
BioE 332 Assignment 1: Persistent activity in a spatial
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1 Goals

In this assignment we will build a cortical network model that captures neuronal persis-
tent activity, similar to the persistent activity recorded in the prefrontal cortex of animals
performing a spatial working memory task. We will see how stable activity patterns
emerge from the recurrent network dynamics and persist on time scales greatly exceeding
biophysical time constants of constituent neurons and synapses. In the language of dy-
namical systems, the spatial working memory model implements a line attractor. We will
explore the sensitivity of this line attractor to the spiking noise and to the heterogeneity of
the network parameters. By completion of this assignment, we will learn and understand
the following:

Scientifically:

1. Leaky integrate-and-fire (LIF) model of a neuron.

2. Conductance-based models of biophysical synapses: AMPA, NMDA and GABA.

3. Line attractor and persistent activity in the spatial working memory model.

4. Random drift of activity along the line attractor, sensitivity to noise.

Technically:

1. Neural network simulations with Brian.

2. Superposition of inputs on linear synapses.

3. Implementation of non-linear NMDA synapses.

Readings:

1. Working memory model that will be implemented in this assignment, Ref. [1].

2. Extension question, robustness of the line attractor to the heterogeneity of
network parameters, Ref. [2].
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2 Getting started with Brian

To simulate neural networks in software, we will use Brian, a python-based neural network
simulator (www.briansimulator.org). Brian is as versatile as it is easy to use – it can
directly interpret mathematical equations of the model you would like to simulate. So,
type your equations in and you are ready to go!

Installing Brian is easy too. First, you need a working Python distribution with a cou-
ple of required packages, such as NumPy and SciPy. The easiest way to get everything is to
download the Enthought Python distribution from http://www.enthought.com/products/epd.php.
If you register on their web-site with your academic e-mail address, you will get a free
Python distribution with all required packages already included. After you install that,
you can just type into the terminal

e a s y i n s t a l l br ian

and Brian will be installed. For manual installation instructions see the Brian web-site.
Now open a terminal and start an interactive Python interpreter:

ipython ��pylab

Here you can interactively type in Python commands, or if you put your code into a script
with the .py extension, you can execute it with the command

e x e c f i l e ( ’ my scr ipt . py ’ )

Brian comes with two tutorials and plenty of code examples. First, complete both
tutorials to learn how to implement simple integrate-and-fire models in Brian, how to set
up synaptic connections in a network, and how to record spikes or any variable of your
interest.

3 Building the neural circuit model of working memory

We will reproduce the working memory model from Ref. [1]. The model is a recurrent
neural network, that comprises N

E

= 2048 excitatory and N

I

= 512 inhibitory neurons.
We will build the model in sequential steps, by first wiring up the network of inhibitory
neurons only, then adding excitatory neurons to it, and finally creating spatially structured
synaptic connectivity. We begin by setting up the basic network components: neurons and
synapses.

3.1 Integrate-and-fire neurons

Individual neurons are modeled with a simple leaky integrate-and-fire (LIF) model:

C

m

dV

dt

= �g

L

(V � E

L

) + I, (1)

where variable V represents the membrane voltage, and parameters are: C
m

- membrane
capacitance, g

L

- leak conductance, E
L

- leak reversal potential. I is the input current to
the neuron. The “integrate” part of the LIF neuron refers the sub-threshold integration
of the input current with the time constant ⌧

m

= g

L

/C

m

. In the absence of any input
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the voltage decays to the steady-state resting potential V = E

L

. The “fire” part of the
LIF neuron refers to the fixed voltage threshold V

th

: each time the voltage reaches this
threshold a spike is elicited and the voltage is reset to a fixed reset potential V

res

.

3.2 Linear conductance-based synapses

In a network, neuronal input currents arise from spikes arriving through the synapses.
Each synapse contains a population of embedded receptor channels that conduct current
when they bind neurotransmitter (e.g. AMPA, NMDA or GABA). The more receptors
bind neurotransmitter, the higher is the synaptic conductance.

When a spike arrives, the neurotransmitter is released from presynaptic vesicles, the
receptors bind the released neurotransmitter and synaptic conductance increases. There-
after receptors unbind neurotransmitter, whereby the fraction of activated receptors decays
exponentially with the synaptic time constant ⌧

syn

. If spikes arrive at the synapse at a very
high rate, the concentration of neurotransmitter can increase so much that binding rate
exceeds the unbinding rate. In this case all receptors bind neurotransmitter and synaptic
conductance saturates. All chemical synapses exhibit this nonlinear saturation due to the
finite number of postsynaptic receptors.

Since the time constants for AMPA (⌧
syn

⇠ 2ms) and GABA (⌧
syn

⇠ 10ms) receptors
are relatively short, i.e. their unbinding rates are fast, the conductance of these synapses
does not saturate for realistic input firing rates, and their dynamics can be modeled by a
simple linear equation:

I

syn

= �G

syn

s (V � E

syn

), (2)

ds

dt

= � 1

⌧

syn

s+
X

i

�(t� ti). (3)

Here, the current I

syn

is proportional to the product of the voltage and the synaptic
conductance G

syn

. The dimensionless variable s represents the fraction of open channels
and is called the synaptic gating variable. At the time of each presynaptic spike (ti), the
gating variable s is instantaneously incremented by a fixed amount (in our case 1), and
exponentially decays between spikes with the time constant ⌧

syn

.
An important characteristic of the linear synapse model Eq. 3 is a property of superpo-

sition. As for any linear system, the net response caused by two or more input spike trains
is the sum of the responses which would have been caused by each spike train individu-
ally. The superposition property of linear synapses gives us a great advantage for network
simulations. We only need to model one synaptic gating variable s for each receptor type
of each neuron. All input spike trains arriving from di↵erent neurons can be fed to the
same gating variable. In this way, the number of gating variables that we need to model
is equal to the number of neurons (N), and not to the number of synapses (⇠ N

2).

3.3 Recurrent sub-network of inhibitory neurons

Now we are ready to implement the first building block of the working memory model:
a population of N

I

= 512 recurrently connected inhibitory neurons that receive external
excitatory inputs through AMPA synapses. Both AMPA and GABA synapses are modeled
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by a linear model Eq. 3. As in Ref. [1], the background input is modeled as uncorrelated
Poisson spike trains to each neuron at rate of ⌫

ext

= 1.8kHz per cell.
First, we need to set up the model equations:

e q s i = ’ ’ ’
dv/ dt = (� g l i ⇤( v�E l i )� g e x t i ⇤ s e x t ⇤( v�E ampa)� \
Gii ⇤ s gaba ⇤( v�E gaba ))/Cm i : v o l t
d s e x t / dt = �s e x t / t ampa : 1
ds gaba / dt = �s gaba / t gaba : 1
’ ’ ’

For single neuron model and for AMPA and GABA synapses use the parameter values
specified in Ref. [1], and do not forget to specify the units.

Now we generate a neural population (NeuronGroup in Brian) using these equations:

Pi = NeuronGroup (NI , e q s i , th r e sho ld=Vth i , \
r e s e t=Vr i , r e f r a c t o r y=t r i )

To deliver Poisson input to each neuron, we can use the class PoissonGroup (a group
that generates independent Poisson spike trains) and the class IdentityConnection (a con-
nection between two groups of the same size, where neuron i in the source group is con-
nected to neuron i in the target group):

PGi = PoissonGroup (NI , f e x t )
Cpi = Ident i tyConnect ion (PGi , Pi , ’ s e x t ’ , weight =1.0)

Now we only need to set up the recurrent inhibitory connections:

C i i = Connection (Pi , Pi , ’ s gaba ’ , weight =1.0)

and then we can run the network and make the raster plots of activity. You should see
asynchronous firing of neurons at a low firing rate.

3.4 Specify integration method and time step

Before we move on to build the rest of the network, we need to specify some details about
the algorithm used for numerical integration of model equations. For accurate numerical
integration, we will use the second order Runge-Kutta method with small integration
time step dt = 0.02 ms. By default Brian uses Euler method, but this can be changed by
providing the argument order=2 to the NeuronGroup constructor.

The integration time step can be specified using Brian’s clock object. Many Brian
objects store a clock that specifies at which times the object will be updated. If no
clock is specified, the program uses the global default clock. Each clock has the time
step attribute dt, which you can set to the desired value. We will create our own clock
simulation clock, and use it to update the neuron groups as well as the external Poisson
groups. The specification of the inhibitory and Poisson neuronal groups will be slightly
changed:

s imu l a t i on c l o c k=Clock ( dt=0.02⇤ms)
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Pi = NeuronGroup (NI , e q s i , th r e sho ld=Vth i , r e s e t=Vr i , \
r e f r a c t o r y=t r i , c l o ck=s imu la t i on c l o ck , order=2)

PGi = PoissonGroup (NI , f ext , c l o ck=s imu l a t i on c l o c k )

3.5 Saturating non-linearity of NMDA synapses

Modeling dynamics of NMDA synapses is a little trickier because the NMDA conductance
saturates at high presynaptic firing rates. The saturation of NMDA receptors is due to
their long time constant, which exceeds ⇠ 50 times the AMPA time constant, and ⇠ 10
times the GABA time constant. Both, the long synaptic time constant of NMDA receptors
and their saturating nonlinearity are crucial for the stability of persistent firing states in
the working memory model.

Non-linear dynamical equations for NMDA gating variable are given in Ref. [1]. Since
NMDA dynamics is non-linear, we cannot make use of the superposition principle to
implement it with a single postsynaptic gating variable, as we did for AMPA and GABA
synapses. Still it is possible to implement NMDA synapses with only N gating variables for
the network of N neurons. The trick is to integrate NMDA gating variable presynaptically
for each neuron projecting NMDA synapses. This presynaptic value of NMDA gating is
then used to compute the input currents to all postsynaptic targets.

The Brian equations for the excitatory population in the working memory model read:

eq s e = ’ ’ ’
dv/ dt = (� g l e ⇤( v�El e ) � g e x t e ⇤ s e x t ⇤( v�E ampa) \
� Gie⇤ s gaba ⇤( v�E gaba ) \
� Gee⇤ s t o t ⇤( v�E nmda)/(1+b⇤ exp(�a⇤v ) ) )/Cm e : v o l t
d s e x t / dt = �s e x t / t ampa : 1
ds gaba / dt = �s gaba / t gaba : 1
ds nmda/ dt = �s nmda/t nmda+a l f a ⇤x⇤(1�s nmda ) : 1
dx/ dt = �x/ t x : 1
s t o t : 1
’ ’ ’

Note another non-linear term in the NMDA synaptic current equation, which models
voltage-dependence of NMDA channels. In this implementation, the variable s nmda

represents the presynaptic NMDA gating variable of a neuron, whereas the variable s tot

is a postsynaptic NMDA gating for this neuron, that is a weighted sum of NMDA gatings
from all its presynaptic inputs. To finish implementation of NMDA dynamics, we need
to modify the reset mechanism to increment the auxiliary variable x at the time of each
spike:

r e s e t= ’ ’ ’
v=Vr e
x+=1⇤1
’ ’ ’
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and we also need to compute s tot for each neuron on each time step. To this end, Brian
has a mechanism called network operation, which allows to specify arbitrary operations
that will be performed on each time step. We will make use of it in the next section.

3.6 Recurrent network with uniform connectivity

Now we can implement the entire working memory model, with the only simplification
that the recurrent excitatory connections are not structured but uniform for now. To do
this follow these steps:

1. Add the input current through NMDA conductance to the inhibitory (I) population.

2. Create a neural group for the excitatory (E) population with N

E

= 2048.

3. Add the external Poisson drive to the E population.

4. Add the recurrent inhibition from I to E cells with a uniform connection strengths
and weight equal to 1.

Now we will use the network operation mechanism to implement the update of NMDA
conductance s tot on each time step. For simplicity, we just add uniform connections from
each excitatory neuron to all E cells and to all I cells with the weight 1. This means that
each neuron receives just the sum of presynaptic NMDA gatings of all E cells. The Brian
code to implement this reads

@network operat ion ( c l o ck=s imu la t i on c l o ck , when=’ s t a r t ’ )
def update nmda ( c l o ck=s imu l a t i on c l o c k ) :

s NMDA = Pe . s nmda . sum( )
Pe . s t o t = s NMDA
Pi . s t o t = s NMDA

You can run the network now and observe asynchronous activity at low firing rate in
both E and I populations.

3.7 Structured recurrent excitation

The final step is to implement the structured recurrent excitation. Here we will use
another simple trick, that helps to speed up the simulation and to simplify implementation.
The trick takes advantage of the circular symmetry of the working memory model, the
so called “ring” architecture. The connectivity strength depends only on the di↵erence
between preferred directions of two neurons, but not on the absolute value of their preferred
directions. Hence the postsynaptic weighted sum of NMDA gating is a convolution of the
presynaptic gating with the connectivity profile W (✓i � ✓j):

s tot(✓) = (s nmda ⇤W )(✓). (4)

Convolution is e�ciently computed in the Fourier domain as the product of the Fourier
transforms of s nmda and W . Therefore we will precompute the Fourier transform of the
connectivity profile fweight, and then use it on each time step to update the NMDA
gating s tot. The mathematical expression for the connectivity profile together with the
normalization condition from Ref. [1] can be implement as
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from s c ipy . s p e c i a l import e r f
from numpy . f f t import r f f t , i r f f t

# Jm ee i s c a l c u l a t e d from the norma l i za t ion cond i t i on
tmp = sq r t (2⇤ pi )⇤ s igma ee ⇤ e r f ( 3 60 .⇤0 . 5/ sq r t ( 2 . ) / s igma ee )/360 .
Jm ee = (1.� Jp ee ⇤tmp)/(1.�tmp)

weight=lambda i : ( Jm ee+(Jp ee�Jm ee )⇤ \
exp (�0.5⇤(360.⇤min( i ,NE�i )/NE)⇤⇤2/ s igma ee ⇤⇤2))

we ight e=ze ro s (NE)
for i in xrange (NE) :

we ight e [ i ]=weight ( i )

fwe ight = r f f t ( we ight e ) # Fourier transform

Now change the network operation for the NMDA update that we created earlier, in
order to incorporate the structured excitation. Use precomputed fweight and the inverse
Fourier transform. Please note that Ref. [1] has a typo: �

EE

should be 14.4� instead of
18� as specified in the paper.

The network model is now complete. You can run it and observe an asynchronous
spontaneous activity state with low firing rate.

4 Simulating stimulus-specific persistent activity

As you know from Ref. [1], the neural circuit model that we just have built, possess not
only a homogeneous low activity state, but also the whole family of stable attractor states
with a localized profile of high activity (“bump”). To trigger a transition from the low
activity state to the bump attractor, we will stimulate the network for a brief period of
time with a spatially selective input current, the same way as specified in Ref. [1]. To
inject the stimulation current, add an additional input current term I e to the equations
for the excitatory population.

We first precompute the the spatially-selective input current to all neurons for the
desired cue direction:

# return the d i s t ance between neurons on the r ing
def c i r c d i s t a n c e ( de ltaTheta ) :

i f ( de ltaTheta > 0 ) :
return min( deltaTheta ,360� deltaTheta )

else :
return max( deltaTheta , deltaTheta �360)

cu r r en t s = lambda i , j : i cue amp ⇤ \
exp (�0.5⇤ c i r c d i s t a n c e ( ( i�j )⇤360 ./NE)⇤⇤2/ i cue w id th ⇤⇤2)

# precompute input current f o r the cue d i r e c t i o n i cue ang
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cu r r en t e=ze ro s (NE)
j = i cue ang ⇤NE/360 .
for i in xrange (NE) :

cu r r en t e [ i ]= cu r r en t s ( i , j )

Then we use the network operation to switch this current on only during the relevant
period of time:

c u r r e n t c l o c k = Clock ( dt=50⇤ms)

@network operat ion ( cu r r en t c l o ck , when=’ s t a r t ’ )
def update cur r ent s ( c u r r e n t c l o c k ) :

i f ( c u r r e n t c l o c k . t>t c s t a r t and cu r r e n t c l o c k . t<t c s t op ) :
Pe . I e = cu r r en t e

else :
Pe . I e = 0

Here we introduced another clock that we called current clock with the larger time step
dt = 50 ms. This coarser time resolution is su�cient to determine when to switch the
input on and o↵, it is not necessary to perform this check on every integration time step.

Now generate the raster plot of activity in excitatory and inhibitory populations [De-

liverable]. An example is shown in Fig. 1, where a cue stimulus at 180� was presented
at 1 s for duration of 250 ms.

5 Random activity drift on a line attractor

The energy landscape for the line attractor represents a one dimensional valley, with a flat
landscape along the trough. All states along the trough correspond to the same minimal
energy and are stable. Random fluctuations can therefore move the activity from state
to state along the trough of the minimal energy. This will result in the random drift of
activity bumps.

We would like to explore these random activity drifts. To quantify the position of
the activity profile in the network, we will use the population vector measure specified in
Ref. [1]. You can think about it as decoding the direction stored in the working memory
network.

Run simulations of the working memory model for six seconds, repeat the simulation
one hundred times for three network sizes (N

E

=1024, 2048 and 4096). Plot the angle of
the population vector as a function of time for twenty trials [Deliverable], an example is
shown in Fig. 2 (upper panels). Remember, that when you change the network size, you
have to scale the synaptic conductances inversely proportionally to N and to keep N

I

/N

E

ratio fixed. Use di↵erent random seeds for each repetition of the simulation. Compute
and plot the variance for the angle of the population vector at each moment in time for
three network sizes [Deliverable], example is shown in Fig. 2 (lower panel).

Hint. You can implement a version of the population vector measure, that is based
not on the spike count in a fixed time window, but rather on the exponential filter of all
previous spike times with a short time constant (e.g. 10 ms). This way you can implement
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Figure 1: Working memory maintained by a tuned network activity state, reproduced Fig.
2 from Ref. [1].

the population vector computation directly in Brian, and do not need to store spike times
for all the multiple model runs.

Hint. You can run multiple simulations on the Stanford Barley cluster
(www.stanford.edu/group/farmshare/cgi-bin/wiki/index.php). A convenient way to run
multiple similar simulations is to submit an array job. Here is a minimal script to run 100
simulations as an array job:

#!/ bin / bash

#$ �t 1�100

$PYTHON EXE $EXE ��k $SGE TASK ID

Here PYTHON EXE is your Python path, EXE is your executable script. The environ-
mental variable SGE TASK ID contains the ID number for each simulation (1 to 100 in
this case). In this example SGE TASK ID is passed as a command-line argument to the
python script. In your Python code, you can use the Python module argparse to parse
the command-line arguments. This example shows how to set the simulation seed using
the parsed simulation ID number:

import argparse
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Figure 2: The network pattern of persistent activity drifts randomly in time due to noise,
reproduced Fig. 5 from Ref. [1].

pa r s e r = argparse . ArgumentParser ( )
par s e r . add argument ( ’��k ’ , type = int , d e f au l t = 0)
pa = par s e r . p a r s e a r g s ( )
numpy . random . seed ( pa . k )

6 Extension question

To understand why activity drift is slower in networks of larger size, investigate the re-
current input current for a few representative neurons in the network. Examine the dis-
tributions of the total recurrent current, recurrent excitation, recurrent inhibition and the
background excitatory current. Based on your measurements explain results in Fig. 2
[Deliverable].

Introduce heterogeneity in the network: instead of using the exact same parameters
for all neurons, draw the leak reversal potential V

L

randomly from a Gaussian distribution
with the variance 1 mV. Investigate how heterogeneity influences the network’s ability to
maintain the memory of the stimulus location [Deliverable]. You can use Ref. [2] for
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your inspiration.
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