Chapter 3

One-Dimensional Systems

In this chapter we describe geometrical methods of analysis of one-dimensional dynam-
ical systems, i.e., systems having only one variable. An example of such a system is
the space-clamped membrane having Ohmic leak current Iy,

CV: —gL(V—EL) . (31)

Here the membrane voltage V' is a time-dependent variable, and the capacitance C', leak
conductance gr, and leak reverse potential Ey, are constant parameters described in the
previous chapter. We use this and other one-dimensional neural models to introduce
and illustrate the most important concepts of dynamical system theory: equilibrium,
stability, attractor, phase portrait, and bifurcation.

3.1 Electrophysiological Examples

The Hodgkin-Huxley description of dynamics of membrane potential and voltage-gated
conductances can be reduced to a one-dimensional system when all transmembrane
conductances have fast kinetics. For the sake of illustration, let us consider a space-
clamped membrane having leak current and a fast voltage-gated current I having
only one gating variable p,

Leak I, Lot

CV = —gu(V-E)—gp(V-E)
p (P (V) = p)/T(V)

with dimensionless parameters C' = 1, g, = 1, and ¢ = 1. Suppose that the gating
kinetic (3.3) is much faster than the voltage kinetic (3.2), which means that the voltage-
sensitive time constant 7(V') is very small, i.e. 7(V) < 1, in the entire biophysical
voltage range. Then, the gating process may be treated as being instantaneous, and
the asymptotic value p = p.(V') may be used in the voltage equation (3.2) to reduce
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Figure 3.1: Solution of the full system (3.2, 3.3) converges to that of the reduced
one-dimensional system (3.4) as 7(V) — 0
the two-dimensional system (3.2, 3.3) to a one-dimensional equation

instantaneous Ig.q
CV=—gu(V—E)~ gp=(V) (V- E) . (3.4)

This reduction introduces a small error of the order 7(V) < 1, as one can see in
Fig. 3.1.

Since the hypothetical current g can be either inward (E > FEp) or outward
(E < Ep), and the gating process can be either activation (p is m, as in Hodgkin-
Huxley model) or inactivation (p is h), there are four fundamentally different choices
for It.st(V'), which we summarize in Fig. 3.2 and elaborate below.

Current Figure 3.2: Four fundamental examples of voltage-

inward | outward | gated currents having one gating variable. In this

o book we treat “hyperpolarization-activated” cur-

activation TNap I : . ..

.gs rents [, and Ik; as being inactivating currents,

s which are turned off (inactivated via h) by depo-
O inactivation I I - - :

h Kir larization and turned on (deinactivated) by hyper-

polarization; see discussion in Sect. 2.2.4.

3.1.1 1I-V relations and dynamics

The four choices in Fig. 3.2 result in four simple one-dimensional models of the form

(3.4)
INap-model Ix-model I-model, and  Ig;.-model.

These models might seem to be too simple for biologists, who can easily understand
their behavior just by looking at the I-V relations of the currents depicted in Fig. 3.3
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without using any dynamical systems theory. The models might also appear too simple
for mathematicians, who can easily understand their dynamics just by looking at the
graphs of the right-hand side of (3.4) without using any electrophysiological intuition.
In fact, the models provide an invaluable learning tool, since they establish a bridge
between electrophysiology and dynamical systems.

In Fig. 3.3 we plot typical steady-state current-voltage (I-V) relations of the four
currents considered above. Notice that the I-V curve is non-monotonic for Iy, and
I;, but monotonic for Ik and Iy, at least in the biophysically relevant voltage range.
This subtle difference is an indication of the fundamentally different roles these currents
play in neuron dynamics: The I-V relation in the first group has a region of “negative
conductance”, i.e., I'(V) < 0, which creates positive feedback between the voltage and
the gating variable (Fig. 3.4), and it plays an amplifying role in neuron dynamics. We
refer to such currents as being amplifying currents. In contrast, the currents in the
second group have negative feedback between voltage and gating variable, and they
often result in damped oscillation of the membrane potential, as we show in the next
chapter. We refer to such currents as being resonant currents. Most neural models
involve a combination of at least one amplifying and one resonant current, as we discuss
in Chap. 5. The way these currents are combined determines whether the neuron is an
mtegrator or a resonator.

3.1.2 Leak + instantaneous Iy,

To ease our introduction into dynamical systems, we will use the Iy, ,-model

instantaneous Inap

A

CV =1—g.(V = EL) = gxamoo(V) (V — Exa) (3.5)

with
Mmeo(V) =1/(1+exp{(Vij2 = V)/k})
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throughout the rest of this chapter. (Some biologists refer to transient Na® currents
with very slow inactivation as being persistent, since the current does not change much
on the time scale of 1 sec.) We measure the parameters

C =10 uF I =0pA g, = 19 mS Ey, = —-67mV
gNa = 74 mS Vijg =15 mV k=16 mV Ex, = 60 mV

using whole-cell patch clamp recordings of a layer 5 pyramidal neuron in visual cortex
of a rat at room temperature. We prove in Ex. 3.3.8 and illustrate in Fig. 3.15 that
the model approximates action potential upstroke dynamics of this neuron.

The model’s I-V relation, I(V), is depicted in Fig. 3.5a. Due to the negative
conductance region in the I-V curve, this one-dimensional model can exhibit a number
of interesting non-linear phenomena, such as bistability, i.e. co-existence of the resting
and excited states. From mathematical point of view, bistability occurs because the
right-hand side function of the differential equation (3.5), depicted in Fig. 3.5b, is not
monotonic. In Fig. 3.6 we depict typical voltage time courses of the model (3.5) with
two values of injected dc-current I and 16 different initial conditions. The qualitative
behavior in Fig. 3.6a is apparently bistable: depending on the initial condition, the
trajectory of the membrane potential goes either up to the excited state or down to
the resting state. In contrast, the behavior in Fig. 3.6b is monostable, since the resting
state does not exist. The goal of the dynamical system theory reviewed in this chapter
is to understand why and how the behavior depends on the initial conditions and the
parameters of the system.

3.2 Dynamical Systems

In general, dynamical systems can be continuous or discrete, depending on whether
they are described by differential or difference equations. Continuous one-dimensional
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Figure 3.5: a. I-V relations of the leak current, I1,, fast Na™ current, Iy,, and combined
current [(V) = I,(V') + Ina(V) in the Iy, p-model (3.5). Dots denote Io(V') data from
layer 5 pyramidal cell in rat visual cortex. b. The right-hand side of the Iy, ,-model
(3.5).

dynamical systems are usually written in the form
V=FV), V(0 =VWeR, (3.6)

for example,

V=-8-V, V(0) = —20,

where V' is a scalar time-dependent variable denoting the current state of the system,
V =V, = dV/dt is its derivative with respect to time ¢, F is a scalar function (its
output is one-dimensional) that determines the evolution of the system, e.g., the right-
hand side of (3.5) divided by C; see Fig. 3.5b. Vj € R is an initial condition, and R is
the real line, i.e., a line of real numbers (R™ would be the n-dimensional real space).

In the context of dynamical systems, the real line R is called phase line or state line
(phase space or state space for R™) to stress the fact that each point in R corresponds
to a certain perhaps inadmissible state of the system, and each state of the system
corresponds to a certain point in R. For example, the state of the Ohmic membrane
(3.1) is just its membrane potential V' € R. The state of the Hodgkin-Huxley model
(see Sect. 2.3) is the four-dimensional vector (V,m,n,h) € R*. The state of the Iy, -
model (3.5) is again its membrane potential V' € R, because the value m = mq (V) is
unequivocally defined by V.

When all parameters are constant, then the dynamical system is called autonomous.
When at least one of the parameters is time-dependent, the system is non-autonomous,
denoted as V = F(V,1).

To solve (3.6) means to find a function V(¢) whose initial value is V(0) = Vj
and whose derivative is F(V(t)) at each moment ¢ > 0. For example, the function
V(t) = Vo + at is an explicit analytical solution to the dynamical system V = a. The
exponentially decaying function V() = Ep, + (Vo — Fp)e 9/ depicted in Fig. 3.7,
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Figure 3.6: Typical voltage trajectories of the Iy, ,-model (3.5) having different values
of I.
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E

Figure 3.7: Explicit analytical solution (V (t) = Ep,+(Vo— EL)e 9/ of linear equation
(3.1) and corresponding numerical approximation (dots) using Euler method (3.7).

solid curve, is an explicit analytical solution to the linear equation (3.1) (check by
differentiating).

Finding explicit solutions is often impossible even for such simple systems as (3.5),
so most quantitative analysis is carried out via numerical simulations. The simplest
procedure to solve (3.6) numerically, known as first-order Euler method, substitutes
(3.6) by the discretized system

(V(t+h)=V(E)/h=F(V(1))

where t = 0, h, 2h, 3h, ..., is the discrete time and h is a small time step. Knowing the
current state V (), we can find the next state point via

V(t+h) = V() +hE(V (). (3.7)

Iterating this difference equation starting with V(0) = Vj, we can approximate the an-
alytical solution of (3.6), see dots in Fig. 3.7. The approximation has a noticeable error
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Figure 3.8: Graphs of the right-hand side functions of equations (3.1) and (3.5) and
corresponding numerical solutions starting from various initial conditions.

of order h, so scientific software packages, such as MATLAB, use more sophisticated
high-precision numerical methods.

In many cases, however, we do not need exact solutions, but rather qualitative
understanding of the behavior of (3.6) and how it depends on parameters and the
initial state V. For example, we might be interested in the number of equilibrium

(rest) points the system could have, whether the equilibria are stable, their attraction
domains, etc.

3.2.1 Geometrical analysis

The first step in qualitative geometrical analysis of any one-dimensional dynamical
system is to plot the graph of the function I, as we do in Fig. 3.8,top. Since FI(V) =V,
at every point V' where F'(V') is negative, the derivative V' is negative, and hence the
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state variable V' decreases. In contrast, at every point where F'(V') is positive, V is
positive, and the state variable V' increases; the greater the value of F/(V'), the faster
V increases. Thus, the direction of movement of the state variable V', and hence the
evolution of the dynamical system, is determined by the sign of the function F(V).

The right-hand side of the [jcax-model (3.1) or the Iy, ,-model (3.5) in Fig. 3.8 is the
steady-state current-voltage (I-V) relation, Ir,(V') or IL(V)+Inap (V') respectively, taken
with the minus sign, see Fig. 3.5. Positive values of the right-hand side F(V') mean
negative I-V corresponding to the net inward current that depolarizes the membrane.
Conversely, negative values mean positive I-V corresponding to the net outward current
that hyperpolarizes the membrane.

3.2.2 Equilibria

The next step in qualitative analysis of any dynamical system is to find its equilibria
or rest points, i.e., the values of the state variable where

F(V)=0 (V is an equilibrium).

At each such point V = 0, the state variable V does not change. In the context of
membrane potential dynamics, equilibria correspond to the points where the steady-
state -V curve passes zero. At each such point there is a balance of the inward and
outward currents so that the net transmembrane current is zero, and the membrane
voltage does not change. (Incidentally, the part libra in the Latin word aequilibrium
means balance).

The Ix- and Ij-models mentioned in Sect. 3.1 can have only one equilibrium be-
cause their I-V relations (V') are monotonic increasing functions. The corresponding
functions F'(V') are monotonic decreasing and can have only one zero.

In contrast, the In,p- and Iki-models can have many equilibria because their I-V
curves are not monotonic, and hence there is a possibility for multiple intersections
with the V-axis. For example, there are three equilibria in Fig. 3.8b corresponding
to the rest state (around -53 mV), threshold state (around -40 mV) and the excited
state (around 30 mV). Each equilibrium corresponds to the balance of the outward
leak current and partially (rest), moderately (threshold) or fully (excited) activated
persistent Nat inward current. Throughout this book we denote equilibria as small
open or filled circles depending on their stability, as in Fig. 3.8.

3.2.3 Stability

If the initial value of the state variable is exactly at equilibrium, then V = 0 and the
variable will stay there forever. If the initial value is near the equilibrium, the state
variable may approach the equilibrium or diverge from it. Both cases are depicted in
Fig. 3.8. We say that an equilibrium is asymptotically stable if all solutions starting
sufficiently near the equilibrium will approach it as t — oo.
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Stability of an equilibrium is determined by the signs of the function F' around it.
The equilibrium is stable when F'(V') changes the sign from “+” to “—" as V increases,
as in Fig. 3.8a. Obviously, all solutions starting near such an equilibrium converge to
it. Such an equilibrium “attracts” all nearby solutions, and it is called an attractor. A
stable equilibrium point is the only type of attractor that can exist in one-dimensional
continuous dynamical systems defined on a state line R. Multidimensional systems can
have other attractors, e.g., limit cycles.

The differences between stable, asymptotically stable, and exponentially stable
equilibria are discussed in Ex. 19 in the end of the chapter. The reader is also en-
couraged to solve Ex. 4 (piece-wise continuous F'(V)).

3.2.4 Eigenvalues

A sufficient condition for an equilibrium to be stable is that the derivative of the
function I’ with respect to V' at the equilibrium is negative, provided that the function
is differentiable. We denote such a derivative here by the Greek letter

A=F'(V), (V is an equilibrium; that is, F(V) = 0)

and note that it is just the slope of graph of F' at the point V; see Fig. 3.9. Obviously,
when the slope, A, is negative, the function changes the sign from “+” to “—”, and
the equilibrium is stable. Positive slope A implies instability. The parameter A defined
above is the simplest example of an eigenvalue of an equilibrium. We introduce eigen-
values formally in the next chapter and show that eigenvalues play an important role
in defining the types of equilibria of multi-dimensional systems.

3.2.5 Unstable equilibria

If a one-dimensional system has two stable equilibrium points, then they must be
separated by at least one unstable equilibrium point, as we illustrate in Fig. 3.10.
(This may not be true in multidimensional systems.) Indeed, a continuous function
F' has to change the sign from “—” to “+” somewhere in between those equilibria;
that is, it has to cross the V' axis in some point, as in Fig. 3.8b. This point would be
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Figure 3.10: Two stable equilibrium points must be separated by at least one unstable
equilibrium point because F'(V') has to change the sign from “—" to “+”.

an unstable equilibrium, since all nearby solutions diverge from it. In the context of
neuronal models, unstable equilibria correspond to the region of the steady-state I-V
curve with negative conductance. (Please, check that this is in accordance with the
fact that F'(V)) = —I(V)/C; see Fig. 3.5.) An unstable equilibrium is sometimes called
a repeller. Attractors and repellers have a simple mechanistic interpretation depicted
in Fig. 3.11.

If the initial condition Vj is set to an unstable equilibrium point, then the solution
will stay at this unstable equilibrium; i.e., V() = V; for all ¢, at least in theory. In
practice, the location of an equilibrium point is known only approximately. In addition,
small noisy perturbations that are always present in biological systems can make V()
deviate slightly from the equilibrium point. Because of instability, such deviations will
grow, and the state variable V() will eventually diverge form the repelling equilibrium
the same way as the ball set at the top of the hill in Fig. 3.11 will eventually roll
downhill. If the level of noise is low, it could take a long time to diverge from the
repeller.

3.2.6 Attraction domain

Even though unstable equilibria are hard to see experimentally, they still play an im-
portant role in dynamics, since they separate attraction domains. Indeed, the ball in
Fig. 3.11 could go left or right depending on what side of the hilltop it is on initially.
Similarly, the state variable of a one-dimensional system decreases or increases depend-
ing on what side of the unstable equilibrium the initial condition is, as one can clearly
see in Fig. 3.8b.

In general, a basin of attraction or attraction domain of an attractor is the set of all
initial conditions that lead to the attractor. For example, the attraction domain of the
equilibrium in Fig. 3.8a is the entire voltage range. Such an attractor is called global.
In Fig. 3.12 we plot attraction domains of two stable equilibria. The middle unstable
equilibrium is always the boundary of the attraction domains.
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Figure 3.11: Mechanistic interpretation of stable and unstable equilibria. A massless
(inertia free) ball moves toward energy minima with the speed proportional to the slope.
A one-dimensional system V = F(V) has the energy landscape E(V) = — f_Voo F(v) dv;
see Ex. 18. Zeros of F/(V) with negative (positive) slope correspond to minima (max-
ima) of E(V).

3.2.7 Threshold and action potential

Unstable equilibria play the role of thresholds in one-dimensional bistable systems, i.e.,
in systems having two attractors. We illustrate this in Fig. 3.13, which is believed to
describe the essence of the mechanism of bistability in many neurons. Suppose the state
variable is initially at the stable equilibrium point marked as “state A” in the figure,
and suppose that perturbations can kick it around the equilibrium. Small perturbations
may not kick it over the unstable equilibrium so that the state variable continues to
be in the attraction domain of the “state A”. We refer to such perturbations as being
subthreshold. In contrast, we refer to perturbations as being superthreshold (also known
as suprathreshold) if they are large enough to push the state variable over the unstable
equilibrium so that it becomes attracted to the “state B”. We see that the unstable
equilibrium acts as a threshold that separates two states.

The transition between two stable states separated by a threshold is relevant to the
mechanism of excitability and generation of action potentials by many neurons, which
we illustrate in Fig. 3.14. In the Iy, ,-model (3.5) with the I-V relation in Fig. 3.5
the existence of the rest state is largely due to the leak current Ir,, while the existence
of the excited state is largely due to the persistent inward Na™ current In,p,. Small
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(subthreshold) perturbations leave the state variable in the attraction domain of the
rest state, while large (superthreshold) perturbations initiate the regenerative process
— the upstroke of an action potential, and the voltage variable becomes attracted to the
excited state. Generation of the action potential must be completed via repolarization
that moves V' back to the rest state. Typically, repolarization occurs because of a
relatively slow inactivation of Na® current and/or slow activation of an outward K
current, which are not taken into account in the one-dimensional system (3.5). To
account for such processes, we consider two-dimensional systems in the next chapter.

Recall that the parameters of the Iy, ,-model (3.5) were obtained from a cortical
pyramidal neuron. In Fig. 3.15, left, we stimulate (in vitro) the cortical neuron by short
(0.1 ms) strong pulses of current to reset its membrane potential to various initial values
and interpret the results using the Iy, ,-model. Since activation of Nat current is not
instantaneous in real neurons, we allow variable m to converge to ms(V'), and ignore
the 0.3-ms transient activity that follows each pulse. We also ignore the initial segment
of the downstroke of the action potential, and plot the magnification of the voltage
traces in Fig. 3.15, right. Comparing this figure with Fig. 3.8b, we see that the Iy, -
model is a reasonable one-dimensional approximation of the action potential upstroke
dynamics; It predicts the value of the resting (-53 mV), instantaneous threshold (-40
mV), and the excited (+30 mV) states of the cortical neuron.

3.2.8 Bistability and hysteresis

Systems having two (many) co-existing attractors are called bistable (multi-stable).
Many neurons and neuronal models, such as the Hodgkin-Huxley model, exhibit bista-
bility between resting (equilibrium) and spiking (limit cycle) attractors. Some neurons
can exhibit bistability of two stable resting states in the subthreshold voltage range,
e.g., -59 mV and -75 mV in the thalamocortical neurons (Hughes et al. 1999) depicted
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attraction domains.



68 One-Dimensional Systems

- = =

o (another varlable) \

AN
/ superthreshold \
perturbation \

. — \~Q%
y.\y.H.H.H..y..\..\IthreshOId\\,\o\S\Q
FESt StAte oo G5 2

T T T\
T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T TTT

e o o o L i e B
T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T

Figure 3.14: Mechanistic illustration of the mechanism of generation of an action po-
tential.

strong — | 40 ‘ ‘ ‘ ‘ ‘
depolarization | 30 & stable equilibrium |
S 20 / A
£
= 10f,
é +30 mV E 0
o action 8 10l
g potentials &
s S -20
[0) (0]
E g 30 A
-40 mv B goEe= T o __....__unstable equiliorium
[0
€
-50 —
stable equilibrium
-60 ‘ ‘ ‘ ‘ ‘
fj pulses of current O 02 04 06 08 1 1.2
= time (ms)

Figure 3.15: Upstroke dynamics of layer 5 pyramidal neuron in vitro (compare with
the Inap-model (3.5) in Fig. 3.8b).
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Figure 3.16: Membrane potential bistability in a cat TC neuron in the presence of
ZD7288 (pharmacological blocker of I,; modified from Fig. 6B of Hughes et al. 1999).
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Figure 3.17: Bistability and hysteresis loop as I changes.

in Fig. 3.16, or -50 mV and -60 mV in mitral cells of olfactory bulb (Heyward et al.
2001), or -45 mV and -60 mV in Purkinje neurons. Brief inputs can switch such neu-
rons from one state to the other, as in Fig. 3.16. Though the ionic mechanisms of
bistability are different in the three neurons, the mathematical mechanism is the same.

Consider a one-dimensional system V = I + F(V) with function F(V) having a
cubic N-shape. Injection of a dc-current I shifts the function I + F(V') up or down.
When [ is negative, the system has only one equilibrium depicted in Fig. 3.17a. As we
remove the injected current I, the system is bistable as in Fig. 3.17b, but its state is
still at the left equilibrium. As we inject positive current, the left stable equilibrium
disappears via another saddle-node bifurcation, and the state of the system jumps to
the right equilibrium, as in Fig. 3.17c. But as we slowly remove the injected current
that caused the jump and go back to Fig. 3.17b, the jump to the left equilibrium
does not occur until a much lower value corresponding to Fig. 3.17a. The failure of
the system to return to the original value when the injected current is removed is
called hysteresis. If I were a slow V-depended variable, then the system could exhibit
relaxation oscillations depicted in Fig. 3.17d and described in the next chapter.
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Figure 3.18: Phase portrait of a one-dimensional system V = F(V).
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3.3 Phase Portraits

An important component in qualitative analysis of any dynamical system is reconstruc-
tion of its phase portrait. For this one depicts all stable and unstable equilibria (as
black and white circles respectively), representative trajectories, and corresponding at-
traction domains in the systems state/phase space, as we illustrate in Fig. 3.18. Phase
portrait is a geometrical representation of system dynamics. It depicts all possible
evolutions of the state variable and how they depend on the initial state. Looking at
the phase portrait, one immediately gets all important information about the system
qualitative behavior without even knowing the equation for F.
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Figure 3.20: Two “seemingly alike”
dynamical systems V = F;(V) and
V = Fy(V) are not topologically
equivalent, hence they do not have
qualitatively similar dynamics. (The
first system has three equilibria, and
the second system has only one.)

3.3.1 Topological equivalence

Phase portraits can be used to determine qualitative similarity of dynamical systems.
In particular, two one-dimensional systems are said to be topologically equivalent when
phase portrait of one of them treated as a piece of rubber can be stretched or shrunk
to fit the other one, as in Fig. 3.19. Topological equivalence is a mathematical concept
that clarifies the imprecise notion of “qualitative similarity”, and its rigorous definition
is provided, e.g., by Guckenheimer and Holmes (1983).

The stretching and shrinking of the “rubber” phase space are topological trans-
formations that do not change the number of equilibria or their stability. Thus, two
systems having different number of equilibria cannot be topologically equivalent, hence
they have qualitatively different dynamics, as we illustrate in Fig. 3.20. Indeed, the top
system is bistable because it has two stable equilibria separated by an unstable one.
The evolution of the state variable depends on which attraction domain the initial con-
dition is in initially. Such a system has “memory” of the initial condition. Moreover,
sufficiently strong perturbations can switch it from one equilibrium state to another.
In contrast, the bottom system in Fig. 3.20 has only one equilibrium, which is a global
attractor, and the state variable converges to it regardless of the initial condition. Such
a system has quite primitive dynamics, and it is topologically equivalent to the linear
system (3.1).

3.3.2 Local equivalence and Hartman-Grobman theorem

In computational neuroscience, we usually face quite complicated systems describing
neuronal dynamics. A useful strategy is to substitute such systems by simpler ones
having topologically equivalent phase portraits. For example, both systems in Fig. 3.19
are topologically equivalent to V=vV-V3 (please, check this), which is easier to deal
with analytically.

Quite often we cannot find a simpler system that is topologically equivalent to our
neuronal model on the entire state line R. In this case, we make a sacrifice: we restrict
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Figure 3.21: Hartman-Grobman theo-
rem: Non-linear system V = F(V) is
topologically equivalent to the linear one
V = AV = Vi) in the local (shaded)

neighborhood of the hyperbolic equilib-
&, rium V.

our analysis to a small neighborhood of the line R, e.g., the one containing the resting
state or the threshold, and study behavior locally in this neighborhood.

An important tool in local analysis of dynamical systems is the Hartman-Grobman
theorem, which says that a non-linear one-dimensional system

V =F(V)

sufficiently near an equilibrium V' = V. is locally topologically equivalent to the linear
one ‘
V= AV = Vi) (3.8)
provided that the eigenvalue
A=F'(Veg)

at the equilibrium is non-zero, i.e., the slope of F'(V') is non-zero. Such an equilibrium
is called hyperbolic. Thus, nonlinear systems near hyperbolic equilibria behave as if
there were linear, as in Fig. 3.21.

It is easy to find the exact solution of the linearized system (3.8) with an initial
condition V(0) = Vy. It is V(t) = Vg + e (Vo — Voq) (check by differentiating).
If the eigenvalue A < 0, then e’ — 0 and V(t) — V. as t — oo, so that the
equilibrium is stable. Conversely, if A > 0, then e — oo meaning that the initial
displacement, Vy — Vi, grows with the time, and the equilibrium is unstable. Thus,
the linearization predicts qualitative dynamics at the equilibrium and quantitative rate
of convergence/divergence to/from the equilibrium.

If the eigenvalue A = 0, then the equilibrium is non-hyperbolic, and analysis of
the linearized system V = 0 cannot describe the behavior of the nonlinear system.
Typically, non-hyperbolic equilibria arise when the system undergoes a bifurcation,
i.e., a qualitative change of behavior, which we consider next. To study stability, we
need to consider higher-order terms of the Taylor series of F/(V') at Vi,.

3.3.3 Bifurcations

The final and the most advanced step in qualitative analysis of any dynamical system
is the bifurcation analysis. In general, a system is said to undergo a bifurcation when
its phase portrait changes qualitatively. For example, the energy landscape in Fig. 3.22
changes so that the system is no longer bistable. Precise mathematical definition of a
bifurcation will be given later.
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Figure 3.22: Mechanistic illustration of a bifurcation as a change of the landscape.

Qualitative change of the phase portrait may or may not necessarily reveal itself
in a qualitative change of behavior, depending on the initial conditions. For example,
there is a bifurcation in Fig. 3.23, left, but no change of behavior because the ball
remains in the attraction domain of the right equilibrium. To see the change, we need
to drop the ball at different initial conditions and observe the disappearance of the left
equilibrium. In the same vain, there is no bifurcation Fig. 3.23, middle and right, (the
phase portraits in each column are topologically equivalent) but the apparent change of
behavior is caused by the expansion of the attraction domain of the left equilibrium or
by the external input. Dropping the ball at different locations would result in the same
qualitative picture — two stable equilibria whose attraction domains are separated by
the unstable equilibrium. When mathematicians talk about bifurcations, they assume
that all initial conditions could be sampled, in which case bifurcations do result in a
qualitative change of behavior of the system as a whole.

To illustrate the importance of sampling all initial conditions, let us consider the in
vitro recordings of a pyramidal neuron in Fig. 3.24. We inject 0.1-ms strong pulses of
current of various amplitude to set the membrane potential to different initial values.
Right after each pulse, we inject a 4 ms step of dc-current of amplitude I =0, I = 16
or I =60 pA. The case I = 0 pA is the same as in Fig. 3.15, so some initial conditions
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bifurcation change of behavior but no bifurcation
but no change of behavior
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Figure 3.23: Bifurcations are not equivalent to qualitative change of behavior if the
system is started with the same initial condition or subject to external input.
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Figure 3.24: Qualitative change of the up-stroke dynamics of layer 5 pyramidal neuron
from rat visual cortex (the same neuron as in Fig. 3.15).
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result in upstroke of the action potential, while others do not. When I = 60 pA, all
initial conditions result in the generation of an action potential. Apparently, a change
of qualitative behavior occurs for some I between 0 and 60.

To understand the qualitative dynamics in Fig. 3.24, we consider the one-dimensional
INap-model (3.5) having different values of the parameter I and depict its trajectories
in Fig. 3.25. One can clearly see that the qualitative behavior of the model depends
on whether [ is greater or less than 16. When I = 0 (top of Fig. 3.25), the system is
bistable. The rest and the excited states coexist. When I is large (bottom of Fig. 3.25)
the rest state no longer exists because leak outward current cannot cope with large
injected dc-current I and the inward Na™ current.

What happens when we change [ past 167 The answer lies in the details of the
geometry of the right-hand side function F'(V) of (3.5) and how it depends on the
parameter /. Increasing I elevates the graph of F/(V'). The higher the graph of F(V)
is, the closer its intersections with the V-axis are, as we illustrate in Fig. 3.26 depicting
only the low-voltage range of the system. When I approaches 16, the distance between
the stable and unstable equilibria vanishes; the equilibria coalesce and annihilate each
other. The value I = 16 at which the equilibria coalesce is called the bifurcation value.
This value separates two qualitatively different regimes: When I is near but less than
16, the system has three equilibria and bistable dynamics. The quantitative features,
such as the exact locations of the equilibria depend on the particular values of I, but
qualitative behavior remains unchanged no matter how close I to the bifurcation value
is. In contrast, when [ is near but greater than 16 the system has only one equilibrium
and monostable dynamics.

In general, a dynamical system may depend on a vector of parameters, say p. A
point in the parameter space, say p = a, is said to be a reqular or non-bifurcation point,
if the system’s phase portrait at p = a is topologically equivalent to the phase portrait
at p = ¢ for any c sufficiently near a. For example, the value I = 13 in Fig. 3.26 is
regular, since the system has topologically equivalent phase portraits for all I near 13.
Similarly, the value I = 18 is also regular. Any point in the parameter space that is not
regular is called a bifurcation point. Namely, a point p = b is a bifurcation point, if the
system’s phase portrait at p = b is not topologically equivalent to the phase portrait
at some point p = ¢ no matter how close ¢ to b is. The value I = 16 in Fig. 3.26 is a
bifurcation point. It corresponds to the saddle-node (also known as fold or tangent)
bifurcation for reasons described later. It is one of the simplest bifurcations considered
in this book.

3.3.4 Saddle-node (fold) bifurcation

In general, a one-dimensional system

V=FV,I)

having an equilibrium point V' = V, for some value of the parameter I = I, (i.e.,
F(Vi, Isn) = 0) is said to be at a saddle-node bifurcation (sometimes called a fold
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Figure 3.25: Bifurcation in the Iy, ,-model (3.5): The rest state and the threshold
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Figure 3.26: Saddle-node bifurcation: While the graph of the function F(V') is lifted
up, the stable and unstable equilibria approach each other, coalesce at the tangent

point, and then disappear.
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Figure 3.27: Geometrical illustration of the three conditions defining saddle-node bi-
furcations. Arrows denote the direction of displacement of the function F'(V,I) as the

bifurcation parameter I changes.



78 One-Dimensional Systems

bifurcation) if the following mathematical conditions, illustrated in Fig. 3.27, are sat-
isfied:

e (Non-hyperbolicity) The eigenvalue A at Vg, is zero; that is,
A=Fy(V,I,) =0 (at V = V),

where Fy means the derivative of F' with respect to V, that is, Fy, = 0F/0V.
Equilibria with zero or pure imaginary eigenvalues are called non-hyperbolic.
Geometrically, this condition implies that the graph of F' has horizontal slope at
the equilibrium.

e (Non-degeneracy) The second order derivative with respect to V' at Vi, is non-
zero; that is,

Fvv(‘/, [sn) % O (at V = ‘/sn)

Geometrically, this means that the graph of I looks like the square parabola V2
in Fig. 3.27.

e (Transversality) The function F(V,I) is non-degenerate with respect to the bi-
furcation parameter [I; that is,

Fy(Va, ) 0 (at [ = L),

where F; means the derivative of F' with respect to I. Geometrically, this means
that while I changes past Ig,, the graph of F' approaches, touches, and then
intersects the V' axis.

Saddle-node bifurcation results in appearance or disappearance of a pair of equilibria,

as in Fig. 3.26. None of the six examples on the right-hand side of Fig. 3.27 can undergo

a saddle-node bifurcation because at least one of the conditions above is violated.
The number of conditions involving strict equality (“=") is called the co-dimension

of a bifurcation. The saddle-node bifurcation has co-dimension-1 because there is only

one condition involving “=" and the other two conditions involve inequalities (“#”).

Co-dimension-1 bifurcations can be reliably observed in systems with one parameter.
It is an easy exercise to check that the one-dimensional system

V=I+V? (3.9)

is at saddle-node bifurcation when V' = 0 and I = 0 (please, check all three conditions).
This system is called the topological normal form for saddle-node bifurcation. Phase
portraits of this system are topologically equivalent to those depicted in Fig. 3.26 except
that the bifurcation occurs at I = 0, and not at I = 16.
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Figure 3.28: Slow transition through the ghost of the resting state attractor in cortical
pyramidal neuron with I = 30 pA (the same neuron as in Fig. 3.15). Even though
the resting state has already disappeared, the function F'(V'), and hence the rate of
change, V, is still small when V &~ —46 mV.

3.3.5 Slow transition

All physical, chemical, and biological systems near saddle-node bifurcations possess
certain universal features that do not depend on particulars of the systems. Conse-
quently, all neural systems near such a bifurcation share common neuro-computational
properties, which we will discuss in detail in Chapter 7. Here we glimpse one such
property — slow transition through the ruins (or ghost) of the rest state attractor,
which is relevant to the dynamics of many neocortical neurons.

In Fig. 3.28 we show the function F(V) of the system (3.5) with I = 30 pA,
which is greater than the bifurcation value 16 pA, and the corresponding behavior
of the cortical neuron; compare with Fig. 3.15. The system has only one attractor —
the excited state, and any solution starting from any initial condition should quickly
approach this attractor. However, the solutions starting from the initial conditions
around -50 mV do not seem to hurry. Instead, they slow down near -46 mV and
spend quite some time in the voltage range corresponding to the resting state, as if
the state were still present. The closer is I to the bifurcation value, the more time the
membrane potential spends in the neighborhood of the resting state. Obviously, such
a slow transition cannot be explained by a slow activation of the inward Na*t current,
since Na™t activation in the cortical neuron is practically instantaneous.

The slow transition occurs because the neuron or the system (3.5) in Fig. 3.28 is
near a saddle-node bifurcation. Even though I is greater than the bifurcation value,
and the rest state attractor is already annihilated, the function F'(V') is barely above
the V-axis at the “annihilation site”. In other words, the rest state attractor has
already been ruined, but its “ruins” (or its “ghost”) can still be felt because

V=FV)~x0 (at attractor ruins, V &~ —46 mV),

as one can see in Fig. 3.28. In Chapter 7 we will show how this property explains
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Figure 3.29: A 400-ms latency in layer 5 pyramidal neuron of rat visual cortex.
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Figure 3.30: Bifurcation diagram of the system in Fig. 3.26.

the ability of many neocortical neurons, such as the one in Fig. 3.29, to generate
repetitive action potentials with small frequency, and how it predicts that all such
neurons considered as dynamical systems reside near saddle-node bifurcations.

3.3.6 Bifurcation diagram

The final step in the geometrical bifurcation analysis of one-dimensional systems is
analysis of the bifurcation diagrams, which we do in Fig. 3.30 for the saddle-node
bifurcation in Fig. 3.26. To make the bifurcation diagram, we determine the locations
of the stable and unstable equilibria for each value of the parameter I and plot them
as white or black circles in the (I,V) plane in Fig. 3.30. The equilibria form two
branches that join at the fold point corresponding to the saddle-node bifurcation (hence
the alternative name — fold bifurcation). The branch corresponding to the unstable
equilibria is dashed to stress its instability. As the bifurcation parameter I varies from
left to right through the bifurcation point, the stable and unstable equilibria coalesce
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and annihilate each other. As the parameter varies from right to left, two equilibria
— one stable and one unstable — appear from a single point. Thus, depending on
the direction of movement of the bifurcation parameter, the saddle-node bifurcation
explains disappearance or appearance of a new stable state. In any case, the qualitative
behavior of the systems changes exactly at the bifurcation point.

3.3.7 Bifurcations and I-V recordings

In general, determining saddle-node bifurcation diagrams of neurons may be a daunting
mathematical task. However, it is a trivial exercise when the bifurcation parameter
is the injected dc-current I. In this case, the bifurcation diagram, such as the one
in Fig. 3.30, is just the steady-state I-V relation (V') plotted on the (I,V)-plane.
Indeed, the equation

CV=I-1,.V)=0

states that V' is an equilibrium if and only if the net membrane current, I — Io(V), is
zero. For example, equilibria of the Iy, ,-model are solutions of the equation

I (V)

A\

Ve

0=1-— (QL(V - EL) + gNamoo(V)(V - ENa)) )

which follows directly from (3.5). In Fig. 3.31 we illustrate how to find the equilibria
geometrically: We plot the steady-state I-V curve I.(V) and draw a horizontal line
with altitude I. Any intersection satisfies the equation I = I,,(V'), and hence is an
equilibrium (stable or unstable). Obviously, when I increases past 16, the saddle-node
bifurcation occurs.

Notice that the equilibria are points on the curve I, (V), so flipping and rotating the
curve by 90°, as we do in Fig. 3.32, left, results in a complete saddle-node bifurcation
diagram. The diagram conveys in a very condensed manner all important information
about the qualitative behavior of the Iy, ,-model. The three branches of the S-shaped
curve, which is the 90°-rotated and flipped copy of the N-shaped I-V curve, correspond
to the rest, threshold, and excited states of the model. Each slice I = const represents
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Figure 3.32: Bifurcation diagram of the Iy, ,-model (3.5).

the phase portrait of the system, as we illustrate in Fig. 3.32, right. Each point where
the branches fold (max or min of /(V)) corresponds to the saddle-node bifurcation.
Since there are two such folds, at I = 16 pA and at I = —890 pA, there are two saddle-
node bifurcations in the system. The first one studied in Fig. 3.25 corresponds to the
disappearance of the rest state. The other one illustrated in Fig. 3.33 corresponds to
the disappearance of the excited state. It occurs because I becomes so negative that
the Na™ inward current is no longer enough to balance the leak outward current and
the negative injected dec-current to keep the membrane in the depolarized (excited)
state.

Below the reader can find more examples of bifurcation analysis of the Iy, - and
Iki-models, which have non-monotonic I-V relations and can exhibit multi-stability of
states. The Ik- and [;-models have monotonic I-V relations and hence only one state.

These models cannot have saddle-node bifurcations, as the reader is asked to prove in
Ex. 14 and 15.

3.3.8 Quadratic integrate-and-fire neuron

Let us consider the topological normal form for the saddle-node bifurcation (3.9). From
0 = I + V2% we find that there are two equilibria, Ve = —\/m and Vipresh = ++/|1|
when I < 0. The equilibria approach and annihilate each other via saddle-node bifur-
cation when I = 0, so there are no equilibria when I > 0. In this case, V > I and V (¢)
increases to infinity. Because of the quadratic term, the rate of increase also increases,
resulting in a positive feedback loop corresponding to the regenerative activation of
Na™ current. In Ex. 16 we show that V(t) escapes to infinity in a finite time, which
corresponds to the up-stroke of the action potential. The same up-stroke is generated
when I < 0, if the voltage variable is pushed beyond the threshold value Vi esh-
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Figure 3.33: Bifurcation in the Iy, ,-model (3.5): The excited state and the threshold
state coalesce and disappear when the parameter I is sufficiently small.
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Figure 3.34: Magnification of the I-V curve in Fig. 3.31 at the left knee shows that it
can be approximated by a square parabola.

Considering infinite values of the membrane potential may be convenient from a
purely mathematical point of view, but this has no physical meaning and no way to
simulate it on a digital computer. Instead, we fix a sufficiently large constant Vjeax
and say that (3.9) generated a spike when V(¢) reached V.. After the peak of the
spike is reached, we reset V(t) to a new value Vet The topological normal form for
the saddle-node bifurcation with the after-spike resetting

V=I+V? = if V>V thenV «— Vi (3.10)

is called the quadratic integrate-and-fire neuron. It is the simplest model of a spiking
neuron. The name stems from its resemblance to the leaky integrate-and-fire neuron
V = I—V considered in Chap. 8. In contrast to the common folklore, the leaky neuron
is not a spiking model because it does not have a spike-generation mechanism, i.e., a
regenerative up-stroke of the membrane potential, whereas the quadratic neuron does.
We discuss this and other issues in detail in Chap. 8.

In general, quadratic integrate-and-fire model could be derived directly from the
equation CV = [ — I.(V) by approximating the steady-state I-V curve near the
resting state by the square parabola I.(V) =~ I, — k(V — V)2, where k > 0 and
the peak of the curve (Viy, I,) could be easily found experimentally; see Fig. 3.34.
Approximating the I-V curve by other functions, for example I (V) = giear(V — Viest) —
kePV | results in other forms of the model, e.g., the exponential integrate-and-fire model
(Fourcaud-Trocme et al. 2003), which has certain advantages over the quadratic form.
Unfortunately, the model is not solvable analytically, and it is expensive to simulate.
The form Io(V) = gieak(V — Vieak) —k(V — Vi )2, where 2y = 2 when z > 0 and 24 = 0
otherwise, combines the advantages of both models. The parameters Vpeax and Vieget
are derived from the shape of the spike. Normalization of variables and parameters
results in the form (3.10) with Vjeax = 1.

In Fig. 3.35 we simulated the quadratic integrate-and-fire neuron to illustrate a
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Figure 3.35: Quadratic integrate-and-fire neuron (3.10) with time-dependent input.

number of its features, which will be described in detail in subsequent chapters using
conductance-based models. First, the neuron is an integrator; each input pulse in
Fig. 3.35, top, pushes V closer to the threshold value; the higher the frequency of the
input, the sooner V reaches the threshold and starts the up-stroke of a spike. The
neuron is monostable when Vet < 0 and could be bistable otherwise. Indeed, the
first spike in Fig. 3.35, middle, is evoked by the input, but the subsequent spikes occur
because the reset value is superthreshold.

The neuron could be Class 1 or Class 2 excitable depending on the sign of Vieget.
Suppose the injected current I slowly ramps up from a negative to a positive value.
The membrane potential follows the resting state —\/|I_| in a quasi-static fashion until
the bifurcation point I = 0 is reached. At this moment, the neuron starts to fire tonic
spikes. In the monostable case Vet < 01in Fig. 3.35, bottom, the membrane potential is
reset to the left of the ghost of the saddle-node point (see Sect. 3.3.5), thereby producing
spiking with an arbitrary small frequency and hence Class 1 excitability. Because of the
recurrence, such a bifurcation is called saddle-node on invariant circle. Many pyramidal
neurons in mammalian neocortex exhibit such a bifurcation. In contrast, in the bistable
case Vieset > 0, not shown in the figure, the membrane potential is reset to the right of
the ghost, no slow transition is involved, and the tonic spiking starts with a non-zero
frequency. As an exercise, explain why there is a noticeable latency (delay) to the first



86 One-Dimensional Systems

spike right after the bifurcation. This type of behavior is typical in spiny projection
neurons of neostriatum and basal ganglia, as we show in Chap. 8.

4 )
Review of Important Concepts

e One-dimensional dynamical system V = F(V) describes how the
rate of change of V' depends on V. Positive F/(V') means V increases,
negative F'(V) means V' decreases.

e In the context of neuronal dynamics, V' is often the membrane po-
tential, and F'(V') is the steady-state I-V curve taken with the minus
sign.

e A zero of F(V') corresponds to an equilibrium of the system. (Indeed,
if (V) =0, then the state of the system, V', neither increases nor
decreases.)

e An equilibrium is stable when F'(V') changes the sign from “+” to
“.”. A sufficient condition for stability is that the eigenvalue A\ =
F'(V') at the equilibrium be negative.

e A phase portrait is a geometrical representation of the system’s dy-
namics. It depicts all equilibria, their stability, representative tra-
jectories, and attraction domains.

e A bifurcation is a qualitative change of the system’s phase portrait.

e The saddle-node (fold) is a typical bifurcation in one-dimensional
systems: As a parameter changes, a stable and an unstable equilib-
rium approach, coalesce, and then annihilate each other.

- J

Bibliographical Notes

There is no standard textbook on dynamical systems theory. The classical book Non-
linear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields by Gucken-
heimer and Holmes (1983) plays the same role in the dynamical systems community as
the book lonic Channels and Excitable Membranes by Hille (2001) in the neuroscience
community. A common feature of these books is that they are not suitable as a first
reading on the subject.

Most textbooks on differential equations, such as Differential Equations and Dy-
namical Systems by Perko (1996), develop the theory starting with the comprehensive
analysis of linear systems, then applying it to local analysis of non-linear systems, and
then discussing global behavior. By the time the reader gets to bifurcations, he has
to go through a lot of daunting math, which is fun only for mathematicians. Here we
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follow approach similar to Nonlinear Dynamics and Chaos by Strogatz (1994): Instead
of going from linear to non-linear systems, we go from one-dimensional non-linear sys-
tems (this chapter) to two-dimensional non-linear systems (next chapter). Instead of
providing the theory with a lot of mathematics, we use the geometrical approach to
provoke the reader’s intuition. (There is plenty of fun math in exercises and in the
later chapters.)

Exercises

1. Consider a neuron having Na*t current with fast activation kinetics. Assume that
inactivation of this current, as well as (in)activations of the other currents in the
neuron are much slower. Prove that the initial segment of action potential up-
stroke of this neuron can be approximated by the Iy, ,-model (3.5). Use Fig. 3.15
to discuss the applicability of this approximation.

2. Draw phase portraits of the systems in Fig. 3.36. Clearly mark all equilibria,
their stability, attraction domains, and direction of trajectories. Determine the
signs of eigenvalues at each equilibrium.

F(V) F(V) F(V)

NVaNvaY’ v ¢
T

a b c

Figure 3.36: Draw phase portrait of the system V = F(V) with shown F(V/).

3. Draw phase portraits of the following systems

(a) 2= —1+a?

(b) &=z — 23
Determine the eigenvalues at each equilibrium.

4. Determine stability of the equilibrium x = 0 and draw phase portraits of the
following piece-wise continuous systems

(a) :.U:{Qm,ifx<0
x, ifx >0

-1, ifz <0

(by &= 0, ifx=0
1, ifx>0

.| =2/x, ifx#0
(©) “”_{ 0, ifx =0
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Figure 3.37: Which of the pairs correspond to topologically equivalent dynamical sys-
tems? (All intersections with the V' axis are marked as dots.)

5. Draw phase portraits of the systems in Fig. 3.37. Which of the pairs in the figure
correspond to topologically equivalent dynamical systems?

6. (Saddle-node bifurcation) Draw bifurcation diagram and representative phase
portraits of the system # = a + 22, where a is a bifurcation parameter. Find the
eigenvalues at each equilibrium.

7. (Saddle-node bifurcation) Use definition in Sect. 3.3.4 to find saddle-node bifur-
cation points in the following systems:
(a) & =a+ 2z +2?

(b) 4
(c) 4
(d) & =a—x+ 2* (Hint: verify the non-hyperbolicity condition first)
(e) & =1+ ax + 2?

(f) & =1+ 2z + ax?

where a is the bifurcation parameter.

8. (Pitchfork bifurcation) Draw bifurcation diagram and representative phase por-
traits of the system @ = bz — , where b is a bifurcation parameter. Find the
eigenvalues at each equilibrium.
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Figure 3.38: The Ix;,-model having injected current (7), leak current (I,), and instan-
taneous K™ inward rectifier current (Ik;,) and described by (3.11). Inactivation curve
hoo(V) is modified from Wessel et. al (1999). Parameters: C' =1, I = 6, g, = 0.2,
Er, = =50, gkir = 2, Ex = =80, Vi3 = =76, k = —12 (see Fig. 2.20).

1 100 50
m.(V [.(V) F(V)
0.8 °°( ) 50 / I Na,p(V)
0.6 g 0 \
[
£ 0
]
0.4 O-50
0.2 -100
EL ENa
0 -150 L1 1 -50
-100 -50 0 50 100 -100 -50 0 50 100 -100 -50 0 50 100
Membrane Voltage (mV) Membrane Voltage (mV) Membrane Voltage (mV)

Figure 3.39: The In,,-model having leak current (I;,) and persistent Na® current
(INa,p) and described by (3.5) with the right-hand side function F(V'). Parameters:
C=1,1=0,g.=1 E, = =80, gna = 2.25, Ena = 60, Vi = =20, k = 15 (sce
Fig. 2.20).

9. Draw bifurcation diagram of the [lk;-model

instantaneous Ixir
A

CV =1I-g.(V—EL) — gxiwhoo(V)(V — Ex) , (3.11)

using parameters from Fig. 3.38 and treating [ as a bifurcation parameter.

10. Derive an explicit formula that relates the position of the equilibrium in the
Hodgkin-Huxley model to the magnitude of the injected dc-current I. Are there
any saddle-node bifurcations?

11. Draw bifurcation diagram of the Iy, ,-model (3.5) using parameters from Fig. 3.39
and treating

(a) gr, as a bifurcation parameter,

(b) Ep, as a bifurcation parameter.
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Figure 3.40: The Ix-model having leak current (Ir) and persistent K™ current (/k)
and described by (3.12). Parameters: C' =1, g, = 1, F, = —80, gk = 1, EFx = —90,
Vi = =53, k =15 (see Fig. 2.20).
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Figure 3.41: The [,-model having leak current (/1) and “hyperpolarization-activated”
inward current [, and described by (3.13). Parameters: C' = 1, g, = 1, Ep, = —80,

gn =1, By = =43, Vi = =75, k = —5.5 (Huguenard and McCormick 1992).

12. Draw bifurcation diagram of the Ix;-model (3.11) using parameters from Fig. 3.38

and treating
(a) gr as a bifurcation parameter,
(b) gkir as a bifurcation parameter.

13. Perform the bifurcation analysis of the Iy,,-model with I = 0 and gna as a
bifurcation parameter. In particular, use computer simulations to reproduce
analogues of figures 3.25, 3.26, and 3.30-3.33.

14. Show that the Ix-model in Fig. 3.40

instantaneous Ik
A\

CV = —gL(V — EL) - ’gKmﬁo(V)(V — EK)‘ .

(3.12)

cannot exhibit saddle-node bifurcation for V' > Ex. (Hint: show that F'(V) # 0
for all V' > Ex.)
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15. Show that the [,-model in Fig. 3.41

instantaneous 1,

A

CV =—g(V = Ep) — gnhoo(V)(V — Ep) (3.13)

cannot exhibit saddle-node bifurcation for any V < E,.

16. Prove that the upstroke of the spike in the quadratic integrate-and-fire neuron
(3.9) has the asymptote 1/(c —t) for some ¢ > 0.

17. (Cusp  bifurcation) Draw  bifurcation diagram and representative
phase portraits of the system @ = a + bz — 2%, where a and b are bifurcation
parameters. Plot the bifurcation diagram in the (a, b, z)-space and on the (a, b)-

plane.

18. (Gradient systems) An n-dimensional dynamical system & = f(x), x = (x1,...,x,) €
R™ is said to be gradient when there is a potential (energy) function F(z) such
that

&= — grad E(z),
where

grad E(z) = (Eyy, ..., Ey,)

is the gradient of E(x). Show that all one-dimensional systems are gradient (Hint:
see Fig. 3.11). Find potential (energy) functions for the following one-dimensional
systems

-V

= —sinV

a. V=0 b. V=1 c. V
d V=-1+V? e. V=V-V3 f. v
19. Consider a dynamical system @ = f(z), z(0) = zo.

(a) (Stability) An equilibrium y is stable if any solution z(t) with z sufficiently
close to y remains near y for all time. That is, for all € > 0 there exists
0 > 0 such that if |zg — y| < § then |z(t) —y| < e for all t > 0.

(b) (Asymptotic stability) A stable equilibrium y is asymptotically stable if all
solutions starting sufficiently close to y approach it as t — oco. That is, if
d > 0 from the definition above could be chosen so that lim;_.., z(t) = y.

(c¢) (Exponential stability) A stable equilibrium y is said to be exponentially
stable when there is a constant @ > 0 such that |z(t) —y| < exp(—at) for all
2o near y and all ¢t > 0.

Prove that (c) implies (b), and (b) implies (a). Show that (a) does not imply
(b) and (b) does not imply (c); That is, present a system having stable but not
asymptotically stable equilibrium, and a system having asymptotically but not
exponentially stable equilibrium.





