BioE 332 Assignment 2: A recurrent network model of
decision making

Kwabena Boahen, TA: Tatiana FEngel

Assignment due: April 19, 2013

1 Goals

In this assignment we will implement and analyze a neural network model that captures
monkeys’ behavior and neural activity in a perceptual decision task. The network has
structured recurrent excitation. As a result two attractor states co-exist in the network
during the decision period. Global inhibition generates competition between these at-
tractors, which leads to the winner-take-all dynamics, where only one of two competing
neural populations can reach high firing rate. We will perform phase-plane analysis of the
mean-field reduced network model to understand the dynamical mechanism of the decision
making process. We will explore how the network’s ability to integrate inputs depends
on the structure of recurrent connectivity, and then verify these results in a full spiking
network model. By completion of this assignment we will learn about:

Scientifically:

. Competing attractor states in a recurrent network model.
. Dependence of the integration time on the coherence of stimulus input.

. Mean-field reduction of spiking neural networks.

I

. Phase-space dynamics and bifurcation analysis of the decision-making model.
Technically:

1. Dynamical systems analysis using PyDSTool.

2. Running large number of simulations on the cluster.
Readings:

1. Decision making model that will be implemented in this assignment, Ref. [1].

2. Mean-field reduction of the spiking network model and phase-plane analysis,
Ref. [2].



2 Building neural circuit model of decision making

We will reproduce the decision making model from Ref. [1]. The model is a recurrent
neural network that comprises Ng = 1600 excitatory and N; = 400 inhibitory neurons.
The recurrent excitation in the network is structured. There are two stimulus-selective
groups of neurons; within each group there is a strong recurrent excitation that can main-
tain persistent activity. These two neural groups compete through the global feedback
inhibition.

The decision making model has the same ingredients as the working memory model
from the Assignment 1. In both models, the slow dynamics and non-linear saturation of
the NMDA conductance are essential for generating multistability, whereby the network
has a stable spontaneous state (uniform: low firing rate across all neurons) and stable
high-activity states (non-uniform: high firing rate only in a sub-population of neurons).
In the working memory model we used rotationally symmetric connectivity to implement
a continuum of high-activity attractor states (a line attractor). In the decision making
model, there are two neuronal clusters — defined by strong recurrent connectivity — and
consequently there are only two high-activity attractor states. Competition between these
attractors results in the decision-making dynamics. Note that for the default parameter
set from Ref. [1], the decision making model also provides a working memory function:
the high-activity attractor states are stable in the absence of stimulus, thus the memory
of the decision is maintained autonomously in their persistent activity.

Since the dynamical equations for neurons and synaptic currents are identical in the
working memory and decision making models, for the most part you should be able to
implement the decision making model on your own. There are only a few details that you
should pay attention to as outlined in the following subsections.

2.1 Specify integration method and time step

To perform a more accurate numerical integration of the model equations, we will use
the second order Runge-Kutta method with small integration time step dt = 0.02 ms.
By default Brian uses Fuler method, but this can be changed by providing the argument
order=2 to the NeuronGroup constructor.

The integration time step can be specified using Brian’s clock object. Many Brian
objects store a clock that specifies at which times the object will be updated. If no clock
is specified, the program uses the global default clock defaultclock. Each clock has the
time step attribute dt, which you can set to the desired value. We will create our own
clock simulation_clock, and use it to update the neuron groups as well as the external
Poisson groups. We could have used the defaultclock, but we chose to do it this way:

simulation_clock=Clock (dt=0.02*ms)

Pi = NeuronGroup (NI, eqs_i, threshold=Vt.i, reset=Vr.i, \
refractory=tr_i, clock=simulation_clock , order=2)

PGi = PoissonGroup (NI, fext, clock=simulation_clock)




2.2 Subgroups of excitatory neurons

In the model, all excitatory neurons have the same cellular properties. Their segregation
into two stimulus-selective populations and one non-selective population is determined
solely by the structured recurrent connectivity. It is therefore convenient to create a
group Pe with Ng = 1600 excitatory neurons, and then segregate three subpopulations
Pel, Pe2, PeO within this group. For example:

Pel = Pe.subgroup (N1)

where Np is the number of neurons in the subgroup Pel. This way we can specify the
properties common to all excitatory neurons by referring to the group Pe, and setup the
structured connectivity and stimulus selective inputs by referring to the subgroups Pel,
Pe2.

2.3 Synaptic latency

In the decision making model from Ref. [1] all synapses have a latency of 0.5 ms, which
you should specify when you implement the recurrent connections. For example:

Cie = Connection (Pi, Pe, ’'s_gaba’, weight=1.0, delay=0.5%ms)

You should also add the synaptic latency to the implementation of the presynaptic
NMDA gating. In the working memory model there was no synaptic latency, and the
auxiliary z-variable in the equations for the pre-synaptic NMDA gating was incremented
instantaneously at the time of each spike. This instantaneous update was achieved by
modifying the reset rule for the excitatory population. In the decision making model,
the increment of z should be delayed by 0.5 ms after a spike. This can be implemented
in Brian with the IdentityConnection class, which you have already used to add the
external Poisson inputs:

9

selfnmda=IdentityConnection (Pe,Pe, 'x’ ,weight=1.0,delay =0.5%ms)

2.4 Recurrent AMPA current

In the decision making model the recurrent excitation is mediated by both AMPA and
NMDA conductances (in the working memory model there was no recurrent AMPA con-
ductance). We will therefore add the recurrent AMPA connections to the network. Be-
cause we use a linear model for the AMPA-synapse, we can connect the external and
recurrent AMPA inputs to the same AMPA gating variable; we just need to scale the con-
nection weights appropriately. Particularly, determine the AMPA current in the voltage
equation using the conductance grec, AMPA:

IanvpA = —Grec, AMPA SAMPA (V' — Eampa)- (1)

Then connect the external Poisson inputs to the same s_ampa gating variable with the
weight equal to wext= gext, AMPA/Jrec, AMPA:

Cpi = IdentityConnection (PGi, Pi, ’s_ampa’, weight=wext_i)




To implement the structured recurrent AMPA connections, use the parameters w.y
(wp) and w_ (wm) to set the weight of the recurrent AMPA connections that are different
from 1:

C11 = Connection(Pel, Pel, ’'s_ampa’, weight=wp, delay=0.5%ms)

2.5 Structured NMDA connections

Due to the non-linearity of NMDA gating equations, we will again track the NMDA
gating variable presynaptically for each excitatory neuron. The update operation for the
postsynaptic NMDA conductance should also be modified to include the structured NMDA
connectivity:

@network _operation (simulation_clock , when=’start )
def update_nmda(simulation_clock ):
s NMDA1 = Pel.s_.nmda.sum()
s NMDA2 = Pe2.s_nmda.sum()
s NMDAO = Pe0.s_nmda.sum()
Pel.s_tot = (wpxs NMDAIl+wm*s NMDA2+wm+s NMDAO)
Pe2.s_tot = (wmxs NMDAIl+wp*s NMDA24wm+s_ NMDAO)
Pe0.s_tot = (s NMDAl+s NMDA2+s NMDAO)
Pi.s_tot = (sNMDAI4+s_.NMDA2+s NMDAO)

Here we passed the simulation_clock object that we created earlier as an argument to
the network operation function. Therefore this network operation will be executed at each
dt of the simulation_clock (i.e. each 0.02 ms).

2.6 Fluctuating Poisson inputs during the stimulus presentation

The decision making network models the accumulation of sensory evidence in experiments,
where sensory stimuli might be noisy and their strengths may fluctuate. Therefore we
have to generate fluctuating inputs to the network. In Ref. [1], noisy sensory inputs are
modeled as Poisson spike trains with the firing rate sampled from a Gaussian distribution
each 50*ms. We implement this by defining a new clock for the rate update, and changing
the rate of the Poisson groups at the desired times:

from numpy.random import =
rate_clock = Clock (dt=50%ms)

# Stimulus firing rates sampled from Gaussian distribution
@network_operation (rate_clock , when=’start’)
def update_rates(rate_clock):
if (rate_clock.t>=tstart and rate_clock.t<tstop):
PGl.rate = fext + mux(1.04+0.01%c) + randn ()*sigmaMu
PG2.rate = fext + mux(1.0—-0.01%c) + randn()*sigmaMu
else:
PGl.rate = fext




Firing rate, Hz
N
S
Firing rate, Hz
N
o

% 05 1 1.5 2 25 3 %
Time, s

40
N
I ///
o Figure 1: Two example trial simulations of
@ 9 e the decision making network: raster plots
o and firing rates for two stimulus-selective
g populations (upper panels) and network dy-
i v namics in the decision space (lower panel),

0 m replicated Fig. 3 from Ref. [1].

0 40

20
Firing rate Moo Hz

PG2.rate = fext

Note that the mean of the fluctuating stimulus rate is different for two populations and
depends on the parameter ¢ representing the coherence of random dot motion.

2.7 Record population firing rates

The network implementation is now complete. To track the firing rates of two stimulus-
selective populations, we will compute their population firing rates in a 50 ms time window
sliding with a time step of 5ms. To this end, you can set up a PopulationRateMonitor
in Brian

rate_Pel = PopulationRateMonitor (Pel,5%ms)

and then smooth the the recorded rate using 50 ms windows.

Simulate 3 s of the network dynamics with the motion stimulus of ¢ = 0% coherence
presented during the time interval from 1 to 2 s. Repeat the simulation 10 times with
different random seeds. Plot spike rasters for two stimulus-selective populations and their
population firing rates. Observe the divergence of firing rates of two populations (winner-
take-all dynamics). Observe that the winning population is randomly changing from
trial to trial (neuronal “coin tossing”). Plot spike rasters and population firing rates
for two example trials, when different stimulus-selective populations win the competition
[Deliverable]. Plot the firing rates of two populations on these example trials against
each other in the decision space [Deliverable|; an example is shown in Fig. 1. Observe




100f
0.7
901
«» 0.6
[}
S 8of Eos)
= c
o o
° @ 0.4F
® 70- 2
O o3t
60+
0.2r
L L 01 1 I
%0, 10 100 1 10 100
Coherence, % Coherence level, %

Figure 2: Left: Neurometric function obtained from simulation results (circles) and the fit
with the Weibull function 1 — 0.5 exp(—(z/a)?) (red line). Right: average decision time
for several input coherence levels, replicated Fig. 5 from Ref. [1].

that the trajectories cluster around three locations in the decision space corresponding to
a symmetric low-activity attractor state and two asymmetric attractor states with high
firing rate in one population and low in the other.

3 Behavioral performance and reaction time simulations

We saw that for zero coherence stimuli network decisions are random. We will now explore
how the network behavior changes when we inject biased inputs, i.e. the mean input
firing rate is higher for one population than for the other (non-zero coherence). Perform
simulations of the network model using the same protocol as before, presenting stimuli for
1 s, but now with non-zero coherence c. Run at least 200 simulation trials at 6 different
coherence levels: 3%, 6.05%, 12.2%, 24.6%, 49.59%, and 100%. Set the firing rate threshold
at 15 Hz, and determine the network decision on each trial by detecting which of the two
populations crosses the firing rate threshold first. Determine the proportion of correct
choices at each stimulus coherence (psychometric function). Determine the mean and the
standard deviation of the decision time (time from the stimulus onset until the threshold
crossing) at each coherence. Plot these functions [Deliverable]; an example is shown in
Fig. 2.

Observe that the psychometric function plateaus at 100% for high coherence levels
and that the mean and variance of the decision time greatly increase at lower coherence.
Interestingly, the decision time at low coherence can be as long as ~ 1 s, which means that
the network can integrate inputs on a 10-fold slower time scale than the longest biophysical
time constant in the network (Tnmpa, decay = 100 ms). These observations are consistent
with the behavior of monkeys in the random-dot motion discrimination task. In the next
section, we will perform phase-plane analysis of the mean-field reduced network model to
elucidate the dynamical mechanisms underlying this network behavior.



4 Phase-plane analysis of the reduced two-variable model

The mean-field reduction of the full spiking network model to the simplified two-variable
model is derived in Ref. [2]. In our analysis we will use the following model equations:

dsy S1
P U VC AL APROE (2)
dss 52
il . + (1 — s2)7f (Isyn,2)- (3)

Here s; and so are NMDA gating variables of the two stimulus-selective populations, and
the function f(I) is the populations’ f-I curve, which specifies how neurons’ firing rate f
depends on their input current I:

al —b
T 1- exp[—d(al —b)] )

f{I)

The parameters are 7, = 0.06 s, v = 0.641, a = 270 Hz/nA, b = 108 Hz, d = 0.154 s.

Iyn,; is the synaptic input current to each population:

Isyng = Just — Jizsa + 1o + I3 (5)
Isyno = —Jo1s1 + Jazsa + 1o+ Io. (6)

Here parameters J;; represent the effective network connectivity. We will use J11 = Jog =
0.3725 nA, and Ji2 = Jo; = 0.1137 nA. The background current Iy = 0.3297 nA, and
parameters I1 and I represent input currents to two populations from the motion stimulus.

The advantage of the reduced model is that we can understand what dynamical behav-
iors the model can generate for a particular parameter set using phase-plane analysis, and
then explore how this behavior changes when the model parameters are varied (bifurcation
analysis). To this end, we will use the Python package PyDSTool.

PyDSTool provides several tutorial examples. To accomplish the goals of this lab, it
is sufficient for you to go through the calcium channel model example here:
http://www.ni.gsu.edu/~rclewley /PyDSTool /Tutorial / Tutorial_Calcium.html.

We will construct the phase portraits of the reduced model Eqs. 2-3 for different stim-
ulus inputs; see example in Fig. 3. First, we need to create a data structure that will
contain all the model parameters:

import PyDSTool as dst

# initialize model parameters structure
DSargs = dst.args(name=’"Decision_making_model ")

# model parameters

DSargs.pars = { ’tauS’ : 0.06, ’gam’ : 0.641,
’a’ @ 270.0, ’b’ : 108.0, ’d’ : 0.154,
»J117 0 0.3725, ’J127 : 0.1137,
107 : 0.3297, 11’ : 0, ’I27 : 0O}

# auxiliary functions: fl—curve and recurrent current




10 i Phase plane 11= 0000 12=0.000 i 10 ’ — Phase plape,ll 0035 12=0.035 i
1770707 A
e [ A A N N e
S S S ST A A A A A A A A SV A A e
S oSS S A A A AN A
A g | e R A A A A S
g P
P g PP
s s e C e e e e —

o PP A e P

v g s P e
PP AR g g s e e
O | e e
P i | P e e i |
| e e e

Figure 3: Phase-plane diagrams of the two-dimensional mean-field network model for dif-
ferent stimulation conditions: no stimulus (upper left), symmetric stimulus (0% coherence,
upper right), biased stimulus (14% coherence, lower left) and stimulus to one population
only (100% coherence, lower right). Replicated Fig. 5 from Ref. [2].

DSargs. fnspecs = {
"fRate’: ([’I’], ’(axI-b)/(1.0—exp(—dx(axI-b)))’),
‘recCurr’: ([’x’, ’y’], ’J1l*x—J12xy+I0") }

# rhs of the differential equations

DSargs.varspecs = {

's1’: ’—sl/tauS+(1—sl)*gam*fRate(recCurr(sl,s2)+11)",
’s27: '—s2/tauS+(1—s2)*xgam*fRate (recCurr(s2,s1)+12)’ }

# initial conditions

DSargs.ics ={’sl’: 0.06, 's2’: 0.06 }
# set the range of integration .
DSargs.tdomain = [0,30]

# wvariable domain for the phase plane analysis
DSargs.xdomain = {’sl1’: [0, 1], ’s2’: [0, 1]}




Now we can create the model object using these arguments:

dmModel = dst.Vode ODEsystem (DSargs)

Now open a figure and plot the vector field determined by the model equations:

from PyDSTool. Toolbox import phaseplane as pp

pp.plot PP _vf(dmModel, ’s1’, ’s2’, scale_exp=-1.5)

Find the model fixed points:

fp_coord = pp.find_fixedpoints (dmModel, n=4, eps=le—8)

and then find and plot the null-clines:

nulls_x , nulls_.y = pp.find_nullclines (dmModel, ’'sl1’, ’s27,
n=3, eps=le—8, max_step=0.01, fps=fp_coord )

plot (nulls_x[:,0], nulls_x[:,1], 'b’)
plot (nulls_y [:,0], nulls_y[:,1], ’g’)

To determine the stability of fixed points we need to evaluate the model’s Jacobian at
each fix point. PyDSTool can compute the Jacobian function symbolically for you:

jac, new_fnspecs = \
dst.prepJacobian (dmModel. funcspec. _initargs [’ varspecs’],
[’s1’, ’s2’], dmModel. funcspec. _initargs |’ fnspecs’])

scope = dst.copy (dmModel. pars)
scope .update (new_fnspecs)
jac_fn = dst.expr2fun(jac, ensure_args=["t’], *xscope)

Now we can add fixed points to the phase portrait. Stable fixed points are marked by
filled circles, and unstable by open circles:

for i in range(0,len(fp_coord)):
fp = pp.fixedpoint_2D (dmModel, dst.Point(fp_coord[i]),
jac=jac_fn , eps=le—8)
pp.plot_PP _fps(fp)

Finally, we will compute and plot an example trajectory, starting at the symmetric
low activity state s; = s9 = 0.06:

traj = dmModel.compute(’trajectoryl ’)
pts = traj.sample()
plot (pts[’sl’], pts[’s2’], 'r—o’)

As you can see, in the absence of the stimulus current I; = Iy = 0, there is a stable fixed
point near the initial conditions that we have chosen for our trajectory. The trajectory
converges to this fixed point.

Now generate phase portraits of the model with different stimulus inputs corresponding
to 3 different coherence levels: (i) I = Iy = 0.035 nA, (ii) I; = 0.03 nA, I = 0.04 nA, (iii)




axesl
0.8 ‘ ‘

0.7}

o LPL
N . ‘B:J/

0—'%.06 -0.04 -0.02 0.00 0.02 0.04 0.06 0.08 0.10 0.12
lcomm

Figure 4: Bifurcation diagram of the reduced model with stimulus strength I.omm as a
parameter for zero coherence level, reproduced Fig. 10 from Ref. [2].

I = 0 nA, I = 0.07 nA [Deliverable]; an example is shown in Fig. 3. Explain how the
changes you see in the phase portrait of the system and in the time course of the example
trajectory correspond to the observations you made about the behavior of the full spiking
model in Fig. 2 [Deliverable].

5 Bifurcation diagram of the reduced two-variable model

To see in a single plot how the phase portrait of the system changes when we change the
stimulus current, we will generate a bifurcation diagram for the reduced model. On the
bifurcation diagram the fixed points of the model are shown as a function of a changing
parameter — in our case this is the stimulus current. Stable fixed points are plotted with
solid lines, and unstable ones with dashed lines. Bifurcation is a qualitative change in the
system’s phase space that happens at some parameter value. For example, fixed points
can change their stability at the bifurcation, new fixed points can appear, or existing ones
can disappear.

Bifurcation diagrams can be generated by numerical continuation. The algorithm
starts in the vicinity of a fixed point, slightly changes the control parameter, and sees how
the fixed point changes. PyDSTool has a continuation class ContClass that implements
these algorithms.

We will generate a bifurcation diagram for the reduced decision-making model for the
zero coherence level. Change the model specification so that both populations get equal
stimulus current Ieomm. Then prepare the system to start in the vicinity of the low-activity
fixed pint:

10



# Set lower bound of the control parameter
dmModel. set (pars = {’Icomm’: —0.05} )

# Initial conditions

dmModel. set (ics = {’s1’: 0.01, ’'s2’: 0.01} )

Now we can set up the continuation class, specify parameters for numerical continuation,
find the first equilibrium curve and plot it:

# Set up continuation class
PC = dst.ContClass (dmModel)

# Equilibrium Point Curve (EP-C). The branch is labeled FEQI:
PCargs = dst.args(name="EQl’, type="EP-C’)

PCargs. freepars = [’'Icomm’]| # control parameter

PCargs . MaxNumPoints = 1000

PCargs. MaxStepSize = le—4

PCargs. MinStepSize = le—5

PCargs. StepSize = le-3
PCargs. LocBifPoints = ’all’ # detect all bifurcation types
PCargs.SaveEigen = True # to determine stability of branches

PC.newCurve (PCargs)
PC[’EQL’]. forward ()

PC[’EQLl’]. display ([ 'Icomm’,’sl1’], stability=True, figure=1)

We found one branch of the bifurcation diagram, which shows how stability of the
symmetric fixed point changes when the stimulus current is varied. But what happens
with the the other asymmetric fixed point when the stimulus strength changes? We
can find the second branch of the bifurcation diagram by choosing initial conditions for
continuation near the asymmetric fixed point:

PC.model.icdict={"s1’: 0.01,’s2’: 0.8 }

PC.model.setPars = {’Icomm’: —0.05}
PCargs . MaxNumPoints = 3000
PCargs. LocBifPoints = [’LP’]

PCargs.name = "EQ2’
PC.newCurve (PCargs)
PC[’EQ2’]. forward ()

PC[’EQ2’]. display ([ 'Icomm’,’sl1’], stability=True, figure=1)

You should get a diagram similar to one shown in Fig. 4 [Deliverable]. Explain, which
part of this diagram corresponds to the spontaneous activity, decision making dynamics
and working memory of the decision [Deliverable].

11




6 Extension question

Explore how the network’s ability to perform decision making computation depends on
the strength of the recurrent excitation (determined by the parameter w. ).

First, explore this question in the reduced mean-field model. The mapping of the
parameters of the full spiking model on the parameters of the reduced mean-field model is
complicated, and here we will not use the exact mapping. Instead, we will mimic changes of
the parameter wy by changing the effective connectivity parameters J11 and Jy2 in such a
way that their difference remains constant (i.e. Jj; — Ji2 = const). Keeping this difference
constant ensures that the stable symmetric fix point does not change upon parameter
variation, which replicates the fact that in the full spiking model the variation of the
parameter w4 does not affect the spontaneous activity state. Increasing w, corresponds
to increasing the sum of Ji; and Jio (while keeping their difference constant). See what
effect increasing and decreasing w4 has on the bifurcation diagram, and describe in which
parameter regime decision making computation is robust. Use Fig. 12 from Ref. [2] as a
guide.

Based on what you learn from the reduced model, go back to the full spiking network
model and perform simulations for different values of the parameter w,. Explain the
results using what you learned from the reduced model. You can refer to Fig. 7 from
Ref. [1] for guidance.

References

[1] X-J Wang. Probabilistic decision making by slow reverberation in cortical circuits.
Neuron, 36:955-968, 2002.

[2] K-F Wong and X-J Wang. A recurrent network mechanism of time integration in
perceptual decisions. J Neurosci, 26:1314-28, 2006.

12



