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synaptic by Skinner et al. (1994):

• intrinsic release: The active cell stops spiking, terminates inhibition and
allows inhibited cell to fire.

• intrinsic escape: Inhibited cell recovers, starts to fire and shuts off the active
cell.

• synaptic release: The inhibition weakens, e.g., due to spike frequency adap-
tation or short-term synaptic depression, and allows the inhibited cell to fire.

• synaptic escape: Inhibited cell depolarizes above certain threshold and starts
to inhibit the active cell.

All four mechanisms assume that in addition to fast variables responsible for spiking,
there are also slow adaptation variables responsible for slowing down or termination of
spiking, recovery, or synaptic depression. Thus, similarly to the minimal models above,
the circuit has at least two time scales, i.e., it is a fast-slow system.

9.2 Geometry

To understand the neuro-computational properties of bursters, we need to study the
geometry of their phase portraits. In general, it is quite a difficult task. However, it
can be accomplished in the special case of fast-slow dynamics.

9.2.1 Fast-slow bursters

We say that a neuron is a fast-slow burster if its behavior can be described by a
fast-slow system of the form

ẋ = f(x, u) (fast spiking)
u̇ = µg(x, u) (slow modulation)

(9.1)

Vector x ∈ Rm describes fast variables responsible for spiking. It includes the mem-
brane potential V , activation and inactivation gating variables for fast currents, etc.
Vector u ∈ Rk describes relatively slow variables that modulate fast spiking, e.g., gat-
ing variable of a slow K+current, intracellular concentration of Ca2+ ions, etc. Small
parameter µ represents the ratio of time scales between spiking and modulation. When
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Figure 9.12: Stereoscopic image of a bursting trajectory of the INa,p+IK+IK(M)-model
in the three-dimensional phase space (V, n, nslow) (for cross-eye viewing).

we analyze models, we assume that µ ¿ 1; that is, it could be as small as we wish.
The results obtained via such an analysis may not have any sense when µ is of the
order 0.1 or greater.

To analyze bursters, we first assume that µ = 0, so that we can consider the
fast and slow systems separately. This constitutes the method of dissection of neural
bursting pioneered by Rinzel (1985). In fact, we have done this many times in the
previous chapters when we substituted m = m∞(V ) into the voltage equation. The
fast subsystem can be resting (but excitable), bistable, or spiking depending on the
value of u; see Fig. 9.11. Bursting occurs when u visits the spiking and quiescent
areas periodically. Many important aspects of bursting behavior can be understood
via phase portrait analysis of the fast subsystem

ẋ = f(x, u) , x ∈ Rm ,

treating u ∈ Rk as a vector of slowly changing bifurcation parameters.
We say that the burster is of the “m+k” type when the fast subsystem is m-

dimensional and the slow subsystem is k-dimensional. There are some “1+1” and
“2+0” bursters, see Ex.1 – Ex.4, though they do not correspond to any known neuron.
Most of the bursting models in this chapter are of the “2+1” and “2+2” type.

9.2.2 Phase portraits

Since most bursting models are at least of the “2+1” type, their phase space is at
least three-dimensional. Analyzing and depicting multi-dimensional phase portraits is
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challenging. Even understanding the geometry of a single bursting trajectory depicted
in Fig. 9.12 is difficult unless one uses a stereoscope.

In Fig. 9.13 we investigate geometrically the INa,p+IK+IK(M)-model, which is a
fast-slow burster of the “2+1” type. The naked bursting trajectory is depicted in the
lower left corner. We set µ = 0 (i.e., τslow(V ) = +∞) and slice the three-dimensional
space by planes nslow =const, depicted in the top right corner. Phase portraits of
the two-dimensional fast subsystem with fixed nslow are depicted in the middle of the
figure. Notice how the limit cycle attractors and the equilibria of the fast subsystem
depend on the value of nslow. Gluing the phase portraits together, we see that there is
a manifold of limit cycle attractors (shaded cylinder) that starts when nslow < 0 and
ends at the saddle homoclinic orbit bifurcation when nslow = 0.066. There is also a
locus of stable and unstable equilibria that appears via a saddle-node bifurcation when
nslow = 0.0033.

Once we understand the transitions from one phase portrait to another as the slow
variable changes, we can understand the geometry of the burster. Suppose µ > 0 (i.e.,
τslow(V ) = 20 ms) so that nslow can evolve according to its gating equation.

Let us start with the membrane potential at the stable equilibrium corresponding
to resting state. The parameters of the INa,p+IK+IK(M)-model (see caption to Fig. 9.4)
are such that slow K+ M-current deactivates at rest, i.e., nslow slowly decreases, and
the bursting trajectory slides along the bold half-parabola corresponding to the locus
of stable equilibria. After a while, the K+ becomes so small, that it cannot hold the
membrane potential at rest. This happens when nslow passes the value 0.0033, the
stable equilibrium coalesces with an unstable equilibrium (saddle), and they annihilate
each other via saddle-node bifurcation. Since the resting state no longer exists (see
phase portrait at the top left of Fig. 9.13) the trajectory jumps up to the stable limit
cycle corresponding to repetitive spiking. This jumping corresponds to the transition
from resting to spiking behavior.

While the fast subsystem fires spikes, the K+ M-current slowly activates, i.e., nslow

slowly increases. The bursting trajectory winds up around the cylinder corresponding
to the manifold of limit cycles. Each rotation corresponds to firing a spike. After
the 9th spike in the figure, the K+ current becomes so large that repetitive spiking
cannot be sustained. This happens when nslow passes the value 0.066, the limit cycle
becomes a homoclinic orbit to a saddle, and then disappears. The bursting trajectory
jumps down to the stable equilibrium corresponding to the resting state. This jumping
corresponds to the termination of active phase of bursting and transition to resting.
While at rest, K+ current deactivates, nslow decreases, and so on.

Figure 9.13 presents the guts of the geometrical mechanism of bursting of the
INa,p+IK+IK(M)-model with parameters as in Fig. 9.4. Other values of the parame-
ters can result in different geometrical mechanisms, summarized in Sect. 9.3. In all
cases, our approach is the same: freeze the slow subsystem by setting µ = 0; analyze
phase portraits of the fast subsystem treating the slow variable as a bifurcation pa-
rameter; then glue the phase portraits, let µ 6= 0 but small, and see how the evolution
of the slow subsystem switches the fast subsystem between spiking and resting states.
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The method usually breaks down if µ is not small enough, because evolution of the
“slow” variable starts to interfere with that of the fast variable. How small is small
depends on the particulars of the equations describing bursting activity. One should
worry when µ is greater than 0.1.

9.2.3 Averaging

What governs the evolution of the slow variable u? To study this question, we describe
a well-known and widely used method that reduces the fast-slow system (9.1) to its
slow component. In fact, we have already used this method in Chap. 3 and 4 to reduce
the dimension of neuronal models via substitution m = m∞(V ). Using essentially the
same ideas, we take advantage of the two time scales in (9.1) and get rid of the fast
subsystem via substitution x = x(u).

When the neuron is resting, its membrane potential is at an equilibrium and all
fast gating variables are at their steady-state values, so that x = xrest(u). Using this
function in the slow equation in (9.1) we obtain

u̇ = µg(xrest(u), u) (reduced slow subsystem) , (9.2)

which can easily be studied using the geometrical methods presented in Chap. 3 or 4.
Let us illustrate all the steps involved using the INa,p+IK+IK(M)-model with nslow

being the gating variable of the slow K+ M-current. First, we freeze the slow subsystem,
i.e., set τslow(V ) = ∞ so that µ = 1/τslow = 0, and determine numerically the resting
potential Vrest as a function of the slow variable nslow. The function V = Vrest(nslow)
is depicted in Fig. 9.14, top, and it coincides with the solid half-parabola in Fig. 9.13.
Then, we use this function in the gating equation for the M-current to obtain (9.2)

ṅslow = (n∞,slow(Vrest(nslow))− nslow)/τslow(Vrest(nslow)) = ḡ(nslow)

depicted in Fig. 9.14, bottom. Notice that ḡ < 0 meaning that nslow decreases while
the fast subsystem rests. The rate of decrease is fairly small when nslow ≈ 0.

A similar method of reduction, with an extra step, can be used when the fast
subsystem fires spikes. Let x(t) = xspike(t, u) be a periodic function corresponding to
an infinite spike train of the fast subsystem when u is frozen. Slices of this function
are depicted in Fig. 9.14, top. Let T (u) be the period of spiking oscillation. The
periodically forced slow subsystem

u̇ = µg(xspike(t, u), u) (slow subsystem) (9.3)

can be averaged and reduced to a simpler model

ẇ = µḡ(w) (averaged slow subsystem) (9.4)

by a near-identity change of variables w = u+ o(µ), where o(µ) denotes small terms of
order µ or less. Here

ḡ(w) =
1

T (w)

∫ T (w)

0

g(xspike(t, w), w) dt
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Figure 9.14: Spiking solutions V (t) = Vspike(t, uslow), resting membrane potential V =
Vrest(nslow), and the reduced slow subsystem ṅslow = ḡ(nslow) of the INa,p+IK+IK(M)-
model. The reduction is not valid in the shaded regions.

is the average of g, depicted in Fig. 9.14, bottom, for the INa,p+IK+IK(M)-model. Check
that ḡ(w) = g(xrest(w), w) when the fast subsystem is resting. Limit cycles of the
averaged slow subsystem corresponds to bursting dynamics, whereas equilibria corre-
spond to either resting or periodic spiking states of the full system (9.1) – the result
known as Pontryagin–Rodygin (1960) theorem. Interesting regimes correspond to the
co-existence of limit cycles and equilibria of the slow averaged system.

We purposely used a different letter, w, to denote the new slow variable to stress that
(9.4) is not equivalent to (9.3). Their solutions are o(µ)-close to each other only when
certain conditions are satisfied, see Guckenheimer and Holmes (1983) or Hoppensteadt
and Izhikevich (1997). In particular, this straightforward averaging breaks down when
u passes slowly the bifurcation values. For example, the period, T (u), of xspike(t, u) may
go to infinity, as happens near saddle-node on invariant circle and saddle homoclinic
orbit bifurcations, or transients may take as long as 1/µ, or the averaged system (9.4)
is not smooth. All these cases are encountered in bursting models. Thus, one can use
the reduced slow subsystem only when the fast subsystem is sufficiently far away from
a bifurcation, e.g., away from the shaded regions in Fig. 9.14.
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Figure 9.15: Projection of bursting trajectory of the INa,p+IK+IK(M)-model onto the
(nslow, V ) plane.

9.2.4 Equivalent Voltage

Let us consider a “2+1” burster with a slow subsystem depending only on the slow vari-
able and the membrane potential V , as in the INa,p+IK+IK(M)-model. The nonlinear
equation

g(V, u) = ḡ(u) (9.5)

can be solved for V . The solution, V = Vequiv(u), is referred to as being the equivalent
voltage (Kepler et al. 1992, Bertram et al. 1995), because it substitutes the periodic
function xspike(t, u) in (9.3) by an “equivalent” value of the membrane potential, so
that the reduced slow subsystem (9.3) has the same form,

u̇ = µg(Vequiv(u), u) (slow subsystem) , (9.6)

as in (9.1). Check that Vequiv(u) = Vrest(u) when the fast subsystem is resting. An
interesting mathematical possibility is when Vequiv during spiking is below Vrest, leading
to bizarre bursters having amplifying slow currents, such as the one in Ex. 11.

We depict the equivalent voltage of the INa,p+IK+IK(M)-model in Fig. 9.15, left
(variable u corresponds to nslow). In the same figure, we depict the steady-state acti-
vation function n = n∞,slow(V ) (notice the flipped coordinate system). We interpret
the two curves as fast and slow nullclines of the reduced (V, nslow)-system. During the
active (spiking) phase of bursting, the reduced system slides along the upper branch of
Vequiv(nslow) to the right. When it reaches the end of the branch, it falls down to the
lower branch corresponding to resting, and slides along this branch to the left. When it
reaches the left end of the lower branch, it jumps up to the upper branch, and thereby
closes the hysteresis loop. Fig. 9.15, right, summarizes all the information needed to
understand the transitions between resting and spiking states in this model. It depicts
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Figure 9.16: Hysteresis-loop periodic bursting.

the bursting trajectory, loci of equilibria of the fast subsystem, and voltage range of
spiking limit cycle as a function of the slow gate nslow. With some experience, one can
read this complicated figure and visualize the three-dimensional geometry underlying
bursting dynamics.

9.2.5 Hysteresis loops and slow waves

Sustained bursting activity of the fast-slow system (9.1) corresponds to periodic (or
chaotic) activity of the reduced slow subsystem (9.6). Depending on the dimension
of u, i.e., on the number of slow variables, there could be two fundamentally different
ways the slow subsystem oscillates.

If the slow variable u is one-dimensional, then there must be a bistability of resting
and spiking states of the fast subsystem so that u oscillates via a hysteresis loop. That
is, the reduced equation (9.6) consists of two parts, one for Vequiv(u) corresponding
to spiking, and one for Vequiv(u) corresponding to resting of the fast subsystem, as
in Fig. 9.15, left. Such a hysteresis loop bursting can also occur when u is multi-
dimensional, as we illustrate in Fig. 9.16. The vector-field on the top (spiking) leaf
pushes u outside the spiking area, whereas the vector-field on the bottom (resting) leaf
pushes u outside the resting area. As a result, u visits the spiking and resting areas
periodically, and the model exhibits hysteresis-loop bursting.

If resting x does not push u into the spiking area, but leaves it in the bistable area,
then the neuron exhibits burst excitability: It has quiescent excitable dynamics, but its
response to perturbations is not a single spike, but a burst of spikes, as we illustrate
in Fig. 9.17.

If the fast subsystem does not have a coexistence of resting and spiking states,
then the reduced slow subsystem (9.6) must be at least two-dimensional to exhibit
sustained autonomous oscillation (see though Ex. 6). Such an oscillation produces a
depolarization wave that drives the fast subsystem to spiking and back, as in Fig. 9.3.
We refer to such bursters as slow-wave bursters. Quite often, however, the slow sub-
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system of a slow-wave burster needs the feedback from the fast subsystem to oscillate.
For example, in Sect. 9.3.2 we consider slow-wave bursting of the INa,p+IK+INa,slow +
IK(M)-model, whose slow subsystem consists of two uncoupled equations, and hence
cannot oscillate by itself unless the fast subsystem is present.

9.2.6 Bifurcations “resting ↔ bursting ↔ spiking”

Switching between spiking and resting states during bursting occurs because the slow
variable drives the fast subsystem through bifurcations of equilibria and limit cycle
attractors. These bifurcations play an important role in our classification of bursters
and in understanding their neuro-computational properties. We discuss them in detail
in the next section.

Since the fast subsystem goes through bifurcations, does this mean that the entire
system (9.1) undergoes bifurcations during bursting? The answer is NO. As long as
parameters of (9.1) are fixed, the system as a whole does not undergo any bifurcations,
no matter how small µ is. The system can exhibit periodic, quasi-periodic or even
chaotic bursting activity, but its m + k-dimensional phase portrait does not change.

The only way to make system (9.1) undergo a bifurcation is to change its param-
eters. For example, in Fig. 9.18 we change the magnitude of the injected dc-current
I in the INa,p+IK+IK(M)-model. Apparently, no bursting exists when I = 0. Then,
repetitive bursting appears with a large interburst period that decreases as I increases.
Value I = 5 was used to obtain bursting solutions in Fig. 9.12 and Fig. 9.13. Fur-
ther increasing of I increases the duration of each burst, until it becomes infinite, i.e.,
bursting is transformed into tonic spiking. When I > 8, the slow K+ current is not
enough to stop spiking.

In Fig. 9.19 we depict the geometry of bursting in the INa,p+IK+IK(M)-model when
I = 3, i.e., just before periodic bursting appears, and when I = 10, i.e., just after
bursting is transformed into tonic spiking.

When I = 3, the nullcline of the slow subsystem nslow = n∞,slow(V ) intersects the
locus of stable equilibria of the fast subsystem. The intersection point is a globally
stable equilibrium of the full system (9.1). Small perturbations, whether in the V
direction, n direction, or nslow direction subside, whereas a large perturbation, e.g., in
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Figure 9.18: Bifurcations of bursting solutions in the INa,p+IK+IK(M)-model as the
magnitude of the injected dc-current I changes.

the V direction that moves the membrane potential to the open square in the figure,
initiates a transient (phasic) burst of 7 spikes. Increasing the magnitude of the injected
current I shifts the saddle-node parabola to the right. When I ≈ 4.54, the nullcline
of the slow subsystem does not intersect the locus of stable equilibria, and the resting
state no longer exists, as in Fig. 9.15, right. (There is still a global steady state, but it
is not stable.)

Further increase of the magnitude of the injected current I results in the intersection
of the nullcline of the slow subsystem with the equivalent voltage function Vequiv(nslow).
The intersection, marked by the black circle in Fig. 9.19, right, corresponds to a globally
stable (spiking) limit cycle of the full system (9.1). A sufficiently strong perturbation
can push the state of the fast subsystem into the attraction domain of the stable
(resting) equilibrium. While the fast subsystem is resting, the slow variable decreases,
i.e., K+ current deactivates, the resting equilibrium disappears and repetitive spiking
resumes.

Figures 9.18 and Fig. 9.19 illustrate possible transitions between bursting and rest-
ing, and bursting and tonic spiking. There could be other routes of emergence of
bursting solutions from resting or spiking, some of them are in Fig. 9.20. Each such
route corresponds to a bifurcation in the full system (9.1) with some µ > 0. For exam-
ple, the case a → 0 corresponds to supercritical Andronov-Hopf bifurcation; the case
c →∞ corresponds to a saddle-node on invariant circle or saddle homoclinic orbit bi-
furcation; the case d →∞ corresponds to a periodic orbit with a homoclinic structure,
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Figure 9.19: Burst excitability (I = 3, left) and periodic spiking (I = 10, right) in the
INa,p+IK+IK(M)-model.
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Figure 9.20: Possible transitions between repetitive bursting and resting, and repetitive
bursting and repetitive spiking.

e.g., blue-sky catastrophe, fold limit cycle on homoclinic torus bifurcation, or some-
thing more complicated. The transitions “bursting ↔ spiking often exhibit chaotic
(irregular) activity, so Fig. 9.20 if probably a great oversimplification. Understanding
and categorizing all possible bifurcations leading to bursting dynamics is an important
but open problem; see Ex. 28.

9.3 Classification

In Fig. 9.21 we identify two important bifurcations of the fast subsystem that are
associated with bursting activity in the fast-slow burster (9.1):

• (resting → spiking) Bifurcation of an equilibrium attractor that results in
transition from resting to repetitive spiking.

• (spiking → resting) Bifurcation of the limit cycle attractor that results in
transition from spiking to resting.

These bifurcations, and not the ionic mechanisms, determine the neuro-computational
properties of fast-slow bursters, discussed in Sect. 9.4. Of course, the ionic basis of
bursting, i.e., the fine electrophysiological details, determine the kind of bifurcations
in Fig. 9.21.

Complete topological classification of bursters based on these two bifurcations is
provided by Izhikevich (2000), who identified 120 different topological types. Here, we
consider only 16 planar point-cycle co-dimension-1 fast-slow bursters. We say that a
fast-slow burster is planar when its fast subsystem is two-dimensional. We emphasize
planar bursters because they have a greater chance to be encountered in computer


