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7.3 Slow Modulation

So far we have considered neuronal models having voltage- or Ca2+-gated conductances
operating on a fast time scale comparable with the duration of a spike. Such conduc-
tances participate directly or indirectly in the generation of each spike and subsequent
repolarization of the membrane potential. In addition, neurons have dendritic trees
and some slow conductances and currents that are not involved in the spike-generation
mechanism, but rather modulate it. For example, some cortical pyramidal neurons
have Ih, all thalamocortical neurons have Ih and ICa(T). Activation and inactivation
kinetics of these current is too slow to participate in the generation of up-stroke or
downstroke of a spike, but the currents can modulate spiking, e.g., they can transform
it into bursting.

To illustrate the phenomenon of slow modulation, we use the INa,p+IK +IK(M)-
model

CV̇ =

INa,p+IK-model︷ ︸︸ ︷
I−gL(V −EL)−gNam∞(V )(V −ENa)−gKn(V −EK)−

IK(M)︷ ︸︸ ︷
gMnM(V −EK)

ṅ = (n∞(V )− n)/τ(V )
ṅM = (n∞,M(V )− nM)/τM(V ) (slow K+ M-current)

(7.1)

whose excitable and spiking properties are similar to those of the INa,p+IK-submodel
on a short time scale. However, long-term behavior of the two models may be quite
different. For example, the K+ M-current may result in frequency adaptation during a
long train of action potentials. It can change the shape of the I-V relation of the model
and result in slow oscillations, post-inhibitory spikes, and other resonator properties
even when the INa,p+IK-submodel is an integrator. All these interesting phenomena
are discussed in this section.

In general, models having fast and slow currents, such as (7.1), can be written in
the fast-slow form

ẋ = f(x, u) (fast spiking)
u̇ = µg(x, u) (slow modulation)

(7.2)

where vector x ∈ Rm describes fast variables responsible for spiking. It includes the
membrane potential V , activation and inactivation gating variables for fast currents,
etc. Vector u ∈ Rk describes relatively slow variables that modulate fast spiking, e.g.,
gating variable of a slow K+current, intracellular concentration of Ca2+ ions, etc. Small
parameter µ represents the ratio of time scales between spiking and its modulation.
Such systems often result in bursting activity, and we study them in detail in the next
chapter.

7.3.1 Spike-frequency modulation

Slow currents can modulate the instantaneous spiking frequency of a long train of
action potentials, as we illustrate in Fig. 7.43a using recordings of a layer 5 pyramidal
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Figure 7.43: Spike-frequency adaptation in layer 5 pyramidal cell (see Fig. 7.3). Ramp
data is from Fig. 7.6.

neuron. The neuron generates a train of spikes with increasing interspike interval (see
inset in the figure) in response to a long pulse of injected dc-current. In Fig. 7.43b
we plot the instantaneous interspike intervals Ti, i.e., the time intervals between spikes
number i and i + 1, as a function of the magnitude of injected current I. Notice that
Ti(I) < Ti+1(I), meaning that the intervals increase with each spike. The function
T0(I) describes the latency of the first spike, and T∞(I) describes the steady-state
(asymptotic) interspike period. The instantaneous frequencies are defined as Fi(I) =
1000/Ti(I) (Hz), and they are depicted in Fig. 7.43c. Since the neuron is Class 1
excitable, the F-I curves are square-root parabolas (see Sect. 6.1.2). Notice that F0(I)
is a straight line.

Decrease of the instantaneous spiking frequency, as in Fig. 7.43, is referred to as
spike-frequency adaptation. This is a prominent feature of cortical pyramidal neurons
of the regular spiking (RS) type (Connors and Gutnick 1990), as well as many other
types of neurons. In contrast, cortical fast spiking (FS) interneurons (Gibson et al.
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Figure 7.44: Spike-frequency acceleration of a cortical fast spiking (FS) interneuron.
Data kindly provided by Barry Connors.

1999) exhibit spike-frequency acceleration depicted in Fig. 7.44, i.e., the instantaneous
interspike intervals decrease, and the frequency increases with each spike.

Whether a neuron exhibits spike frequency adaptation or acceleration depends on
the nature of the slow current (or currents) and how it affects the spiking limit cycle of
the fast subsystem. At the first glance, a resonant slow current, e.g., slowly activating
K+ or slowly inactivating Na+ current, buildups during each spike and provides a
negative feedback that should slow down spiking of the fast subsystem. Buildup of
a slow amplifying current, e.g., slowly activating Na+ or inactivating K+ current, or
slow charging of the dendritic tree should have the opposite effect. In the next chapter,
devoted to bursting, we will show that this simple rule works for many models, but there
are also many exceptions. To understand how the slow subsystem modulates repetitive
spiking, we need to consider bifurcations of the fast subsystem in (7.2) treating the
slow variable u as a bifurcation parameter.

7.3.2 I-V relation

Slow currents and conductances, though not responsible for the generation of spikes,
can mask the true I-V relation of the fast subsystem in (7.2) responsible for spiking.
Take, for example, the INa,p+IK-model with parameters as in Fig. 4.1a (high-threshold
K+ current), so that its I-V curve is non-monotonic with a region of negative slope
depicted in Fig. 7.45a. Such a system is near saddle-node on invariant circle bifurcation
and it acts as an integrator. Now add a slow K+ M-current with I-V relation depicted
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Figure 7.45: Slow conductances can mask the true I-V relation of the spike-generating
mechanism. (a) The INa,p+IK-model with parameters as in Fig. 4.1a has a non-
monotonic I-V curve Ifast(V ). Addition of the slow K+ M-current with parameters
as in Sect. 2.3.5 and gM = 5 (dashed curve) makes the asymptotic I-V relation, I∞(V ),
of the full INa,p+IK+IK(M)-model monotonic. (b) Addition of a slow inactivation gate
to the K+ current of the INa,p+IK-model with parameters as in Fig. 4.1b results in a
non-monotonic asymptotic I-V relation of the full INa,p+IA-model.

as a dash curve in the figure and a time constant τM = 100 ms. The spike-generating
mechanism of the combined INa,p+IK+IK(M)-model is described by the fast INa,p+IK-
submodel, so that the neuron continue to have integrator properties, at least on the
millisecond time scale. However, the asymptotic I-V relation I∞(V ) is dominated by the
strong IK(M)(V ) and it is monotonic, as if the INa,p+IK+IK(M)-model is a resonator. The
model can indeed exhibit some resonance properties, such as post-inhibitory (rebound)
responses, but only on the long time scale of hundreds of milliseconds, i.e., on the time
scale of the slow K+ M-current.

Similarly, we can take a resonator model with a monotonic I-V relation and add a
slow amplifying current or a gating variable to get a non-monotonic I∞(V ), as if the
model becomes an integrator. For example, in Fig. 7.45b we use the INa,p+IK-model
with parameters as in Fig. 4.1b (low-threshold K+ current) and add an inactivation
gate to the persistent K+ current, effectively transforming it into transient A-current.
If the inactivation kinetic is sufficiently slow, the INa,p+IA-model retains resonator
properties on the millisecond time scale, i.e., on the time scale of individual spikes.
However, its asymptotic I-V relation, depicted in Fig. 7.45b, becomes non-monotonic.
Besides spike-frequency acceleration, the model acquires another interesting property
– bistability. A single spike does not inactivate IA significantly. A burst of spikes could
inactivate the K+ A-current to such a degree that repetitive spiking becomes sustained.

When a neuronal model consists of conductances operating on drastically different
time scales, it has multiple I-V relations, one for each time scale. We illustrate this
phenomenon in Fig. 7.46 using the INa,p+IK+IK(M)-model with activation time constant
of 0.01 ms for INa,p, 1 ms for IK, and 100 ms for IK(M). The up-stroke of an action
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Figure 7.46: (a) The INa,p+IK+IK(M)-model in Fig. 7.45a has three I-V relations: In-
stantaneous I0(V ) = Ileak(V ) + INa,p(V ) describes spike upstroke dynamics. The curve
Ifast(V ) = I0(V )+ IK(V ) is the I-V relation of the fast INa,p+IK-subsystem responsible
for spike-generating mechanism. The curve I∞(V ) = Ifast(V ) + IK(M)(V ) is the steady-
state (asymptotic) I-V relation of the full model. Dots denote values obtained from a
simulated voltage-clamp experiment in (b); Notice the logarithmic time scale. Magni-
fications of current responses are in (c,d,e). Simulated time constants: τNa,p(V ) = 0.01
ms, τK(V ) = 1 ms, τM(V ) = 100 ms.

potential is described only by leak and persistent Na+ currents, since the K+ currents
do not have enough time to activate during such a short event. During the up-stroke,
the model can be reduced to a 1-dimensional system (see Chap. 3) with instantaneous
I-V relation I0(V ) = Ileak + INa,p(V ) depicted in Fig. 7.46a. Dynamics during and
immediately after the action potential is described by the fast INa,p+IK-subsystem
with its I-V relation Ifast(V ) = I0(V ) + IK(V ). Finally, the asymptotic I-V relation,
I∞(V ) = Ifast(V ) + IK(M)(V ), takes into account all currents in the model.

The three I-V relations determine fast, medium, and asymptotic behavior of a
neuron in a voltage-clamp experiment. If the time scales are separated well (they are
in Fig. 7.46), all three I-V relations can be measured from a simple voltage-clamp
experiment depicted in Fig. 7.46b. We hold the model at V = −70 mV and step
the command voltage to various values. The values of the current, taken at t = 0.05
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Figure 7.47: Slow subthreshold oscillation of membrane potential of cat thalamocortical
neuron evoked by slow hyperpolarization (modified from Roy et al. 1984).

ms, t = 5 ms, and t = 500 ms in Fig. 7.46b, result in the instantaneous, fast, and
steady-state I-V curves, respectively. Notice that the data in Fig. 7.46b is plotted on
logarithmic time scale. Various magnifications using linear time scale are depicted in
Fig. 7.46c,d, and e. Numerically obtained values of the three I-V relations are depicted
as dots in Fig. 7.46a. They approximate the theoretical values quite well because there
is a 100-fold separation of time scales in the model.

7.3.3 Slow Subthreshold oscillation

Interactions between fast and slow conductances can result in low-frequency subthresh-
old oscillation of membrane potential, such as the one in Fig. 7.47, even when the fast
subsystem is near a saddle-node bifurcation, acts as an integrator, and cannot have
subthreshold oscillations. The oscillation in Fig. 7.47 is caused by the interplay between
activation and inactivation of the slow Ca2+ T-current and inward h-current, and it is
a precursor of bursting activity, which we consider in detail in the next chapter.

We identify three different mechanisms of slow subthreshold oscillations of mem-
brane potential of a neuron.

• The fast subsystem responsible for spiking has a small-amplitude subthreshold
limit cycle attractor. The period of the limit cycle may be much larger than the
time scale of the slowest variable of the fast subsystem when the cycle is near
saddle-node on invariant circle, saddle homoclinic orbit bifurcation, or Bogdanov-
Takens bifurcation considered in Chap. 6. In this case, no slow currents or con-
ductances modulating the fast subsystem are needed. However, such a cycle must
be near the bifurcation, hence low-frequency subthreshold oscillation exists in a
narrow parameter range and it is difficult to be seen experimentally.

• The I-V relation of the fast subsystem has N-shape in the subthreshold voltage
range, so that there are two stable equilibria corresponding to two resting states,
as e.g., in Fig. 7.36. The slow resonant variable switches the fast subsystem
between the states via a hysteresis loop resulting in a subthreshold slow relaxation
oscillation.

• If the fast subsystem has a monotonic I-V relation, then stable subthreshold
oscillation can result from the interplay between two or more slow variables.
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Figure 7.48: Rebound responses to long inhibitory pulses in (a) pyramidal neuron of
sensorimotor cortex of juvenile rats (modified from Hutcheon et al. 1996) and (b) rat
auditory thalamic neurons (modified from Tennigkeit et al. 1997).

One slow variable is not enough because the entire system can be reduced to a
one-dimensional slow equation, as we show in Ex. 7.

7.3.4 Rebound response and voltage sag

A slow resonant current can make a neuron fire a rebound spike or a burst in response to
a sufficiently long hyperpolarizing current, even when the spike-generating mechanism
of the neuron is near a saddle-node bifurcation and hence has neuro-computational
properties of an integrator. For example, the cortical pyramidal neuron in Fig. 7.48a
has a slow resonant current Ih, which opens by hyperpolarization. A short pulse of
current does not open enough of Ih and results only in a small subthreshold rebound
potential. In contrast, a long pulse of current opens enough Ih, resulting in a strong
inward current that produces the voltage sag and, upon termination of stimulation,
drives the membrane potential over the threshold.

Similarly, the thalamocortical neuron in Fig. 7.48b has a low-threshold Ca2+ T-
current ICa(T) that is partially activated but completely inactivated at rest. A negative
pulse of current hyperpolarizes the neuron and deinactivates the T-current, thereby
making it available to generate a spike. Notice that there is no voltage sag in Fig. 7.48b
because the T-current is deactivated at low membrane potentials. Upon termination of
the long pulse of current, the membrane potential returns to the resting state around
-68 mV, the Ca2+ T-current activates and drives the neuron over the threshold. A
distinctive feature of thalamocortical neurons is that they fire a rebound burst of spikes
in response to strong negative currents.

Even when the rebound depolarization is not strong enough to elicit a spike, it
may increase the excitability of the neuron, so that it fires a spike to an otherwise
subthreshold stimulus, as in Fig. 7.49a. This type of post-inhibitory facilitation relies
on the slow currents, and not on the resonant properties of the spike-generation mecha-
nism (as in Fig. 7.31). Figure 7.49b demonstrates the inverse property, post-excitatory
depression, i.e., a decreased excitability after a transient depolarization. In this seem-
ingly counterintuitive case, a superthreshold stimulation becomes subthreshold when it
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Figure 7.49: Post-inhibitory facilitation (a) and post-excitatory depression (b) in a
layer 5 pyramidal neuron (IB type) of rat’s visual cortex having slow conductances (in
vitro recording).
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Figure 7.50: Afterhyperpolarizations (AHP) and depolarizing after-potentials (DAPs)
in intrinsically bursting (IB) pyramidal neurons of the rat motor cortex.

is preceded by a depolarized pulse, because the pulse partially inactivates Na+ current
and/or activates K+ current.

7.3.5 AHP and DAP

There could be negative and positive deflections of the membrane potential right after
the spike, illustrated in Fig. 7.50 and Fig. 7.51, known as afterhyperpolarizations (AHP)
and depolarizing after-potentials (DAP) or afterdepolarizations (ADP). A great effort
is usually made to determine the ionic basis of AHPs and DAPs, since it is implicitly
assumed that they are generated by slow currents, such as IAHP, or by slow dendritic
spikes back-propagating into the soma (which is true for many cortical pyramidal neu-
rons).

Let us consider AHP first. Each spike in the initial burst in Fig. 7.50 presumably
activates a slow voltage- or Ca2+dependent outward K+ current, which eventually stops
the burst and hyperpolarizes the membrane potential. During the AHP period, the
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Figure 7.51: Rebound spikes and depolarizing after-
potential (DAP) at the break of hyperpolarizing cur-
rent in thalamocortical neurons of the cat dorsal lat-
eral geniculate nucleus. (data modified from Pirchio
et al. 1997, resting potential is -56 mV, holding po-
tential is -67 mV).
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Figure 7.52: A long depolarizing after-potential (DAP) in the INa,p+IK-model without
any slow currents. Parameters as in Fig. 6.53.

slow outward current deactivates and the neuron can fire again. It can switch from
bursting to tonic spiking mode due to the incomplete deactivation of the slow current.

Similarly, slow inactivation of the transient Ca2+ T-current explains long afterde-
polarization in Fig. 7.51: The current was deinactivated by the preceding hyperpo-
larization, so upon release from the hyperpolarization, it quickly activates and slowly
inactivates thereby producing a slow depolarizing wave on which fast spikes can ride.
The DAP seen in the figure is the tail of the wave.

There is a tendency in the biological community to misinterpret depolarizing after-
potentials as indicators of a slow hidden current that suddenly activates and then
slowly deactivates after the spike. Though this may be true in some neurons, slow
DAPs can also be generated via nonlinear interplay of fast currents responsible for
spiking, rather than via slow currents. One obvious example is the damped oscillation
of membrane potential of the INa,p+IK-model in Fig. 7.52 right after the spike, with the
trough and the peak corresponding to an AHP and a DAP. Notice that the duration of
the DAP is ten times the duration of the spike even though the model does not have
any slow currents. Such a long-lasting effect appears because the trajectory follows
the separatrix, comes close to the saddle point, and spends some time there before
returning to the stable resting state.

An example in Fig. 7.53 shows the membrane potential of a model neuron slowly
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Figure 7.53: Depolarizing after-potential in the INa,p+IK-model passing slowly through
saddle-node on invariant circle bifurcation, as the magnitude of the injected current
ramps down.

passing through the saddle-node on invariant circle bifurcation. Because the vector-
field is small at the bifurcation, which takes place around t = 70 ms, the membrane
potential is slowly increasing along the limit cycle and then slowly decreasing along
the locus of stable node equilibria, thereby producing a slow DAP. In the next chapter
we will show that such DAPs exist in 4 out of 16 basic types of bursting neurons,
including thalamocortical relay neurons and R15 bursting cells in abdominal ganglion
of the mollusk Aplysia.


