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Why build large-scale 
spiking neural models?

Qualitatively different behaviors emerge, 
simply scaling a neural network’s size. 
A bee’s million-neuron brian can’t do what a 
human’s hundred-billion neuron brain can.  
Down-scaling exaggerates the influence of 
single neurons, introducing spurious 
correlations and requiring external “noise”.  
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Why build large-scale 
spiking neural models?

Although most past models ignore spike-timing, 
evidence is accumulating that the brain exploits 
spike-timing (e.g., STDP). 
Neuroscientists are recording spikes from 
hundreds of neurons simultaneously, revealing 
spike-timing correlations and synchrony.     
Only spiking models can account for the brain’s 
noisy and stochastic behavior, which set the 
ultimate limits on performance. 
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SPAUN: The state-of-the-art

2.5M-neuron functioning whole brain model
Performs 8 different task autonomously

(information encoding), (ii) extract relations between
input elements (transformation calculation), (iii)
evaluate the reward associated with the input (re-
ward evaluation), (iv) decompress firing patterns
frommemory to conceptual firing pattern (informa-
tion decoding), and (v) map conceptual firing pat-
terns to motor firing patterns and control motor
timing (motor processing). Supplementarymaterials
section S1.3 includes a more detailed description
of each element. It is critical to note that the ele-
ments of Spaun are not task-specific. That is, they
are used in a variety of combinations to perform the
chosen tasks, resulting in the same circuitry being
used across tasks. This makes it straightforward
to extend the model to some new tasks (supple-
mentary section S2.4).

The neural connection weights of these sub-
systems can be learned with a biologically plau-
sible spike-based rule (15), although we use more
efficient optimization methods to determine the
synaptic weights (supplementary section S1.2).

To help explain the functioning of the model,
we consider the serialWM task. Figure 2A shows
the information flow through the model for this
task. The storage and recall states of the network
are common to many tasks. For the WM task,
these states occur immediately one after the other,
although the delay is task-dependent. Initially, see-
ing the task identifier (A3) switches Spaun into the
storage state. In the storage state, the network com-
presses the incoming image into a visually based
firing pattern (FP in the figure) that encodes vi-

sual features, maps that firing pattern to another
firing pattern that represents the related concept
(e.g., “TWO”; see supplementary section S1.3), and
then compresses that firing pattern into a memory
trace that is stored in WM. The compression op-
erator (i.e., “⊗”) binds the concept firing pattern
(e.g., TWO) to a position representation (e.g., P3)
and adds the result (i.e., TWO ⊗ P3, as in Fig.
2C) to WM. As shown in Fig. 2C, this process is
repeated as long as items are shown to the model.

Figure 2B shows a screen capture from a
movie of the WM simulation. When the mod-
el sees the “?” input (as in Fig. 2B), the basal
ganglia reroute cortical connectivity to allow
Spaun to recall the input stored in the dorsolateral
prefrontal cortex (DLPFC). Recall consists of de-
compressing an item from the stored representation
of the full list, mapping the resulting concept
vector to a known high-level motor command,
and then decompressing that motor command
to specific joint torques to move the arm. This
process is repeated for each position in the WM,
to generate Spaun’s full written response. Figure
2C shows the entire process unfolding over time,
including spike rasters, conceptual decodings of
the contents of DLPFC, and the input and output.

Critically, no single task captures the distinct
features of this model. To highlight the diver-
sity of tasks the model is able to perform, Fig. 3
shows the results of the model performing a low-
level perceptual-motor task (the copy-drawing
task), as well as a challenging pattern-induction
task only performed by humans (the RPM task).

Specifically, Fig. 3A demonstrates that the low-
level perceptual features in the input are available
to Spaun to drive its motor behavior. Figure 3B
demonstrates the RPM task for one sample pattern
(see fig. S6 for an additional example). In this
task, Spaun is presented with two groups of three
related items and must learn the relation between
items in the groups. Spaun then uses its inferred
relation to complete the pattern of a third set of
items. Similarity plots for the DLPFC show con-
ceptual decodings of neural activities. The model
learns the relation between subsequent strings of
numbers by comparing patterns in DLPFC1 and
DLPFC2 (see supplementary section S1.3). Hu-
man participants average 89% correct (chance is
13%) on the matrices that include only an induc-
tion rule (5 of 36 matrices) (16). Spaun performs
similarly, achieving a match-adjusted success rate
of 88% (see supplementary section S2.3).

To demonstrate that Spaun captures general
psychological features of behavior, it is critical to be
able to simulate populations of participants. Every
time a specific instance of Spaun is generated, the
parameters of the neurons are picked from random
distributions (supplementary section S1.4). Conse-
quently, generating many instances allows for compar-
isonwith population-wide behavioral data. Figure 4
compares the recall accuracy of the model as a func-
tion of list length and position in a serial recall task
to human population data. Aswith human data (17),
Spaun produces distinct recency (items at the end
are recalled with greater accuracy) and primacy

Fig. 1. Anatomical and functional architecture of Spaun. (A) The anatomical architecture of Spaun shows the
major brain structures included in the model and their connectivity. Lines terminating in circles indicate
GABAergic connections. Lines terminating in open squares indicatemodulatory dopaminergic connections. Box
styles and colors indicate the relationship with the functional architecture in (B). PPC, posterior parietal cortex;
M1, primary motor cortex; SMA, supplementary motor area; PM, premotor cortex; VLPFC, ventrolateral pre-
frontal cortex; OFC, orbitofrontal cortex; AIT, anterior inferior temporal cortex; Str, striatum; vStr, ventral
striatum; STN, subthalamic nucleus; GPe, globus pallidus externus; GPi, globus pallidus internus; SNr, sub-
stantia nigra pars reticulata; SNc, substantia nigra pars compacta; VTA, ventral tegmental area; V2, secondary
visual cortex; V4, extrastriate visual cortex. (B) The functional architecture of Spaun. Thick black lines indicate
communication between elements of the cortex; thin lines indicate communication between the action-
selection mechanism (basal ganglia) and the cortex. Boxes with rounded edges indicate that the action-
selection mechanism can use activity changes to manipulate the flow of information into a subsystem. The
open-square end of the line connecting reward evaluation and action selection denotes that this connection
modulates connection weights. See table S1 for more detailed definitions of abbreviations, a summary of the
function to anatomy mapping, and references supporting Spaun’s anatomical and functional assumptions.
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(information encoding), (ii) extract relations between
input elements (transformation calculation), (iii)
evaluate the reward associated with the input (re-
ward evaluation), (iv) decompress firing patterns
frommemory to conceptual firing pattern (informa-
tion decoding), and (v) map conceptual firing pat-
terns to motor firing patterns and control motor
timing (motor processing). Supplementarymaterials
section S1.3 includes a more detailed description
of each element. It is critical to note that the ele-
ments of Spaun are not task-specific. That is, they
are used in a variety of combinations to perform the
chosen tasks, resulting in the same circuitry being
used across tasks. This makes it straightforward
to extend the model to some new tasks (supple-
mentary section S2.4).

The neural connection weights of these sub-
systems can be learned with a biologically plau-
sible spike-based rule (15), although we use more
efficient optimization methods to determine the
synaptic weights (supplementary section S1.2).

To help explain the functioning of the model,
we consider the serialWM task. Figure 2A shows
the information flow through the model for this
task. The storage and recall states of the network
are common to many tasks. For the WM task,
these states occur immediately one after the other,
although the delay is task-dependent. Initially, see-
ing the task identifier (A3) switches Spaun into the
storage state. In the storage state, the network com-
presses the incoming image into a visually based
firing pattern (FP in the figure) that encodes vi-

sual features, maps that firing pattern to another
firing pattern that represents the related concept
(e.g., “TWO”; see supplementary section S1.3), and
then compresses that firing pattern into a memory
trace that is stored in WM. The compression op-
erator (i.e., “⊗”) binds the concept firing pattern
(e.g., TWO) to a position representation (e.g., P3)
and adds the result (i.e., TWO ⊗ P3, as in Fig.
2C) to WM. As shown in Fig. 2C, this process is
repeated as long as items are shown to the model.

Figure 2B shows a screen capture from a
movie of the WM simulation. When the mod-
el sees the “?” input (as in Fig. 2B), the basal
ganglia reroute cortical connectivity to allow
Spaun to recall the input stored in the dorsolateral
prefrontal cortex (DLPFC). Recall consists of de-
compressing an item from the stored representation
of the full list, mapping the resulting concept
vector to a known high-level motor command,
and then decompressing that motor command
to specific joint torques to move the arm. This
process is repeated for each position in the WM,
to generate Spaun’s full written response. Figure
2C shows the entire process unfolding over time,
including spike rasters, conceptual decodings of
the contents of DLPFC, and the input and output.

Critically, no single task captures the distinct
features of this model. To highlight the diver-
sity of tasks the model is able to perform, Fig. 3
shows the results of the model performing a low-
level perceptual-motor task (the copy-drawing
task), as well as a challenging pattern-induction
task only performed by humans (the RPM task).

Specifically, Fig. 3A demonstrates that the low-
level perceptual features in the input are available
to Spaun to drive its motor behavior. Figure 3B
demonstrates the RPM task for one sample pattern
(see fig. S6 for an additional example). In this
task, Spaun is presented with two groups of three
related items and must learn the relation between
items in the groups. Spaun then uses its inferred
relation to complete the pattern of a third set of
items. Similarity plots for the DLPFC show con-
ceptual decodings of neural activities. The model
learns the relation between subsequent strings of
numbers by comparing patterns in DLPFC1 and
DLPFC2 (see supplementary section S1.3). Hu-
man participants average 89% correct (chance is
13%) on the matrices that include only an induc-
tion rule (5 of 36 matrices) (16). Spaun performs
similarly, achieving a match-adjusted success rate
of 88% (see supplementary section S2.3).

To demonstrate that Spaun captures general
psychological features of behavior, it is critical to be
able to simulate populations of participants. Every
time a specific instance of Spaun is generated, the
parameters of the neurons are picked from random
distributions (supplementary section S1.4). Conse-
quently, generating many instances allows for compar-
isonwith population-wide behavioral data. Figure 4
compares the recall accuracy of the model as a func-
tion of list length and position in a serial recall task
to human population data. Aswith human data (17),
Spaun produces distinct recency (items at the end
are recalled with greater accuracy) and primacy

Fig. 1. Anatomical and functional architecture of Spaun. (A) The anatomical architecture of Spaun shows the
major brain structures included in the model and their connectivity. Lines terminating in circles indicate
GABAergic connections. Lines terminating in open squares indicatemodulatory dopaminergic connections. Box
styles and colors indicate the relationship with the functional architecture in (B). PPC, posterior parietal cortex;
M1, primary motor cortex; SMA, supplementary motor area; PM, premotor cortex; VLPFC, ventrolateral pre-
frontal cortex; OFC, orbitofrontal cortex; AIT, anterior inferior temporal cortex; Str, striatum; vStr, ventral
striatum; STN, subthalamic nucleus; GPe, globus pallidus externus; GPi, globus pallidus internus; SNr, sub-
stantia nigra pars reticulata; SNc, substantia nigra pars compacta; VTA, ventral tegmental area; V2, secondary
visual cortex; V4, extrastriate visual cortex. (B) The functional architecture of Spaun. Thick black lines indicate
communication between elements of the cortex; thin lines indicate communication between the action-
selection mechanism (basal ganglia) and the cortex. Boxes with rounded edges indicate that the action-
selection mechanism can use activity changes to manipulate the flow of information into a subsystem. The
open-square end of the line connecting reward evaluation and action selection denotes that this connection
modulates connection weights. See table S1 for more detailed definitions of abbreviations, a summary of the
function to anatomy mapping, and references supporting Spaun’s anatomical and functional assumptions.
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Brian Simulator

Easy to use: Python-based simulation environment
Flexible: Interprets mathematical descriptions

from brian import *
eqs = '''
dv/dt = (ge+gi-(v+49*mV))/(20*ms) : volt
dge/dt = -ge/(5*ms) : volt
dgi/dt = -gi/(10*ms) : volt
'''
P = NeuronGroup(4000, eqs, threshold=-50*mV, reset=-60*mV)
P.v = -60*mV+10*mV*rand(len(P))
Pe = P.subgroup(3200)
Pi = P.subgroup(800)
Ce = Connection(Pe, P, 'ge', weight=1.62*mV, sparseness=0.02)
Ci = Connection(Pi, P, 'gi', weight=-9*mV, sparseness=0.02)
M = SpikeMonitor(P)
run(1*second)
raster_plot(M)
show()

Random network

Friday, April 5, 13



64K neurons & 70M synapses

Neurogrid Simulator
Spatial Attention Model

Powerful: Simulates up to a million neurons 
connected by billions of synapses in real-time
Also Python-based—but still buggy!
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Oculomotor delayed-
response task

Introduced in first physiological 
demonstration of working memory 
(Funahashi, Bruce & Goldman-Rakic 1989).
The monkey couldn’t move its eyes during the 
delay period, so it had to remember the cue’s 
location. 

small, and that delay-period activity representing motor in-
formation tended to show gradually increasing activation
toward the motor performance. These observations suggest
that the DLPFC receives information regarding forthcoming
saccade performance from other structures. The MD is one of
the possible structures that provide information regarding
forthcoming saccade information to the DLPFC because the
MD, especially the intermediate portion of the MD, has strong
reciprocal connections with the DLPFC and because many MD
neurons exhibited delay-period activity representing forthcom-
ing saccade information. If the MD is the source structure that
provides information regarding forthcoming saccade informa-
tion to the DLPFC, the information regarding the saccade
direction would develop earlier during the delay period in the
MD than the DLPFC. To test this hypothesis, we constructed
population vectors using a population of MD activities and
compared the present findings with those observed in DLPFC
neurons reported by Takeda and Funahashi (2004). Preliminary
results have been published in abstract form (Watanabe and
Funahashi 2006).

Materials and Methods

Subjects and Apparatus
The 2 rhesus monkeys (monkey P, 4.0 kg; monkey Q, 3.5kg) used in this
study were the same as those used in our previous study (Watanabe and
Funahashi 2004a, 2004b). The experimental apparatus, surgical
procedures, and histological examinations have been described in
detail previously (Watanabe and Funahashi 2004a). In brief, during
training and recording sessions, the monkey sat quietly in a primate
chair in a dark sound-attenuated room, and its head movement was
restricted painlessly by a stainless steel rod which was fixed to the skull.
The monkey faced a 21-inch color TV monitor (PC-TV471; NEC, Tokyo
Japan), on which a fixation point (FP) and visual cues were presented.
The TV monitor was placed 30 cm from the monkey’s face. The
monkey’s eye positions were monitored by the magnetic search coil
technique (Robinson 1963). Two laboratory computers (PC-486HX;
Epson, Suwa, Nagano, Japan) controlled the monkey’s behavior,
presented visual stimuli on the monitor, recorded neural activity, and
monitored eye movements. All experiments were conducted in
accordance with the Guide for the Care and Use of Laboratory Animals
of the National Institutes of Health. This experiment was approved by
the Animal Research Committee at the Graduate School of Human and
Environmental Studies, Kyoto University.

Behavioral Tasks
In the present experiment, we sought to compare the results obtained
from MD neurons with the results in the DLPFC reported by Takeda
and Funahashi (2004). Therefore, we used the same ODR tasks (ODR
and R-ODR tasks) under the same behavioral conditions as were used
by Takeda and Funahashi (2004) in the DLPFC.

In the ODR task, the monkey was required to make a memory-guided
saccade to the location where a visual cue had been presented. The
temporal sequence of this task is illustrated in Figure 1A (top). After
a 5-s intertrial interval, an FP (a white circle, 0.5! in diameter in visual
angle) was presented at the center of the TV monitor. If the monkey
looked at the FP for 1 s (fixation period), a visual cue (a white circle, 1!
in diameter in visual angle) was presented for 0.5 s (cue period)
randomly at 1 of 8 predetermined locations around the FP (eccentricity
was 17!) (Fig. 1B). The monkey was required to maintain fixation on
the FP throughout the 0.5-s cue period and the subsequent 3-s delay
period. At the end of the delay period, the FP was extinguished. This
was the GO signal for the monkey to make a saccade within 0.4 s
(response period) to the location where the visual cue had been
presented. If the monkey made a correct saccade, a drop (0.2 ml) of
water was given as a reward. To determine whether or not the monkey
made a correct saccade, we set a square window (4--7! in visual angle)
around the target location and judged that the monkey performed
a correct saccade if its eye position fell within this window. If the
monkey broke fixation during the cue period or the delay period, or
failed to perform a saccade within the 0.4-s response period, or if the
saccade did not fall within the correct window, the trial was aborted
immediately without a reward and the next trial began.

In the R-ODR task, the monkey was required to make a saccade 90!
clockwise from the location where the visual cue had been presented.
Figure 1A (bottom) shows the temporal sequence of this task. After a 5-
s intertrial interval, the FP (a white plus [+] sign, 0.5! in visual angle) was
presented at the center of the TV monitor. If the monkey looked at the
FP for 1 s (fixation period), a visual cue (a white circle, 1! in diameter in
visual angle) was presented for 0.5 s (cue period) randomly at 1 of 4
predetermined locations around the FP (eccentricity was 17!). The
monkey was required to maintain fixation on the FP throughout the 0.5-
s cue period and subsequent 3-s delay period. At the end of the delay
period, the FP was extinguished. This was the GO signal for the monkey
to make a saccade within 0.4 s (response period) to the direction 90!
clockwise from the direction where the visual cue had been presented.
If the monkey made a correct saccade, a drop (0.2 ml) of water was
given as a reward. We used a square window of the same size around
the target location and the same criterion to determine whether or not
the monkey made a correct saccade as were used in the ODR task.

Analysis of Single-Neuron Activity
In the present experiment, we recorded the activities of single neurons
in the MD. We used an epoxy-coated tungsten microelectrode
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Figure 1. Diagrams of 2 types of ODR tasks. (A) Temporal sequences of task events. Top: A standard ODR task. The monkey was required to make a saccade to the location
where the visual cue had been presented. Bottom: An R-ODR task. The monkey was required to make a saccade 90! clockwise from the location where the visual cue had been
presented. (B) Locations of the visual cues for each task. The eccentricity of cue locations was 17!.
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during the delay period was calculated for each trial, and then 
overall mean discharge rates and standard deviations for each cue 
location were computed. We tested for significant delay period 
activity by comparing the mean discharge rate during the delay 
period for all trials having a given cue direction versus the mean 
discharge rate during the intertrial interval over all trials, using a 
two-tailed unpaired Student’s t statistic and an alpha level of 0.05. 
Differences in delay period activity across different cue locations 
were evaluated using an analysis of variance (ANOVA). 
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Histological analysis 

After 2-8 mo of nearly daily recording sessions the monkeys 
were killed with an overdose of pentobarbital sodium and per- 
fused with saline followed by buffered Formalin. The brains were 
photographed. Frozen coronal sections were taken and stained 
with thionin. 

Individual recording sites that had been marked with electro- 
lytic lesions (20 PA, lo- 15 s, tip negative) were identified. How- 
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FIG. 3. Directional delay period activity of a principal sulcus neuron during the oculomotor delayed-response task. This 
neuron (52 1 1, left hemisphere) had strongly directional delay period activity (fi’ = 48.35; df = 7, 68; P < 0.00 l), responding 
only when the cue had been presented at the bottom (270”) location. It was suppressed during the delay when the cue was 
presented in the upper visual field, and in all 3 cases delay period activity was significantly below the IT1 rate (45”, l = 2.350, 
df = 84, P < 0.025; 90”, t = 3.45 1, df = 85, P < 0.001; 135”, t = 2.607, df = 84, I-’ < 0.025). Visual cues were randomly 
presented at 1 of the 8 locations indicated in the center diagram. All cue eccentricities were 13” and all delay periods were 3 s. 

Goldman-Rakic ’89

nature neuroscience  •  volume 2  no 2  •  february 1999 177

neuron began to reveal the monkey’s decision as early as 200–300 ms
after the onset of random dot motion and remained informative
until the saccade. Moreover, the response was modulated more
strongly when the task was easier: the neuron discharged more
intensely when the monkey viewed coherent motion toward the RF
(up-right) and attenuated more profoundly to coherent motion
away from the RF. Thus, the response reflected not only the mon-
key’s impending eye movement, but also the sensory input that
determined it. This mixture of visual-sensory and visuomotor
response properties is thought to occur at the nexus of sensory-to-
motor conversion12–14 where the decision is computed.

Although this pattern of response was common in the FEF
and PS region, we also encountered many neurons that modu-
lated their activity only during the delay after the random dot
motion was turned off, presumably after the monkey had reached
its decision. This activity (Fig. 3a) clearly predicted the monkey’s
plan to look to the target in the RF on the memory-saccade task.
However, during the motion-discrimination task, the response
did not reveal the monkey’s decision until the delay (Fig. 3c
and d). During motion viewing, this neuron failed to signal the
direction of the next eye movement. Such responses may reflect
motor preparation, but they provide little insight into the deci-

articles

Fig. 1. Behavioral tasks and neu-
ron locations. (a, b) Direction-dis-
crimination task. The monkey
gazed at the fixation point for 350
ms. Then two targets appeared,
one of which was in the neural
response field (RF, shaded). After
200–300 ms, the random dot kine-
matogram appeared between the
targets and outside the RF. The
direction of motion was toward
one of the two targets. Motion
strength was varied from trial to
trial by adjusting the percentage of
coherently moving dots. After 1 s,
the random dots were turned off,
leaving only the fixation point and
targets. After 0.5–1.5 s, the fixa-
tion point was extinguished, signal-
ing the monkey to indicate its
choice by shifting its gaze to one of
the targets. The monkey was
rewarded for choosing the target
along the direction of random dot
motion, or randomly when there
was no net motion (0% coher-
ence). T1 and T2, saccade targets;
FP, fixation point. (c) Average psy-
chometric function for 88 experi-
ments. Error bars are standard
deviations of the proportion of
correct choices. (d) Memory-sac-
cade task used to screen neurons.
A target was flashed (100 ms) at a
random location in the visual field.
The monkey maintained fixation
through a variable delay until the
fixation point was extinguished.
The monkey was then required to
shift its gaze to the remembered
location of the flashed target. 
(e) Location of the recording cylin-
der in a schematic diagram of the
rhesus monkey brain. (f) Magnetic
resonance imaging. Fast spin-echo,
short-T1, inversion-recovery scan
through the electrode grid of mon-
key S. This is one of a series of
images obtained in the coronal
plane (slice thickness 1.5 mm). The
recording grid was filled with ster-
ile saline to reveal the angle and
location of electrode guide tubes in the coronal plane. A second series was obtained in the sagittal plane to determine the position and angle
of guide tubes in the anterior–posterior direction. The section shows the arcuate sulcus and prearcuate gyrus at the caudal end of the princi-
pal sulcus (ps, principal sulcus; as, arcuate sulcus).
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FIG. 9. Directional tuning of delay pe- 
riod activity for 2 principal sulcus 
neurons. Plots show discharge rate during 
the delay period for the 8 different cue 
directions, with a Gaussian function fit to 
the data. A (521 1, left hemisphere) shows 
narrowly tuned directional activity ( Td = 
19.7O, preferred cue direction = 270”) and 
B (5077, right hemisphere) shows broadly 
tuned directional activity (T(, = 48.4”, 
preferred cue direction = 135”). 
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neurons whose histograms were illustrated in the previous understand the relation between the “sign” of this activity 
three figures (Fig. 3, Fig. 4, and Fig. 6, respectively), and directional specificity, we classified each neuron as 
whereas Fig. 7, A, D, and c(‘, show three additional exam- having either excitatory or inhibitory delay period activity 
ples: another PS neuron with narrowly tuned directional by the statistical criteria previously described. A neuron 

was classified as excitatory (or inhibitory) if delay period 
rate for any cue direction was significantly elevated (or on/y 
reduced) relative to the neuron’s ITI. 

delay period activity is shown in Fig. 7A. For this PS 
neuron, the preferred cue direction was leftward (1 SOO), 
whereas for most other cue directions, the discharge rate 
during the delay period was suppressed below base line. A 
neuron with directional delay period activity that was sup- 
pressed below base line when the to-be-remembered cues 
were in the upper-left quadrant of the visual field is shown 
in Fig. 70. Finally, Fig. 7F shows a neuron with omnidi- 
rectional inhibition of delay period activity: comparable 
inhibition occurred for all eight cue locations. 
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Table 1 shows the incidence of neurons for the different 
combinations of delay period response sign and direc- 
tionality. As is evident from examining the Table, neurons 
having excitatory delay period activity were more likely to 
be directional (92%) than neurons with solely inhibitory 
responses (62%). Furthermore, we observed that direc- 
tional tuning for inhibitory delay period activity was 
usually broader than that for excitatory directional activity. 

The phenomenon of a single neuron having both an 
As evident from the polar plots in Fig. 7, we observed elevation of delay period activity for one set of directions 

instances of both elevation and depression of delay period and depression of delay period activity for another set was 
activity relative to a neuron’s base-line rate. To further frequently encountered. Usually the best cue directions for 

A 
C D R 

C 
D R 

B saccade 

0.5 s 

saccade 

2os/s 

FIG. 10. The time course of excitatory 
and inhibitory delay period activity. These 
histograms sum neural activity at the pre- 
ferred cue direction for all 46 principal 
sulcus neurons with excitatory directional 
delay period activity (A, B) and all 23 
principal sulcus neurons with inhibitory 
directional delay period activity (C’, D). A 
and C’ were aligned at the cue presenta- 
tion; B and D were aligned at the initiation 
of the saccadic eye movements. All delay 
periods were 3 s. 
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Working memory tasks

Pasternak & Greenlee ’05

Subject reports whether 2nd stimulus matches 1st
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Working memory models
Early models relied on synaptic plasticity—
couldn’t store novel patterns (Amit & Brunel 
1997).
Lisman, Fellous & Wang (1998) pointed out 
that including NMDA allows novel patterns 
to be stored. 
Compte et al. (2000) introduced a ring model 
with stereotyped connectivity that stored 
memories in the form of activity bumps.
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NMDA Current Kinetics
CNQX blocks 
AMPA current
Mg blocks 
NMDA current
AP5 blocks 
NMDA current
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NMDA Conductance
Postsynaptic depolarization 
relieves Mg2+ block 
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Figure I. Current-voltage relation- 
ships of NMDA- and glycine-evoked 
currents in the presence of 1 and 10 mM 
external magnesium. Records on the left 
are voltage-clamped currents at 5 hold- 
ing potentials elicited by the applica- 
tion of 30 FM NMDA and I.LLM glycine 
in the presence of 1 mM, 10 mM, then 
back to 1 mM magnesium from flow 
pipes serially positioned in front of the 
neuron. On the right are complete cur- 
rent-voltage relationships in the 2 mag- 
nesium concentrations (diamonds, 1 mhr 
magnesium; triangles, 10 mM magne- 
sium). Calibration, 300 pA, 2 sec. 
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currents evoked by application of 30 WM NMDA and 1 PM 
glycine in the presence of 1 mM and 10 mM magnesium at 
various holding potentials. The current-voltage relation on the 
right plots the current amplitudes obtained in 1 mM and 10 mM 
magnesium from the same cell. Conductance-voltage plots were 
constructed (assuming a reversal potential of 0 mV) from these 
data and those obtained in the presence of 10 PM and 100 PM 
magnesium on the same cell (Fig. 2). In all concentrations of 
magnesium tested, blockade is completely overcome at holding 
potentials more positive than about +50 mV. 

The conductance versus voltage families shift to the right in 
an orderly fashion with increasing external magnesium, as il- 
lustrated in Figure 2; note that the gating functions become less 
steep with decreasing magnesium concentrations. Data from 24 
current-voltage curves obtained from 12 cells were fitted with 
the gating function described in Equation (4a) and the rate con- 
stants in Table 1. The voltage at which the conductance reaches 
half of its maximum was obtained at 11 magnesium concen- 
trations. This quantity is plotted versus magnesium concentra- 
tion in Figure 3. In addition, gating functions were calculated 
from single-channel data for 4 patches at 6 magnesium concen- 
trations. These gating functions were found by plotting the total 
amount of time channels were open per second of observation, 
normalized by the maximum amount of time at positive volt- 
ages, as a function of voltage. Again, voltages at which the gating 
function is half-maximal were determined and plotted on Fig- 
ure 3. 

According to Equation (5), the gating function attains its half- 
maximal value I’,,, when 

C/3.57 = exp(0.062 V,,,); 

thus 

or 

V,,, = ln(C/3.57)/0.062 

V (mV) 

I’,,, then shifts 37.1 mV for each 1 O-fold change in magnesium 
concentration. Equation (6) is plotted as the straight line in 
Figure 3 and can be seen to provide an adequate characterization 
of the data for magnesium concentrations greater than about 
300/.tM. 

It is clear from Figure 3 that the midpoints used to fit the 
individual conductance-voltage plots do not lie directly on the 
theoretical curve generated by Equation (4a). If the theoretical 
midpoints were used to fit the gating function to each data set, 
the gating curves would be shifted along the voltage axis relative 
to the data. This was also true with the single-channel data 
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Figure 2. Conductance-voltage relationships of NMDA responses at 
4 magnesium concentrations. Current amplitudes from the cell illus- 
trated in Figure 1 were converted to conductance assuming a reversal 
potential of 0 mV, normalized to maximal conductance, and plotted 
against holding potential. The data are fitted with curves generated from 
the gating function derived from the 4-state model [Eq. (4a)] using the 
rate constants in Table 1. Rate constant a2 was changed from 
Cexp(-0.045V - 6.97) to Cexp(-0.055V - 7.1) (see text). 
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work model to show that such NMDA-receptor-mediated EPSPs
could be critical in maintaining working memory. These results
provide a mechanistic framework useful in understanding
dopamine-NMDA interactions in working memory and the dis-
ruption of working memory in schizophrenia.

Working memory is stored by the maintained firing of a mem-
ory-specific subset of neurons in networks of the prefrontal cor-
tex7. Firing is thought to be maintained by a reverberatory
process9,10, in which active neurons selectively excite each other
through recurrent connections. Previous models assumed that this
selectivity is due to modifications of synaptic strength during ear-
lier learning experiences, but did not address the question of how
novel items could be stored in working memory. For novel items,
the storage mechanism cannot depend on pre-existing synaptic
selectivity, and LTP is too slow in onset to produce it11. Here we
show that the voltage dependence of NMDA-receptor-mediated
EPSPs can produce the selective excitation that is needed to main-
tain novel items in working memory.

Figure 1a shows the circuit we analyzed. The pyramidal cells
are uniformly interconnected by recurrent excitatory synapses hav-
ing equal synaptic strengths. When a memory item is to be stored,
a subset of these cells is excited by a brief informational input from
an external network. To maintain this item (the spatial pattern of
the subset) in working memory, these ‘active cells’ must continue
to fire after the external input ceases. Moreover, excitation should
not spread to ‘inactive’ pyramidal cells that did not receive external
input. Our main argument is this: if transmission at recurrent
synapses is mediated primarily by NMDA-receptor channels, there

A role for NMDA-receptor
channels in working
memory
John E. Lisman1, Jean-Marc Fellous2

and Xiao-Jing Wang1

1 Brandeis University, Volen Center for Complex Systems, Waltham,
Massachusetts 02254-9110, USA

2 The Salk Institute for Biological Sciences, La Jolla, California 92037, USA

Correspondence should be addressed to J.E.L (lisman@binah.cc.brandeis.edu)

The NMDA class of glutamate receptors has a critical role in the
induction of long-term potentiation (LTP), a synaptic modifica-
tion that may encode some forms of long-term memory. Howev-
er, NMDA-receptor antagonists disrupt a variety of mental
processes1–6 that are not dependent on long-term memory. For
example, they interfere with working memory1,6, a short-lasting
form of memory that is maintained by neuronal activity7 rather
than by synaptic modification. This suggests that there are
unknown functions of the NMDA-receptor channel. One hint is
that in addition to producing the calcium entry important for LTP
induction, NMDA-receptor channels produce voltage-dependent
excitatory postsynaptic potentials (EPSPs)8. Here, we use a net-

Fig. 1. Maintenance of work-
ing memory by NMDA-
receptor-mediated synaptic
transmission at recurrent
synapses. (a) Organization of
the network used to analyze
working memory. Four pyra-
midal cells (triangles) and one
interneuron are shown. The
recurrent excitatory connec-
tions are all-to-all and uni-
form in strength. Feedback
inhibition is mediated by a
group of identically con-
nected interneurons (one
shown). The spatial pattern of external informational input (*) is the pattern to be
remembered. The active pyramidal cells and synapses at which depolarization has
increased the NMDA conductance are also starred. (b) The steady-state current–volt-
age curve for a neuron’s synaptic conductances. I = gGABA(V-VGABA) + gAMPA
V+gNMDAV/(1+0.15e–0.08V). Solid dots mark three zero crossings in the solid middle
curve; two of these occur at voltages where the slope is positive and the neuron is
therefore bistable (gNMDA = 2.0; gAMPA = 0; gGABA = 0.4; units mS/cm2; VGABA = -80mV).
If the GABA conductance is increased (0.5), bistability disappears (upper curve). If suf-
ficient AMPA conductance (0.05) is added, bistability also disappears (lower curve). If
feedback inhibition and the NMDA conductance vary linearly with the number of active
cells (n), and gGABA>>gleak, then the NMDA/GABA ratio and the bistability illustrated in
the solid curve are independent of n. Because the spike-generating currents are not
included, the occurrence of two stable states is a prerequisite for, but does not guaran-
tee, bistability of the actual network. (c) Network simulation showing that pyramidal
cells that receive external input continue to fire after input ceases, whereas cells that
do not receive input remain silent. Dendritic membrane potential (Vd) and the NMDA
current (INMDA) are shown for two pyramidal cells (one active, one inactive).
Rastergram (bottom) shows that activity is limited to those pyramidal cells (p-cells) that
received external input (thick vertical bar). The duration of this input and the input
noise are shown in bottom trace.
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work model to show that such NMDA-receptor-mediated EPSPs
could be critical in maintaining working memory. These results
provide a mechanistic framework useful in understanding
dopamine-NMDA interactions in working memory and the dis-
ruption of working memory in schizophrenia.

Working memory is stored by the maintained firing of a mem-
ory-specific subset of neurons in networks of the prefrontal cor-
tex7. Firing is thought to be maintained by a reverberatory
process9,10, in which active neurons selectively excite each other
through recurrent connections. Previous models assumed that this
selectivity is due to modifications of synaptic strength during ear-
lier learning experiences, but did not address the question of how
novel items could be stored in working memory. For novel items,
the storage mechanism cannot depend on pre-existing synaptic
selectivity, and LTP is too slow in onset to produce it11. Here we
show that the voltage dependence of NMDA-receptor-mediated
EPSPs can produce the selective excitation that is needed to main-
tain novel items in working memory.

Figure 1a shows the circuit we analyzed. The pyramidal cells
are uniformly interconnected by recurrent excitatory synapses hav-
ing equal synaptic strengths. When a memory item is to be stored,
a subset of these cells is excited by a brief informational input from
an external network. To maintain this item (the spatial pattern of
the subset) in working memory, these ‘active cells’ must continue
to fire after the external input ceases. Moreover, excitation should
not spread to ‘inactive’ pyramidal cells that did not receive external
input. Our main argument is this: if transmission at recurrent
synapses is mediated primarily by NMDA-receptor channels, there
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The NMDA class of glutamate receptors has a critical role in the
induction of long-term potentiation (LTP), a synaptic modifica-
tion that may encode some forms of long-term memory. Howev-
er, NMDA-receptor antagonists disrupt a variety of mental
processes1–6 that are not dependent on long-term memory. For
example, they interfere with working memory1,6, a short-lasting
form of memory that is maintained by neuronal activity7 rather
than by synaptic modification. This suggests that there are
unknown functions of the NMDA-receptor channel. One hint is
that in addition to producing the calcium entry important for LTP
induction, NMDA-receptor channels produce voltage-dependent
excitatory postsynaptic potentials (EPSPs)8. Here, we use a net-

Fig. 1. Maintenance of work-
ing memory by NMDA-
receptor-mediated synaptic
transmission at recurrent
synapses. (a) Organization of
the network used to analyze
working memory. Four pyra-
midal cells (triangles) and one
interneuron are shown. The
recurrent excitatory connec-
tions are all-to-all and uni-
form in strength. Feedback
inhibition is mediated by a
group of identically con-
nected interneurons (one
shown). The spatial pattern of external informational input (*) is the pattern to be
remembered. The active pyramidal cells and synapses at which depolarization has
increased the NMDA conductance are also starred. (b) The steady-state current–volt-
age curve for a neuron’s synaptic conductances. I = gGABA(V-VGABA) + gAMPA
V+gNMDAV/(1+0.15e–0.08V). Solid dots mark three zero crossings in the solid middle
curve; two of these occur at voltages where the slope is positive and the neuron is
therefore bistable (gNMDA = 2.0; gAMPA = 0; gGABA = 0.4; units mS/cm2; VGABA = -80mV).
If the GABA conductance is increased (0.5), bistability disappears (upper curve). If suf-
ficient AMPA conductance (0.05) is added, bistability also disappears (lower curve). If
feedback inhibition and the NMDA conductance vary linearly with the number of active
cells (n), and gGABA>>gleak, then the NMDA/GABA ratio and the bistability illustrated in
the solid curve are independent of n. Because the spike-generating currents are not
included, the occurrence of two stable states is a prerequisite for, but does not guaran-
tee, bistability of the actual network. (c) Network simulation showing that pyramidal
cells that receive external input continue to fire after input ceases, whereas cells that
do not receive input remain silent. Dendritic membrane potential (Vd) and the NMDA
current (INMDA) are shown for two pyramidal cells (one active, one inactive).
Rastergram (bottom) shows that activity is limited to those pyramidal cells (p-cells) that
received external input (thick vertical bar). The duration of this input and the input
noise are shown in bottom trace.
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work model to show that such NMDA-receptor-mediated EPSPs
could be critical in maintaining working memory. These results
provide a mechanistic framework useful in understanding
dopamine-NMDA interactions in working memory and the dis-
ruption of working memory in schizophrenia.

Working memory is stored by the maintained firing of a mem-
ory-specific subset of neurons in networks of the prefrontal cor-
tex7. Firing is thought to be maintained by a reverberatory
process9,10, in which active neurons selectively excite each other
through recurrent connections. Previous models assumed that this
selectivity is due to modifications of synaptic strength during ear-
lier learning experiences, but did not address the question of how
novel items could be stored in working memory. For novel items,
the storage mechanism cannot depend on pre-existing synaptic
selectivity, and LTP is too slow in onset to produce it11. Here we
show that the voltage dependence of NMDA-receptor-mediated
EPSPs can produce the selective excitation that is needed to main-
tain novel items in working memory.

Figure 1a shows the circuit we analyzed. The pyramidal cells
are uniformly interconnected by recurrent excitatory synapses hav-
ing equal synaptic strengths. When a memory item is to be stored,
a subset of these cells is excited by a brief informational input from
an external network. To maintain this item (the spatial pattern of
the subset) in working memory, these ‘active cells’ must continue
to fire after the external input ceases. Moreover, excitation should
not spread to ‘inactive’ pyramidal cells that did not receive external
input. Our main argument is this: if transmission at recurrent
synapses is mediated primarily by NMDA-receptor channels, there
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The NMDA class of glutamate receptors has a critical role in the
induction of long-term potentiation (LTP), a synaptic modifica-
tion that may encode some forms of long-term memory. Howev-
er, NMDA-receptor antagonists disrupt a variety of mental
processes1–6 that are not dependent on long-term memory. For
example, they interfere with working memory1,6, a short-lasting
form of memory that is maintained by neuronal activity7 rather
than by synaptic modification. This suggests that there are
unknown functions of the NMDA-receptor channel. One hint is
that in addition to producing the calcium entry important for LTP
induction, NMDA-receptor channels produce voltage-dependent
excitatory postsynaptic potentials (EPSPs)8. Here, we use a net-

Fig. 1. Maintenance of work-
ing memory by NMDA-
receptor-mediated synaptic
transmission at recurrent
synapses. (a) Organization of
the network used to analyze
working memory. Four pyra-
midal cells (triangles) and one
interneuron are shown. The
recurrent excitatory connec-
tions are all-to-all and uni-
form in strength. Feedback
inhibition is mediated by a
group of identically con-
nected interneurons (one
shown). The spatial pattern of external informational input (*) is the pattern to be
remembered. The active pyramidal cells and synapses at which depolarization has
increased the NMDA conductance are also starred. (b) The steady-state current–volt-
age curve for a neuron’s synaptic conductances. I = gGABA(V-VGABA) + gAMPA
V+gNMDAV/(1+0.15e–0.08V). Solid dots mark three zero crossings in the solid middle
curve; two of these occur at voltages where the slope is positive and the neuron is
therefore bistable (gNMDA = 2.0; gAMPA = 0; gGABA = 0.4; units mS/cm2; VGABA = -80mV).
If the GABA conductance is increased (0.5), bistability disappears (upper curve). If suf-
ficient AMPA conductance (0.05) is added, bistability also disappears (lower curve). If
feedback inhibition and the NMDA conductance vary linearly with the number of active
cells (n), and gGABA>>gleak, then the NMDA/GABA ratio and the bistability illustrated in
the solid curve are independent of n. Because the spike-generating currents are not
included, the occurrence of two stable states is a prerequisite for, but does not guaran-
tee, bistability of the actual network. (c) Network simulation showing that pyramidal
cells that receive external input continue to fire after input ceases, whereas cells that
do not receive input remain silent. Dendritic membrane potential (Vd) and the NMDA
current (INMDA) are shown for two pyramidal cells (one active, one inactive).
Rastergram (bottom) shows that activity is limited to those pyramidal cells (p-cells) that
received external input (thick vertical bar). The duration of this input and the input
noise are shown in bottom trace.
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Ring network

 

 

Figure 4 

Wang et at. ’07Synaptic profile of recurrent excitation
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Only E-E 
(excitatory-
excitatory)  
connections 
are 
structured. 
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 Ring network simulation
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Cued during C. Spatial activity pattern (rate 
& spikes) and decoded orientation are shown.
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Summary of results
Bump is cued (C) by focal 
external input 
Bump converges to a 
fixed size that matches 
E-E profile 
Bump drifts during delay 
period (D) due to noise 
and heterogeneity
Bump is extinguished (R) 
by diffuse external input
—recruits inhibition
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Matches experimental data 

Bump’s size determines tuning-curve’s width
Wang et at. ’00
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Dynamical systems’ view
Point Attractor Line Attractor
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Next Week

Decision making: How do neurons 
evaluate sensory evidence to make the 
right choice?
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