•	н	10 of 10

Strength, decay-constant and excitation modulate period

The other parameters hardly change the period