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1 Goals

Cortical neurons in vivo exhibit highly irregular spiking patterns with statistics close to
a Poisson process. The high variability of cortical responses seems inconsistent with the
large number of synaptic connections received by each neuron. Indeed, consider a neuron
receiving N independent synaptic inputs each with the strength g ~ 1/N. The mean input
to this neuron gN is of the order 1, and the variance of the input is g?N, which scales
as 1/N. This means that the standard deviation of the input decrease as 1/v/N, and
should be very small for cortical neurons that receive ~ 10* synaptic inputs, suggesting
that regular spiking should prevail in the cortex.

It turns out that the above argument does not hold in cortical circuits, where synapses
appear to be very strong with g ~ 1/ V/N. The input variance g2N is then of the order 1.
Interestingly, the mean input can still be of the order 1 in such a network, if it operates
in the balanced regime, where strong excitation and strong inhibition (gN ~ VN ) nearly
cancel each other. In the balanced state, spiking is driven by large fluctuations in the
synaptic input and is nearly Poisson.

In this assignment, we will explore the balanced state in a network model with clustered
connectivity. In such a network, firing is irregular and the activity pattern randomly
wanders between multiple co-existing attractors. As a result, neurons exhibit the supra-
Poisson spiking variability characteristic for spontaneous cortical activity. This model also
captures reduction in spiking variability during stimulus-driven activity — a wide-spread
cortical phenomenon. We will learn about:

Scientifically:

1. Recurrent networks with balanced excitation and inhibition.
2. Noise-driven transitions between co-existing attractors.

3. Statistical measures of spiking variability: Fano factor, coefficient of variation.
Technically:
1. Implementation of networks with heterogeneous connectivity in Brian.

Readings:



1. Self-sustaining balanced state in a recurrent neural network model [3].

2. Clustered connectivity in a balanced network generates slow dynamics and
supra-Poisson variability [2].

2 Balance of excitation and inhibition in a recurrent net-
work model

We begin with simulations of a homogeneous balanced network model that exhibits self-
sustained irregular spiking activity. There are two requirements for the existence of a
balanced state: strong (~ 1/v/N) recurrent synapses and sparse connectivity. The latter
ensures that different neurons receive their input from largely non-overlapping subsets of
pre-synaptic neurons in the network (i.e. inputs to different neurons are uncorrelated).

As a first step, we will implement the spiking network model from Ref. [2] with uniform
connectivity (p®F = 0.2), which mean that excitatory connections are randomly placed
across the whole network with the probability p* = 0.2 (no clustering). In the next
section we will add clustering of the excitatory connections to the model.

The implementation of the balanced network model from Ref. [2] is simple compared
to more biophysically realistic networks from the first two assignments. In this model,
both excitatory and inhibitory populations are described by the same equations with
linear synapses. Brian is more efficient, if you define neuronal groups to be as large as
possible, and then specify differential properties of sub-populations (e.g., of E and I cells)
using subgroups. Therefore, we will generate a large NeuronGroup with N¥ + NT neurons,
and then split this group into excitatory and inhibitory subgroups. To implement the
heterogeneity in the bias parameter p and the difference in the membrane time constants
7 of E and I cells, we initialize two parameter arrays:

import numpy as np
from numpy.random import x

# uniform between min and mazx
uniform = lambda min,max,N :rand (N)x*(max—min)+min

mu = np.concatenate ((uniform (mu_-min_e, mu.maxe, NE), \
uniform (mu_min_i, mu-max_i, NI)))
tau = np.concatenate (([tau_e|*NE, [tau_i]*NI))

Now when we create a NeuronGroup, the parameters p and 7 will differ across neurons in
this group. Do not forget to specify method=’Euler’ to use the Euler integration method,
and specify the integration time step dt = 0.1 ms.

The differential equation for the membrane potential reads:

av 1
at = ;(N_V)"‘Isyn- (1)

The differential equations for the alpha-synapses with the filter-function F¥(t) specified




in Ref. [2] read:
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Note that synapses in the model are current-based, not conductance based as in the
previous assignments. The current flowing through a current-based synapse does not
depend on the membrane’s voltage, and therefore excitatory and inhibitory synapses have
to be determined through positive and negative weights. To keep the units consistent, so
that both voltage and current are dimensionless quantities, you will have to scale Iy, in
the voltage equation Eq. 1 by a scaling factor 7gcale = 1 ms.

To implement sparse connectivity in Brian, specify the probability of connection as an
argument when you create connections. For example:

Cii = Connection(Pi, Pi, ’x_i’, sparseness=p_ii, weight=J_ii)

Simulate the balanced network model with uniform connectivity with parameter values
from Ref. [2]. Generate a spike-raster plot for a subpopulation of 1600 excitatory neurons
and observe irregular asynchronous firing [Deliverable]; an example is shown in Fig. 1.
Plot the population firing rate sampled at 0.1 ms time window, and the population firing
rate smoothed with 5 ms window [Deliverable], and notice that there is no obvious syn-
chrony in firing across the population. For an example excitatory neuron in the network,
plot the time course of the synaptic currents: excitation, inhibition and their sum [Deliv-
erable], as well as the time course of the membrane potential [Deliverable]; an example
shown in Fig. 1. Explain the irregularity of spiking based on the values of currents and
voltage you measured; explain how these quantities are balanced [Deliverable].

3 Clustered balanced network

Variability of spontaneous activity in cortex is much higher than predicted by a Poisson
process. Trial-to-trial rate fluctuations measured by a Fano factor exceed the Poisson value
of 1 across many brain areas. Though the balance between excitation and inhibition can
account for irregular asynchronous spiking, it cannot generate supra-Poisson variability —
another slower time-scale in the dynamics is required. A hypothesis for the origin of slow
rate fluctuations is that cortical circuits are organized in clusters of stronger connected
neurons, which form local attractors. In the spontaneous state, activity wanders randomly
from attractor to attractor driven by spiking noise, which results in rate fluctuations on
slow time scale and, as a consequence, in trial-to-trial variability higher than Poisson. We
will implement the clustered balanced network model from Ref. [2] and then compare the
statistics of spiking in uniform and clustered networks.

To implement clustered connectivity, we first need to split the excitatory population
into numClust=>50 clusters with Nc=80 neurons in each. To this end, we will create a
subgroup for each cluster, and since there is a large number of clusters, we will create a
whole list of subgroups:

PeCluster = [ Pe[i*Nc:(i+1)xNc] for i in range(numClust) ]
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Figure 1: Spontaneous activity in uniform (upper panels) and clustered (lower panels)
balanced networks. Left: Spike rasters for a subpopulation of 1600 excitatory neurons.
Right: Time course of the population firing rate sampled at 0.1 ms time windows (black)
and smoothed with 5 ms time window (cyan). Time course of the synaptic currents:
excitation (blue), inhibition (red) and their sum (black), and membrane voltage for an
example neuron. Replicated Fig. 1 from Ref. [2].

Note that here we used another way to specify a subgroup by using slicing operation of
the group Pe. Note also that Pe itself was created as a subgroup of the larger group with
NE 4 NT neurons.

All connections involving inhibitory neurons are uniform, and therefore can be imple-
mented exactly as in the previous section by referring to the whole subgroups of excitatory
(Pe) and inhibitory (Pi) neurons. The excitatory to excitatory connections are clustered.
The connection probabilities within (pEF) and between (pE) clusters depend on the pa—
rameter REE = pEE /pEE that controls neuronal clustering. The quantities pEF and pZf



were chose so that the connection probability between excitatory neurons remained 0.2
when averaged across all pairs. Calculate how these connection probabilities depend on
RFE and on the fraction of neurons in a single cluster f [Deliverable].

The clustered connectivity requires adding a large number of connections to the net-
work, and therefore we will create lists for these connections. We create the list CeeIn of
within-cluster excitatory connections:

net = Network ()

Ceeln = [None|*numClust

for i in range(numClust):
Ceeln[i] = Connection(PeCluster[i], PeCluster[i], \
"x_e’, sparseness=p_in, weight=J_eexp_scale)

net.add( Ceeln[i] )

Here we first created a network object net, and then we added each connection in our list
to this network. This is a good practice when your network model is complex, and you do
not want to rely on Brian’s default “magic” functions to find all objects that should be
included into the network. Now follow similar steps to add excitatory connections between
different clusters of the network.

Remember, that when you create your own network, you should add all relevant objects
to it, including neuronal groups, monitors and network operations. Therefore you should
go back in your code and add all objects created earlier to the network net. To run this
network later use the method

net.run(simtime)

To verify your implementation of clustered connectivity, you can use the python pack-
age NetworkX (networkx.lanl.gov) that provides handy tools for analysis and visualization
of networks. Once you created a connection in Brian, you can access its properties through
methods defined for the connectivity matrix W that is an attribute of the connection. For
example, to get the array of within-cluster postsynaptic targets for neuron preCell in the
cluster iClust use

targets = Ceeln[iClust | . W.rowj[preCell]

This way you can access the values of synaptic connections created in Brian and use them
to generate a NetworkX graph object with the same connectivity. Visualize clustered
excitatory connections for a subset of three clusters for three values of parameter RFF
[Extra credit]. Increasing RFF should result in visible segregation of discrete clusters,
an example is shown in Fig. 2.

Run simulations of the clustered balanced network. Generate a raster plot of spon-
taneous activity for a subpopulation of 1600 excitatory neurons [Deliverable]|. Record
and plot the time course of population firing rate, and for an example neuron record
and plot the time course of synaptic currents (excitation, inhibition and their sum) and
membrane potential [Deliverable]; an example is shown in Fig. 1. Based on your mea-
surements explain how supra-Poisson variability emerges in clustered balanced network
[Deliverable].




Figure 2: Visualization of connectivity for a subpopulation of 240 excitatory neurons in
three clusters for different value of clustering parameter RPF. Replicated Fig. 4 from
Ref. [2].

4 Spiking statistics in uniform and clustered balanced net-
works

To quantify differences in spiking between uniform and clustered balanced networks, we
will compute the following statistical measures for the population of excitatory neurons.

1. Distribution of the mean firing rate across the population.

2. Distribution of interspike intervals (ISI) across the population. ISTis the time interval
between two consecutive spike times in a neuron: ISI; = t;41 — ¢;.

3. Distribution across the population of the coefficient of variation (CV) of ISIs. The
ISI CV for a neuron is defined as the ratio of the ISI standard deviation to the mean
ISI:

\/ (ISI2) — (ISI;)2

V= (ISI)

(4)

4. Distribution across the population of the Fano factor (FF). FF is defined as the
variance over the mean of the spike count Nr in a time window of length 7"
(N7.;) = (N72)?
(N1,i)

FF = (5)
The averaging is performed over many non-overlapping time windows. Use T =
100 ms.

Compute and plot these distributions for a uniform and a clustered network [Deliverable];
an example is shown in Fig. 3. Discuss the differences in spiking statistics between two
network types and explain their origin [Deliverable].
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Figure 3: Statistics of spiking in uniform and clustered balanced networks. Replicated
Fig. 2 from Ref. [2].

5 Effect of stimulation on spiking variability

Supra-Poisson variability of cortical spontaneous activity is greatly reduced during stim-
ulation [1]. This phenomenon can be measured as a drop in the Fano factor locked on
the stimulus onset, which has been reported across many cortical areas. The clustered
balanced network model captures the stimulus-driven reduction in variability. Indeed,
when a subset of clusters is driven by the stimulus, the activity pattern is biased towards
the corresponding attractor. The “energy well” for this attractor becomes deeper and the
activity is less likely to escape from this attractor. Therefore activity hops from attractor
to attractor are less likely during the stimulation, and as a result variability decreases.

Perform simulations of uniform and clustered balanced networks with a stimulus ap-
plied to a subset of 5 clusters (400 neurons) for 400 ms. Repeat the simulation for 100
trials. Remember that when you run different trials, you have to make sure that the
network parameters and connectivity are the same on each trial, but the random activity
seed is different. Therefore use the same constant seed when you initialize the network
parameters and connections, and then set different seeds for different trials to specify the
initial conditions for the membrane potential. Plot spike rasters for an example trial for
both networks [Deliverable]. Compute FF across trials in a sliding 100 ms window for
each neuron in the network, and plot the FF averaged over all excitatory neurons as a
function of time for uniform and clustered networks [Deliverable]; an example is shown
in Fig. 4. Explain why you see strong differences in the mean activity of the stimulated
clusters for uniform and clustered networks [Deliverable].
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Figure 4: Stimulus quenches spiking variability in clustered but not in uniform networks.
Replicated Fig. 7 from Ref. [2].

6 Extension question

Explore how the degree of clustering in the network and the cluster size affect the rate
variability. Perform simulations of clustered networks with parameter R*F ranging from
1 to 4. For each value of R®F, estimate the rate variability by computing the population
firing rate for the Nc neurons in the cluster over 2 s, in 20 windows of 100 ms each, and
then averaging over all clusters and realizations. Plot the dependence of rate variability
on the clustering parameter RFF. Explain the non-monotonic dependence. Perform this
analysis for different cluster sizes Nc=60, 120, 140. Explain the changes in rate variability
with the cluster size.



7 List of model parameters

Ng number of E neurons

N number of I neurons

Vin voltage threshold

Vie reset voltage

tref refractory time

Te membrane time constance for E neurons

T membrane time constance for I neurons

Lhe bias current for E neurons

7% bias current for I neurons

T2.e decay time for E synapses

T2, decay time for I synapses

T synaptic rise time

pl probability of connection I to E

pte probability of connection E to I

ptt probability of connection I to I

pEE probability of connection E to E

Dscale scaling factor for connection strength within a cluster

JEE synaptic strength E to E

JEI synaptic strength I to E

JE synaptic strength E to I

JI synaptic strength I to I

dt integration time step

Mstim increase in bias current during stimulation
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