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Figure 10.1: Definition of a phase of oscillation, ϑ, in the INa + IK-model with param-
eters as in Fig.4.1a and I = 10.

oscillators.

10.1 Pulsed Coupling

In this section we consider oscillators of the form

ẋ = f(x) + Aδ(t− ts) , x ∈ Rm, (10.1)

having exponentially stable limit cycles and experiencing pulsed stimulation at times
ts that instantaneously increases the state variable by the constant A. The Dirac
delta function δ(t) is a mathematical shorthand notation for resetting x by A. The
strength of pulsed stimulation, A, is not assumed to be small. Most of the results of
this section can also be applied to the case in which the action of the input pulse is not
instantaneous, but smeared over an interval of time, typically shorter than the period
of oscillation.

10.1.1 Phase of Oscillation

Many types of physical, chemical, and biological oscillators share an astonishing feature:
they can be described by a single phase variable ϑ. In the context of tonic spiking, the
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phase is usually taken to be the time since the last spike, as in Fig.10.1a.

We say that a function x(t) is periodic if there is a constant T > 0 such that
x(t + T ) = x(t) for any t. The minimal value of the constant is the period of x(t).
Periodic functions appear in dynamical systems having limit cycle attractors.

The notion of the phase of oscillation is related to the notion of parametrization
of a limit cycle attractor, as in Fig.10.1b. Take a point x0 on the attractor and plot
the trajectory x(t) with x(0) = x0. Then the phase of x(t) is ϑ = t. As t increases
past the period T , then 2T , an so on, the phase variable ϑ wraps around the interval
[0, T ], jumping from T to 0; see Fig.10.1c. Gluing together the points 0 and T , as in
Fig.10.1d, we can treat the interval [0, T ] as a circle, denoted as S1, with circumference
T . The parametrization is the mapping of S1 in Fig.10.1d into the phase space R2 in
Fig.10.1b, given by ϑ 7→ x(ϑ).

We could put the initial point x0 corresponding to the zero phase anywhere else on
the limit cycle, and not necessarily at the peak of the spike. The choice of the initial
point introduces an ambiguity in parameterizing the phase of oscillation. Different
parametrizations, however, are equivalent up to a constant phase shift (i.e., translation
in time). In the rest of the chapter, ϑ always denotes the phase of oscillation, the
parameter T denotes the period of oscillation, and ϑ = 0 corresponds to the peak of
the spike unless stated otherwise. If the system has two or more coexisting limit cycle
attractors, then a separate phase variable needs to be defined for each attractor.

10.1.2 Isochrons

The phase of oscillation can also be introduced outside the limit cycle. Consider, for
example, point y0 in Fig.10.2 (top). Since the trajectory y(t) is not on a limit cycle,
it is not periodic. However, it approaches the cycle as t → +∞. Hence, there is some
point x0 on the limit cycle, not necessarily the closest to y0, such that

y(t) → x(t) as t → +∞ . (10.2)

Now take the phase of the nonperiodic solution y(t) to be the phase of its periodic
proxy x(t).

Alternatively, we can consider a point on the limit cycle x0 and find all the other
points y0 that satisfy (10.2). The set of all such points is called the stable manifold
of x0. Since any solution starting on the stable manifold has an asymptotic behavior
indistinguishable from that of x(t), its phase is the same as that of x(t). For this
reason, the manifold represents solutions having equal phases, and it is often referred
to as being the isochron of x0 (iso, equal; chronos, time, in Greek), a notion going back
to Bernoulli and Leibniz.

Every point on the plane in Fig.10.2, except the unstable equilibrium, gives rise to
a trajectory that approaches the limit cycle. Therefore, every point has some phase.
Let ϑ(x) denote the phase of the point x. Then, isochrons are level contours of the
function ϑ(x), since the function is constant on each isochron.
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Figure 10.2: Top. An
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ifold, of a point x0 on the
limit cycle attractor is the
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y0 such that y(t) → x(t)
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cle attractor in Fig.10.1
corresponding to 40 evenly
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The entire plane is foliated by isochrons. We depict only 40 representative ones
in Fig.10.2. In this chapter we consider neighborhoods of exponentially stable limit
cycles, where the foliation is continuous and invariant (Guckenheimer 1975):

• Continuity. The function ϑ(x) is continuous so that nearby points have nearby
phases.

• Invariance. If ϑ(x(0)) = ϑ(y(0)), then ϑ(x(t)) = ϑ(y(t)) for all t. Isochrons are
mapped to isochrons by the flow of the vector field.

Fig.10.3 shows the geometry of isochrons of various oscillators. The Andronov-Hopf
oscillator in the figure is often called a radial isochron clock for the obvious reason. It
is simple enough to be solved explicitly (see exercise 1). In general, finding isochrons
is a daunting mathematical task. In exercise 3 we present a MATLAB program that
finds isochrons numerically.

10.1.3 PRC

Consider a periodically spiking neuron (10.1) receiving a single brief pulse of current
that increases the membrane potential by A = 1 mV, as in Fig.10.4 (left). Such a
perturbation may not elicit an immediate spike, but it can change the timing, that is,
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Figure 10.3: Isochrons of various oscillators. Andronov-Hopf oscillator: ż = (1 + i)z −
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parameters as in Fig.4.1a and I = 10 (Class 1) and I = 35 (Class 2). Only isochrons
corresponding to phases nT/20, n = 1, . . . , 20, are shown.

the phase, of the following spikes. For example, the perturbed trajectory (solid line in
Fig.10.4, left) fires earlier than the free-running unperturbed trajectory (dashed line).
That is, right after the perturbation, the phase, ϑnew, is greater than the old phase,
ϑ. The magnitude of the phase shift of the spike train depends on the exact timing of
the stimulus relative to the phase of oscillation ϑ. Stimulating the neuron at different
phases, we can measure the phase response curve (also called phase-resetting curve
PRC, or spike time response curve STRC)

PRC (ϑ) = {ϑnew − ϑ} (shift = new phase – old phase) ,

depicted in Fig.10.4, right. Positive (negative) values of the function correspond to
phase advances (delays) in the sense that they advance (delay) the timing of the next
spike.
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Figure 10.4: Phase response of the INa + IK-model with parameters as in Fig.4.1a and
I = 4.7. The dashed voltage trace is the free-running trajectory.

In contrast to the common folklore, the function PRC (ϑ) can be measured for an
arbitrary stimulus, not necessarily weak or brief. The only caveat is that to measure
the new phase of oscillation perturbed by a stimulus, we must wait long enough for
transients to subside. This becomes a limiting factor when PRCs are used to study
synchronization of oscillators to periodic pulses, as we do in section 10.1.5.

There is a simple geometrical relationship between the structure of isochrons of an
oscillator and its PRC, illustrated in Fig.10.5 (see also exercise 6). Let us stimulate
the oscillator at phase ϑ with a pulse, which moves the trajectory from point x lying
on the intersection of isochron ϑ and the limit cycle attractor to a point y lying on
some isochron ϑnew. From the definition of PRC, it follows that ϑnew = ϑ+PRC(ϑ).

In general, one uses simulations to determine PRCs, as we do in Fig.10.4. Using
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the MATLAB program presented in exercise 5, we can determine PRCs of all four
oscillators in Fig.10.3 and plot them in Fig.10.6. It is a good exercise to explain the
shape of each PRC in the figure, or at least its sign, using the geometry of isochrons
of corresponding oscillators. In section 10.2.4 we discuss pitfalls of using the straight-
forward method in Fig.10.4 to measure PRCs in biological neurons, and we present a
better technique.

Note that the PRC of the INa + IK-model in Fig.10.6 is mainly positive in the
Class 1 regime, that is, when the oscillations appear via saddle-node on invariant circle
bifurcation, but changes sign in the Class 2 regime, corresponding in this case to the
supercritical Andronov-Hopf bifurcation. In section 10.4 we find PRCs analytically
in the case of weak coupling, and show that the PRC of a Class 1 oscillator has the
shape sin2 ϑ (period T = π) or 1 − cos ϑ (period T = 2π), whereas that of a Class
2 oscillator has the shape sin ϑ (period T = 2π). We show in section 10.1.7 how the
synchronization properties of an oscillator depend on the shape of its PRC.
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10.1.4 Type 0 and Type 1 Phase Response

Instead of phase-resetting curves, many researchers in the field of circadian rhythms
consider phase transition curves (Winfree 1980)

ϑnew = PTC(ϑold).

Since

PTC (ϑ) = {ϑ + PRC(ϑ)} mod T,

the two approaches are equivalent. PRCs are convenient when the phase shifts are
small, so that they can be magnified and seen clearly. PTCs are convenient when the
phase shifts are large and comparable with the period of oscillation. We present PTCs
in this section solely for the sake of review, and we use PRCs throughout the rest of
the chapter.
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Figure 10.8: Time crystal (left) and its contour plot (right). Shown is the PTC (ϑ,A)
of the Andronov-Hopf oscillator (see exercise 4).

In Fig.10.7 (top) we depict phase portraits of the Andronov-Hopf oscillator having
radial isochrons and receiving pulses of magnitude A = 0.5 (left) and A = 1.5 (right).
Note the drastic difference between the corresponding PRCs or PTCs. Winfree (1980)
distinguishes two cases:

• Type 1 (weak) resetting results in continuous PRCs and PTCs with mean slope
1.

• Type 0 (strong) resetting results in discontinuous PRCs and PTCs with mean
slope 0.

(Do not confuse these classes with Class 1, 2, or 3 excitability.) The discontinuity
of the Type 0 PRC in Fig.10.7 is a topological property that cannot be removed by
reallocating the initial point x0 that corresponds to zero phase. As an exercise, prove
that the discontinuity stems from the fact that the shifted image of the limit cycle
(dashed circle) goes beyond the central equilibrium at which the phase is not defined.

If we vary not only the phase ϑ of the applied stimulus, but also its amplitude
A, then we obtain parameterized PRC and PTC. In Fig.10.8 we plot PTC (ϑ,A) of
the Andronov-Hopf oscillator (the corresponding PRC is derived in exercise 4). The
surface is called time crystal and it can take quite amazing shapes (Winfree 1980). The
contour plot of PTC (ϑ,A) in the figure contains the singularity point (black hole) that
corresponds to the phaseless equilibrium of the Andronov-Hopf oscillator. Stimulation
at phase ϑ = π with magnitude A = 1 pushes the trajectory into the equilibrium and
stalls the oscillation.



452 Synchronization

n

n PRC n
PRC n

n+1 n PRC n Ts

time
Ts

pulse n+1pulse n

ph
as

e 
of

 o
sc

ill
at

io
n 

Figure 10.9: Calculation of
the Poincare phase map.

10.1.5 Poincare Phase Map

The phase-resetting curve (PRC) describes the response of an oscillator to a single
pulse, but it can also be used to study its response to a periodic pulse train using the
following “stroboscopic” approach. Let ϑn denote the phase of oscillation at the time
the nth input pulse arrives. Such a pulse resets the phase by PRC (ϑn), so that the new
phase right after the pulse is ϑn+PRC(ϑn) (see Fig.10.9). Let Ts denote the period of
pulsed stimulation. Then the phase of oscillation before the next, (n + 1)th, pulse is
ϑn+PRC(ϑn) + Ts. Thus, we have a stroboscopic mapping of a circle to itself,

ϑn+1 = (ϑn + PRC(ϑn) + Ts) mod T, (10.3)

called the Poincare phase map (two pulse-coupled oscillators are considered in exer-
cise 11). Knowing the initial phase of oscillation ϑ1 at the first pulse, we can determine
ϑ2, then ϑ3, and so on. The sequence {ϑn} with n = 1, 2, . . . , is called the orbit of the
map, and it is quite easy to find numerically.

Let us illustrate this concept using the INa + IK-oscillator with PRC shown in
Fig.10.4. Its free-running period is T ≈ 21.37 ms, and the period of stimulation
in Fig.10.10a is Ts = 18.37, which results in the Poincare phase map depicted in
Fig.10.10d. The cobweb in the figure is the orbit going from ϑ1 to ϑ2 to ϑ3, and so
on. Note that the phase ϑ3 cannot be measured directly from the voltage trace in
Fig.10.10a because pulse 2 changes the phase, so it is not the time since the last spike
when pulse 3 arrives. The Poincare phase map (10.3) takes into account such multiple
pulses. The orbit approaches a point (called a fixed point; see below) that corresponds
to a synchronized or phase-locked state.

A word of caution is in order. Recall that PRCs are measured on the limit cycle
attractor. However, each pulse displaces the trajectory away from the attractor, as
in Fig.10.5. To use the PRC formalism to describe the effect of the next pulse, the
oscillator must be given enough time to relax back to the limit cycle attractor. Thus,
if the period of stimulation Ts is too small, or the attraction to the limit cycle is too
slow, or the stimulus amplitude is too large, the Poincare phase map may be not an
appropriate tool to describe the phase dynamics.
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Poincare phase map.

10.1.6 Fixed points

To understand the structure of orbits of the Poincare phase map (10.3), or any other
map

ϑn+1 = f(ϑn) , (10.4)

we need to find its fixed points

ϑ = f(ϑ) (ϑ is a fixed point),

which are analogues of equilibria of continuous dynamical systems. Geometrically, a
fixed point is the intersection of the graph of f(ϑ) with the diagonal line ϑn+1 = ϑn

(see Fig.10.10d or Fig.10.11). At such a point, the orbit ϑn+1 = f(ϑn) = ϑn is fixed.
A fixed point ϑ is asymptotically stable if it attracts all nearby orbits, i.e., if ϑ1 is in
a sufficiently small neighborhood of ϑ, then ϑn → ϑ as n → ∞, as in Fig.10.11, left.
The fixed point is unstable if any small neighborhood of the point contains an orbit
diverging from it, as in Fig.10.11 (right).

The stability of the fixed point is determined by the slope

m = f ′(ϑ)
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of the graph of f at the point, which is called the Floquet multiplier of the mapping.
It plays the same role as the eigenvalue λ of an equilibrium of a continuous dynamical
system. Mnemonically, the relationship between them is µ = eλ, to which the fixed
point is stable when |m| < 1 (λ < 0) and unstable when |m| > 1 (λ > 0). Fixed
points bifurcate when |m| = 1 (λ is zero or purely imaginary). They lose stability
via flip bifurcation (a discrete analogue of Andronov-Hopf bifurcation) when m = −1
and disappear via fold bifurcation (a discrete analogue of saddle-node bifurcation)
when m = 1. The former plays an important role in the period-doubling phenomenon
illustrated in Fig.10.14 (bottom trace). The latter plays an important role in the
cycle-slipping phenomenon illustrated in Fig.10.16.

10.1.7 Synchronization

We say that two periodic pulse trains are synchronous when the pulses occur at the
same time or with a constant phase shift, as in Fig.10.12a. Each subplot in the figure
contains an input pulse train (bottom) and an output spike train (top), assuming
that spikes are fired at zero crossings of the phase variable, as in Fig.10.1. Such
a synchronized state corresponds to a stable fixed point of the Poincare phase map
(10.3). The in-phase, anti-phase, or out-of-phase synchronization corresponds to the
phase shift ϑ = 0, ϑ = T/2, or some other value, respectively. Many scientists refer
to the in-phase synchronization simply as “synchronization”, and use the adjectives
anti-phase and out-of-phase to denote the other types of synchronization.
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When the period of stimulation, Ts, is near the free-running period of tonic spiking,
T , the fixed point of (10.3) satisfies

PRC (ϑ) = T − Ts ,

that is, it is the intersection of the PRC and the horizontal line, as in Fig.10.13. Thus,
synchronization occurs with a phase shift ϑ that compensates for the input period
mismatch T − Ts. The maxima and the minima of the PRC determine the oscillator’s
tolerance of the mismatch. As an exercise, check that stable fixed points lie on the side
of the graph with the slope

−2 < PRC ′(ϑ) < 0 (stability region)

marked by the bold curves in Fig.10.13.
Now consider the Class 1 and Class 2 INa + IK-oscillators shown in Fig.10.6. The

PRC in the Class 1 regime is mostly positive, implying that such an oscillator can
easily synchronize with faster inputs (T − Ts > 0) but cannot synchronize with slower
inputs. Indeed, the oscillator can advance its phase to catch up with faster pulse trains,
but it cannot delay the phase to wait for the slower input. Synchronization with the
input having Ts ≈ T is only marginal. In contrast, the Class 2 INa + IK-oscillator does
not have this problem because its PRC has well-defined positive and negative regions.
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10.1.8 Phase-Locking

The phenomenon of p:q-phase-locking occurs when the oscillator fires p spikes for every
q input pulses, such as the 3:2-phase-locking in Fig.10.12b or the 2:2 phase-locking in
Fig.10.14, which typically occurs when pT ≈ qTs. The integers p and q need not be
relatively prime in the case of pulsed-coupled oscillators. Synchronization, that is, 1:1
phase-locking, as well as p:1 phase-locking corresponds to a fixed point of the Poincare
phase map (10.3) with p fired spikes per single input pulse. Indeed, the map tells the
phase of the oscillator at each pulse, but not the number of oscillations between the
pulses.

Each p:q-locked solution corresponds to a stable periodic orbit of the Poincare
phase map with the period q (so that ϑn = ϑn+q for any n). Such orbits in maps (10.4)
correspond to stable equilibria in the iterates ϑk+1 = f q(ϑk), where f q = f ◦ f ◦ · · · ◦ f
is the composition of f with itself q times. Geometrically, studying such maps is like
considering every qth input pulse in Fig.10.12b and ignoring all the intermediate pulses.

Since maps can have coexistence of stable fixed points and periodic orbits, various
synchronized and phase-locking states can coexist in response to the same input pulse
train, as in Fig.10.14. The oscillator converges to one of the states, depending on the
initial phase of oscillation, but can be switched between states by a transient input.

10.1.9 Arnold Tongues

To synchronize an oscillator, the input pulse train must have a period Ts sufficiently
near the oscillator’s free-running period T so that the graph of the PRC and the hori-
zontal line in Fig.10.13 intersect. The amplitude of the function |PRC(ϑ,A)| decreases
as the strength of the pulse A decreases, because weaker pulses produce weaker phase
shifts. Hence the region of existence of a synchronized state shrinks as A → 0, and it
looks like a horn or a tongue on the (Ts, A)-plane depicted in Fig.10.15, called Arnold
tongue. Each p:q-phase-locked state has its own region of existence (p:q-tongue in the
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Figure 10.15: Arnold tongues are regions of existence of various phase-locked states on
the “period-strength” plane.
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Figure 10.16: Cycle slipping phenomenon at the edge of the Arnold tongue correspond-
ing to a synchronized state.

figure), which also shrinks to a point pT/q on the Ts-axis. The larger the order of
locking, p + q, the narrower the tongue and the more difficult it is to observe such a
phase-locked state numerically, let alone experimentally.

The tongues can overlap, leading to the coexistence of phase-locked states, as in
Fig.10.14. If A is sufficiently large, the Poincare phase map (10.3) becomes nonin-
vertible, that is, it has a region of negative slope, and there is a possibility of chaotic
dynamics (Glass and Mackey 1988).

In Fig.10.16 we illustrate the cycle slipping phenomenon that occurs when the input
period Ts drifts away from the 1:1 Arnold tongue. The fixed point of the Poincare
phase map corresponding to the synchronized state undergoes a fold bifurcation and
disappears. In a way similar to the case of saddle-node on invariant circle bifurcation,
the fold fixed point becomes a ghost attractor that traps orbits and keeps them near
the synchronized state for a long period of time. Eventually the orbit escapes, the
synchronized state is briefly lost, and then the orbit returns to the ghost attractor to
be trapped again. Such an intermittently synchronized orbit typically corresponds to
a p:q-phase-locked state with a high order of locking p + q.


