
ChipGen User Manual

Neuroengineering Research Lab
University of Pennsylvania

10 January 2006

Abstract

This is a brief document to help organize your design files to use the AER layout compiler developed
in UPenn’s Brains in Silicon lab.

Contents

1 ChipGen Specifications 6

1.1 Required Files & Cells . 6

1.1.1 Metapixel Layout Cells . 7

1.1.2 Metapixel Netlist . 7

1.2 Layout Compilation . 9

1.2.1 Chip Layout . 9

1.2.2 MetaPixel Layout . 13

1.2.3 Edge Cells . 15

1.2.4 DRC Requirements . 21

2 ChipGen User Interface 22

2.1 ChipGen GUI . 22

2.2 Parameter File . 25

3 Pad-Frame Layout 26

4 Simulation 29

4.1 Simulating PixelFootPrint . 29

4.2 Simulating the Core . 31

1

A Sample Netlist Files 36

A.1 layout.sp . 37

A.2 pixel.sp . 38

A.3 subckts.sp . 39

B Walkthrough 40

C Frequently Asked Questions 42

2

List of Figures

1.1 Chip Layout . 10

1.2 Power Bus Layout . 12

1.3 Global Bus Layout . 12

1.4 Required Interface Circuitry Between AER Receiver/Transmitter and Neurons. . . . 14

1.5 Transistor Sizing . 14

1.6 2x1 Array of Metapixels . 15

1.7 Sample PixelFootPrint Connectivity . 16

1.8 Sample PixelFootLeft Connectivity . 19

1.9 Sample PixelFootTop Connectivity . 20

1.10 PixelFootAll . 21

2.1 ChipGen’s GUI . 23

3.1 Example chip layout with pads. 28

4.1 Four-phase Handshake Protocol . 31

4.2 PixelFootPrint TestBench Schematic . 33

4.3 Example TestNeuron Schematic . 33

4.4 PixelFootPrint TestBench Waveforms . 34

3

4.5 Core or Chip Testbench Schematic . 35

4.6 Core TestBench Waveforms . 35

4

List of Tables

1.1 AER Signal Descriptions . 11

5

Chapter 1

ChipGen Specifications

1.1 Required Files & Cells

The following files are required for proper execution of ChipGen:

1. Layout Files

(a) AER cell library (typically named chiplib.tdb).

(b) Metapixel1 layout.

2. Spice Files

(a) AER circuits library (typically named genlib.sp).

(b) Metapixel netlist.

(c) Subcircuits file.

(d) Layout definition file.

The AER layout cell library and spice circuits library will not be discussed for they pertain
to word-serial AER transmitter2 and receiver3 implementation and are beyond the scope of this
document.

1The term metapixel is used to indicate there is more than one basic element within the layout cell, e.g. a mini
2x2 array of neurons. Thus, a 32x32 chip generated using a metapixel with a 2x2 neuron group actually contains
64x64 neurons.

2K Boahen, A Burst-Mode Word-Serial Address-Event Channel-I: Transmitter Design, IEEE Transactions on
Circuits and Systems I, vol 51, no 7, pp 1269-1280, July 2004.

3K Boahen, A Burst-Mode Word-Serial Address-Event Channel-II: Receiver Design, IEEE Transactions on Cir-
cuits and Systems I, vol 51, no 7, pp 1281-1291, July 2004.

6

1.1.1 Metapixel Layout Cells

The metapixel layout file is a single Tanner L-Edit file (.tdb) with the following cells:

1. PixelFootPrint—the main metapixel cell to be arrayed in the chip.

2. PixelFootLeft—the cell located at the left edge of every array row.

3. PixelFootRight—the cell located at the right edge of every array row.

4. PixelFootTop—the cell located at the top edge of every array column.

5. PixelFootBottom—the cell located at the bottom edge of every array column.

6. PixelFootAll—a cell with PixelFootPrint and all the edge cells (PixelFootLeft, -Right, -Top,
and -Bottom) together.

7. Additional Cells—cells within the PixelFootPrint.

The naming convention is important—the layout generator looks for those specific names (case-
sensitive). The specifications for each cell is found within section 2.

1.1.2 Metapixel Netlist

Three spice netlist (.sp) files are required; within these files, it is important that digital and analog
power supplies be named DVdd/DGnd and AVdd/AGnd to insure proper netlist connectivity.
Appendix A contains sample netlist files.

Main metapixel netlist: pixel.sp

This file is the top-level circuit for the metapixel. There should be no subcircuits defined in this
file (only instanced), and all the node names should match the names within the layout definition
file (see below). The default filename is pixel.sp, however it need not be named so.

Subcircuit definition file: subckts.sp

This spice netlist file contains all of the subcircuit definitions found within the main metapixel file.
If there are no subcircuit instances within pixel.sp, then this file is not necessary. However, if
required, the filename must be subckts.sp.

7

Layout definition file: layout.sp

This file links the netlist file to the metapixel layout file, and must be named layout.sp. The
PixelFootPrint cell has signals exiting all four edges to connect to neighboring cells or edge cells.
This file is used to define the signals and their appropriate edges so that the netlist generator can
correctly wire the pixels and edge cells together.

Each line in this file defines an edge and its signals, in the following format:

edge={Signal1,Signal2,Signal3,...}

Edge can be one of (case sensitive):

• LEFT, RIGHT, TOP or BOTTOM (required)

• GLOBAL (required)

• LEFTEDGE, RIGHTEDGE, TOPEDGE or BOTTOMEDGE (optional)

For edge = LEFT, RIGHT, TOP or BOTTOM, the braces define the list of signals leaving the
cell in order from top to bottom (for LEFT and RIGHT edges) and from left to right (for TOP and
BOTTOM edges). It is important that the order of the signals is correct, otherwise the
pixels will be incorrectly wired. For example, the first signal on the BOTTOM edge of a metapixel
is connected to the first signal on the TOP edge of the metapixel immediately below. Obviously,
opposite edges MUST have the same number of signals; there is no restriction on the number
of signals. However, the naming convention of the signals is important. A row or column signal,
i.e. a signal that is the same along a row or column, is defined by using the same signal name on
opposing edges. For example, if the file contained the following two lines:

.layout
LEFT={TSelY,OutL}
RIGHT={TSelY,OutR}
END

TSelY is a row signal, as it has the same label on the left and right side of the array. The
different names for the next signal imply that there is circuitry between the two labels within the
pixel. However, OutR of one pixel will be connected to OutL of the pixel to its right.

GLOBAL is used to define global biases and power signals. Signals within this group still need
to be defined within LEFT, RIGHT, TOP or BOTTOM to ensure proper netlist connectivity. It is
important that these signals are distinguished as global so that they will be defined in the top-level
instance and correctly connected to pads.

Edge = LEFTEDGE, RIGHTEDGE, TOPEDGE or BOTTOMEDGE defines how to connect
the signals at the end of the pixel array. This is only really useful for local connections.

8

Remember all global signals and transmitter or receiver signals are already connected to circuitry
outside the array. The default state (i.e. the case where LEFTEDGE, RIGHTEDGE, TOPEDGE
or BOTTOMEDGE categories are left out) is to leave all remaining signals hanging at the edge of
the pixels. However, in specific circumstances, it may be required to tie these hanging signals to
Vdd or Gnd. This is performed in the following manner:

• Copy one of the edge statements (e.g. LEFT) and relabel the category (i.e. change LEFT to
LEFTEDGE).

• Change only the signals that you wish to tie to a specific node by changing the name in
the list to the desired nodename. Using the example above, another line may be added
LEFTEDGE={TSelY, Vdd}. This indicates that the OutL signal along the left side of the
array will be connected to Vdd. If you wish to leave the node hanging, keep the original
name.

• Note: the EDGE categories must be placed after the inter-pixel category (e.g. LEFTEDGE
must be defined after LEFT)

Finally, the last line in each file must be END.

See Appendix A for sample files.

1.2 Layout Compilation

This section provides a more in-depth description of the layout rules that must be followed in order
to properly generate the chip. First, a brief description of the general layout of the chip is needed
in order to fully understand the overall structure of the chip.

1.2.1 Chip Layout

Figure 1.1 shows the basic layout of the chip. The following will be descriptions of signals used by
the AER receiver and transmitter. See Table 1.1 for a summary.

Receiver signals

The receiver circuitry is located to the top and left of the metapixel array (see Figure 1.1). As such,
receiver signals should only be found within the PixelFootTop and PixelFootLeft cells. Receiver
signals, and their edge entrance, are as follows:

9

Receiver

Transmitter

m x n Array of PixelFootPrint

m x 1 array of PixelFootRight

1 x n array of PixelFootTop

m x 1 array of PixelFootLeft

1 x n array of PixelFootBottom

Figure 1.1: Chip Layout
Overall layout of the generated AER chip (without pads). The metapixel cells are tiled with their abutment boxes

abutting. Edge cells abut the PixelFootPrint and other edge cells.

1. Column Select signal—This signal is Active Low and enters the array through the PixelFoot-
Top cell. Typically named ∼RSelX (not a requirement)4.

2. Row Select signal—This signal is Active Low and enters the array through the PixelFootLeft
cell. Typically named ∼RSelY.

3. Pixel Acknowledge signal—This signal is also Active Low and exits the array through the
PixelFootLeft cell. Typically named ∼PixAck.

Note that there are restrictions on transistor sizes and on the input logic circuitry for receiver
signals. See Figure 1.4 for details.

Transmitter signals

The transmitter circuitry is located to the bottom and right of the pixel array (Figure 1.1). As
such, transmitter signals should only be found within the PixelFootBottom and PixelFootRight
cells. Transmitter signals, and their edge entrance, are as follows:

4When a signal’s “typical” name is specified, it will be referred throughout the document as such. However, when
designing your cell, it need not be named so.

10

Signal Active Edge Cell Default Name
Receiver Column Select Low PixelFootTop ∼RSelX
Receiver Row Select Low PixelFootLeft ∼RSelY
Receiver Row Acknowledge Low PixelFootLeft ∼PixAck
Transmitter Column Request Low PixelFootBottom ∼TReqX
Transmitter Row Request Low PixelFootRight ∼TReqY
Transmitter Row Select High PixelFootRight TSelY

Table 1.1: AER Signal Descriptions

1. Column Request signal—This signal is Active Low and exits the array through the PixelFoot-
Bottom cell. Typically named ∼TReqX.

2. Row Request signal—This signal is Active Low and exits the array through the PixelFootRight
cell. Typically named ∼TReqY.

3. Row Select signal—This signal is Active High and enters the array through the PixelFootRight
cell. Typically named TSelY.

Note that there are restrictions on transistor sizes and on the output logic circuitry for trans-
mitter signals. See Figure 1.4 for details.

Vdd and Ground signals

Analog Vdd and Gnd signals enter the metapixel array through the PixelFootTop and PixelFoot-
Bottom cells. Digital Vdd and Gnd signals enter the metapixel array through the PixelFootLeft
and PixelFootRight cells (Figure 1.2).

Global bias signals

Global bias signals may exist in any metapixel edge cell. If present, biases along the bottom and left
edge cells are routed to the bottom of the chip and biases along the top and right are routed to the
top (Figure 1.3A). There also exists an option to route all biases to the top of the chip. Exercising
this option will remove the bottom padframe, thus allowing more space for the metapixel array
(Figure 1.3B).

11

AVdd/AGnd

AVdd/AGnd

D
V

d
d

/D
G

n
d

D
V

d
d

/D
G

n
d

Figure 1.2: Power Bus Layout
DVdd (Metal5) and DGnd (Metal4) abut the entire left edge of the PixelFootLeft abutment box and the entire

right edge of the PixelFootRight abutment box. AVdd (Metal5) and AGnd (Metal4) abut the entire top edge of

the PixelFootTop abutment box and the entire bottom edge of the PixelFootBottom abutment box.

Column global biases

R
o

w
 g

lo
b

a
l
b

ia
s
e

s

Column global biases

R
o

w
 g

lo
b

a
l
b

ia
s
e

s

A B

Metal1 Metal1

Metal2 Metal2

Figure 1.3: Global Bus Layout
A. Global bus. Global row biases are collected on Metal1 (blue) lines running vertically to the left and right

of the metapixel array, connecting to Metal2 (orange) ports on the left edge of PixelFootLeft and right edge

of PixelFootRight. Global column biases are collected on Metal2 lines running horizontally at the top and bot-

tom of the metapixel array, connecting to Metal1 ports on the top edge of PixelFootTop and bottom edge of

PixelFootBottom. B. Global row and column biases routed to the top of the chip.

12

1.2.2 MetaPixel Layout

This section describes specifications for the metapixel layout.

PixelFootPrint

The PixelFootPrint is the core of the metapixel array: it contains the neural circuitry that is tiled
in the chip.

There are restrictions on the interface circuitry between neurons and AER receiver and trans-
mitter circuitry. The circuitry required for a neuron to communicate with the transmitter and
receiver are shown in Figure 1.4 (see caption for details). Note that these circuits are required
within the neuron, as well as transistor size requirements for those transistors drawn in red (see
Figure 1.5).

Some comments on the PixelFootPrint:

1. The abutment box for this cell is set by placing a port called ‘Abut’ on the Icon/Outline
layer. THIS IS VERY IMPORTANT! The metapixels are arrayed with their abutment boxes
abutting (Figure 1.6).

2. The PixelFootPrint needs to be rectangular.

3. Ports must be placed on ALL the signals exiting the metapixel. The port must be the same
width as the wire leaving the cell.

4. Ports with the same name must be differentiated using an index, even if they will be the
same signal (e.g. a global bias). For example, suppose you have a metapixel with a 2x2
array of neurons, each sharing a global bias called ‘Vbias’. Due to layout issues, you have
two signals labeled ‘Vbias’ exiting the cell, one for each row. Though these two signals will
eventually be connected, they must be differentiated with an index (starting at zero). The
port labels must be modified to ‘Vbias 0’ and ‘Vbias 1’; the ‘ ’ between signal name and index
is NECESSARY.

5. There are no restrictions on what level metals are needed exiting the metapixel. The edge
cells (see Section 1.2.3) are used to route the signals to the required layers.

6. Minimum height (or width) must be:

max(r × 73λ, t× 84λ)

where r and t represent, respectively, the number of receiver and transmitter rows (or columns)
per metapixel.

13

TSelY

~TReqY~TReqX

~Req

~Reset

Reset

~RSelX

~RSelY

~PixAck

SynIn

Figure 1.4: Required Interface Circuitry Between AER Receiver/Transmitter and Neurons.
Transistors in red (∼PixAck, ∼TReqX, and ∼TReqY) indicate a required transistor size (see Figure 1.5). Active

low signals are indicated by ‘∼’. Left: AER neuronal input circuitry. The receiver signals are ∼RSelX, ∼RSelY

and ∼PixAck. SynIn is the input into the ‘synapse’ of the neuron (e.g. current-mirror integrator). Right: AER

neuronal output circuitry. The transmitter signals are ∼TReqX, ∼TReqY and TSelY. ∼Req is the active low

signal from the neuron (e.g. spike from neuron). Reset and ∼Reset are the signals used to reset the neuron.

Active

Poly

Metal1

5.5 λ

2 λ

6 λ

Figure 1.5: Transistor Sizing
The transistor driving Receiver signal ∼PixAck and Transmitter signals ∼TReqX and ∼TReqY must have minimum

channel length and be U-shaped as shown in the figure. The Metal1 layer represents the drain (receiver or

transmitter signal) of the transistor, while the source is attached to Ground.

14

Abut

Figure 1.6: 2x1 Array of Metapixels
Cells are arrayed according to their abutment box, which is a port called ‘Abut’ on the Icon/Outline layer.

Layout recommendations:

1. Digital Vdd and Gnd enter the metapixel array through the left and right sides of the
metapixel array, while Analog Vdd and Gnd enter the array through the top and bottom
(Figure 1.2). It is strongly recommended that your metapixel has all these signals (or at least
3) entering the metapixel from the appropriate side. Any signals that cannot be routed as
such from within the metapixel can then use the edge pixels to route them around. For exam-
ple, your layout may require you to have Analog Gnd exiting the right side of the metapixel.
In that case, PixelFootRight can be used to route Analog Gnd to PixelFootTop; it will extend
beyond PixelFootRight’s abutment box.

2. From the perspective of the automatic compiler, the metapixel is a black box whose only
interface are ports on the edges. The compiler looks for ports corresponding to signals iden-
tified in the “chip.txt” parameter file (Section 2.2). These signals can run on any layer in
PixelFootPrint, but must be converted to Metal1 (for vertical signals) or Metal2 (for hori-
zontal signals) in the edge cells in order for the compiler to connect them appropriately. See
Figure 1.7 for an example.

1.2.3 Edge Cells

This section describes layout specifications for PixelFootLeft, PixelFootRight, PixelFootTop and
PixelFootBottom. Comments applying to all edge cells:

1. The edge cells have two primary purposes:

(a) Divert various signals or power supplies traversing the cell to the appropriate layers. See
the appropriate subsection below for specific details.

15

A
V

d
d

A
G

n
d

Abut

Abut

Hbias0_0

~PixAck_0

Hbias0_1

Hbias1_1

DVdd

~RSelY_0

~PixAck_1

Abut

"PixelFootPrint"

Abut

"PixelFootBottom"

"P
ix

e
lF

o
o

tL
e

ft
"

"P
ix

e
lF

o
o

tR
ig

h
t"

"PixelFootTop"Abut

Hbias0_1

Hbias1_1

V
b

ia
s
2

_
0

Metal5 to Metal2

Metal3 to Metal1

Hbias2_0

Hbias2_0

Metal4 to Metal2

Hbias0_0

Hbias1_0

Hbias2_0

DVdd

DGnd

~TReqY

TSelY

DVdd

DGnd

Hbias1_0

DVdd

DGnd

~RSelY_1

DGnd

Hbias2_0

V
b

ia
s
0

_
0

V
b

ia
s
1

_
0

~
T

R
e

q
X

_
0

~
T

R
e

q
X

_
1

V
b

ia
s
4

_
0

V
b

ia
s
3

_
0

AGnd

A
V

d
d

~
R

s
e

lX
_

0

V
b

ia
s
0

_
0

V
b

ia
s
1

_
0

V
b

ia
s
2

_
0

V
b

ia
s
4

_
0

~
R

S
e

lX
_

1

~
R

s
e

lX
_

2

V
b

ia
s
3

_
0

~
R

s
e

lX
_

3

A
G

n
d

Figure 1.7: Sample PixelFootPrint Connectivity
Ports on the left and top edges of PixelFootPrint should align with ports on the right and bottom edges. Edge cells

convert PixelFootPrint ports to the correct metal layers. Metal layers 1,2,3,4, and 5 are represented, respectively,

by the colors light blue, yellow, purple, green, and dark blue.

16

(b) Handle local connections along the array edge. Many metapixels have local connections
between them within the array. These local connections by default will be hanging along
the edge of the array. However, depending on the application, it may be necessary to
tie the local connections to Vdd or Gnd.

2. The abutment box for this cell is set by placing a port called ‘Abut’ on the Icon/Outline layer
(similar to PixelFootPrint). The abutment box for the Top and Bottom edge cells must have
the same width as the PixelFootPrint. The abutment box for the Left and Right edge cells
must have the same height as the PixelFootPrint. THIS IS VERY IMPORTANT!

3. All signals exiting the edge cells on the outer edge (except power supplies) must have a port
on the appropriate layer. The ports have the following restrictions:

(a) The port must be along (but within) the outer edge of the cell.

(b) The port width (or height, depending on the edge) must match the pitch of the wire
exiting the cell.

(c) The port name must match the name used within the PixelFootPrint (see Section 1.2.2).

(d) The port must be on the top level of the cell (i.e. it cannot be just contained within an
instance).

NOTE: The inner edge of each edge cell refers to the edge abutting the metapixel array. The
outer edge is the opposite side of the abutment box.

Horizontal Edge Cells: PixelFootLeft and -Right

The horizontal edge cells share the following properties:

1. Abutment box height must match that of the PixelFootPrint. There is no restriction on the
width.

2. All signals entering from the inner edge must exit the cell on Metal 2 layer. THIS IS
NECESSARY. Make sure the signal connects to the outer edge.

3. All signals exiting the cell must have a port on the Metal 2 layer.

4. Digital Vdd and Gnd supplies should be connected to the outer edge on Metals 5 and 4,
respectively.

The PixelFootLeft cell is placed at the left edge of every row in the metapixel array. Signals
exiting the left edge of the metapixel array—and that need to be handled within this cell—are:

• Receiver signals ∼RSelY and ∼PixAck

• Global bias signals

17

• Digital Vdd and Gnd supplies

See Figure 1.8 for sample automatic wiring. The PixelFootRight cell is placed at the right edge
of every row. Signals that need to traverse the right edge cell are:

• Transmitter signals ∼TReqY and TSelY

• Global bias signals

• Digital Vdd and Gnd supplies

Vertical Edge Cells: PixelFootTop and -Bottom

The vertical edge cells share the following properties:

1. Abutment box width must match that of the PixelFootPrint. There is no restriction on the
height.

2. All signals entering from the inner edge must exit the cell on Metal 1 layer. THIS IS
NECESSARY. Make sure the signal connects to the outer edge.

3. All signals exiting the cell must have a port on the Metal 1 layer.

4. Analog Vdd and Gnd supplies should be connected to the outer edge on Metals 5 and 4,
respectively.

The PixelFootTop cell is placed at the top edge of every column. Signals within the edge cell
are:

• Receiver signal ∼RSelX

• Global bias signals

• Analog Vdd and Gnd supplies

See Figure 1.9 for sample automatic wiring. The PixelFootBottom cell is placed at the bottom
edge of every column. Signals within:

• Transmitter signal ∼TReqX

• Global bias signals

• Analog Vdd and Gnd supplies

18

Abut

Hbias0_0

Hbias1_0

Hbias2_0

DGnd_0

DVdd_0

~PixAck_0

~RSelY_1

PixelFootLeftAutomatically compiled layout

~PixAck_0

~RSelY_0

~PixAck_1

~RSelY_1

Horizontal biasesGuard ringsReceiver row lines PixelFootLeft

Hbias0_1

Hbias1_1

Hbias2_1

DGnd_1

DVdd_1

~RSelY_0

~PixAck_1

Figure 1.8: Sample PixelFootLeft Connectivity
PixelFootLeft contains ports for digital power, global biases running horizontally across the metapixel array, and

row handshaking lines for the receiver. Global bias ports and receiver lines should be separated by at least the

minimum width of a via and the surrounding metal, and should be placed on Metal2 (yellow). The entire left

edge of PixelFootLeft connects to DGnd on Metal4 (green) and DVdd on Metal5 (dark blue).

19

Abut

V
b

ia
s
3

_
0

V
b

ia
s
4

_
0

~
R

s
e

lX
_

3

~
R

s
e

lX
_

2

P
ix

e
lF

o
o

tT
o

p
A

u
to

m
a

tic
a

lly
 c

o
m

p
ile

d
 la

y
o

u
t

V
e

rt
ic

a
l
b

ia
s
e

s
G

u
a

rd
 r

in
g
s

R
e

c
e

iv
e

r
c
o

lu
m

n
 l
in

e
s

P
ix

e
lF

o
o

tT
o

p V
b

ia
s
2

_
0

V
b

ia
s
1

_
0

V
b

ia
s
0

_
0

A
G

n
d

_
0

A
V

d
d

_
0

~
R

S
e

lX
_

1

~
R

s
e

lX
_

0

~
R

S
e

lX
_

3

~
R

S
e

lX
_

2

~
R

S
e

lX
_

1

~
R

S
e

lX
_

0

Figure 1.9: Sample PixelFootTop Connectivity
PixelFootTop contains ports for analog power, global biases running vertically across the metapixel array, and

column select lines for the receiver. Global bias ports and receiver lines should be separated by at least the

minimum width of a via and the surrounding metal, and should be placed on Metal1 (light blue). The entire

top edge of PixelFootTop connects to AGnd on Metal4 (green) and AVdd on Metal5 (dark blue). Bias width is

maintained in the routing, as seen in Vbias4 0.

20

width = W

height = **

height = H

width = **

width = W

height = H

width = W

height = **

height = H

width = **

PixelFootLeft PixelFootRight

PixelFootTop

PixelFootBottom

PixelFootPrint

Figure 1.10: PixelFootAll
PixelFootPrint with edge cells within the PixelFootAll cell. The inner edge of each edge cell abut the abutment

box of PixelFootPrint (e.g. the right edge of PixelFootLeft abuts the left edge of PixelFootPrint). The ‘**’

denotes there is no size restriction.

1.2.4 DRC Requirements

It is recommended that the following items all pass DRC (Design Rule Check):

1. PixelFootAll—This cell is not necessary for layout compilation, however it is useful for check-
ing the correctness of the layout. It is constructed by placing the edge cells (PixelFootLeft,
-Right, -Top, and -Bottom) around PixelFootPrint. The inner edge of the abutment boxes for
all the edge cells should be lined up with the abutment box of PixelFootPrint (Figure 1.10).
This is also a good way to check the size restrictions in the edge cells (see Section 1.2.3). The
PixelFootPrint should not cause any DRC errors with the edge cells; DRC on PixelFootAll
will check this.

2. 3x3 Array of PixelFootPrint—This is to ensure that no DRC errors appear when you array
the metapixel. Edge cells (PixelFootLeft, -Right, -Top, and -Bottom) should be placed along
the edge of the array.

21

Chapter 2

ChipGen User Interface

2.1 ChipGen GUI

Use ChipGen’s Graphical User Interface (GUI) to specify parameters for layout and netlist gener-
ation. Below is a description of the buttons and options that are available through the GUI (see
Figure 2.1 for a picture of the GUI itself).

1. General Chip Info

This section is where you input general chip parameters:

• Rows—number of rows in the metapixel array.

• Columns—number of columns in the metapixel array.

• Directory—the full path of the directory where all the required files are located (the
ChipGen DLL, AER cell library, metapixel library, etc.).

• Library—the name of the AER layout or spice library.

• Pixel—the name of the file that contains the metapixel cell layout or netlist.

• Output—the name of the file to save the generated layout or netlist.

• Biases on Top—set this option if you wish to route all the biases to the top of the chip.
Note that this will eliminate the bottom pad frame.

• Padframe—set this option if you wish to generate a padframe along with the core.

• Short Substrate—set this option to short the substrate to GND in the spice netlists.
This option is normally set, however, clear it if you wish to LVS the layout to check for
unconnected GND nets.

• Guard Pads—set this option to include Pads for the Guard Ring. Two pairs of Vdd and
Gnd pads will placed on the top and bottom frame. If this option is clear then Guard
Vdd/Gnd is connected to Digital Vdd/Gnd.

22

Figure 2.1: ChipGen’s GUI
Enter parameters for layout and netlist generation through the GUI.

23

• Reduce Pads—set this option to reduce the total pad count of the chip. This will roughly
eliminate 4 pads on each side of the chip by eliminating a pair of Analog Vdd/Gnd and
Guard Vdd/Gnd from the top and bottom pad frames, a pair of Digital Vdd/Gnd from
the left and right pad frames, and eliminating the Vdd or Gnd pad between Reset and
Acknowledge.

2. Analog Bias Info

This section is where you input info regarding the biases. Each row (Left,Right,Top,Bottom)
corresponds to the respective side of the metapixel array. The following is a description of
the columns:

• # per pixel—number of distinct biases per metapixel.

• # reps per pixel—number of times each distinct bias is repeated in one PixelFootPrint.
For example, if you have seven global row biases and you use five of them twice in a
PixelFootPrint, and the other two only once, you need to set this parameter to 2 and,
in the layout, make dummy ports in PixelFootLeft for the other two biases that are not
repeated so that they all appear twice. On the other hand, if you use one bias three
times and the remaining six once, you should just wire the three repetitions together in
the edge pixel, and set this parameter to 1.

• Signal Names—press this button to open a window to enter the names of the biases.

3. AER Components

This section is where you specify the AER components to include in the chip layout. You
can select combinations of Receiver and Transmitter.

• Receiver

– Cols Per Pixel—number of columns per metapixel.
– Rows Per Pixel—number of rows per metapixel.
– Col Select—column select signal.
– Row Select—row select signal.
– Row Ack—row acknowledge.

• Transmitter

– Cols Per Pixel—number of columns per metapixel.
– Rows Per Pixel—number of rows per metapixel.
– Col Request—column request signal.
– Row Request—row request signal.
– Row Select—row select signal.

4. Command Buttons

• Generate—creates the chip.txt file and spice netlist files

• Quit—exits GUI

24

2.2 Parameter File

Parameters for automatic compilation are listed in a file named “chip.txt”, which is automatically
generated by the ChipGen GUI. The parser is case insensitive and ignores whitespace, however
the headings must be spelled exactly as shown. Comments can be delineated with a % symbol.
Note: if a heading is missing, a default value will be used. Below is a sample chip.txt. In the
following example, left and right biases and top and bottom biases share the same name. Since the
“WIRE BIASES UP” option is not checked, distinct pads for each bias will be generated on the
top and bottom of the chip. If the option were checked, though, only one pad for each bias would
be generated since they share the same name.

% This is general chip info

DIRECTORY c:\chipgen\layout

AER_FILE chiplib.tdb

PIX_FILE pixel.tdb

OUT_FILE chip.tdb

SP_DIR c:\chipgen\spice

SP_LIB_FILE genlib.sp

SP_PIX_FILE pixel.sp

SP_OUT_FILE chip.sp

CHIP_PIXEL_ROWS 64

CHIP_PIXEL_COLS 32

PADFRAME YES

WIRE_BIASES_UP NO

SUBSTRATE YES

REDUCE_PADS NO

GUARD_PADS NO

% AER receiver info

RECEIVER YES

RCVR_ROWS_PER_PIX 2

RCVR_COLS_PER_PIX 2

RCVR_ROW_SIGS

~PixAck

~RSelY

RCVR_COL_SIGS

~RSelX

% AER transmitter info

TRANSMITTER YES

XMIT_ROWS_PER_PIX 2

XMIT_COLS_PER_PIX 2

XMIT_ROW_SIGS

TSelY

~TReqY

XMIT_COL_SIGS

~TReqX

% Left analog bias info

LEFT_BIAS_NUM 3

LEFT_BIAS_REPS 2

LEFT_BIAS_NAMES

Hbias0

Hbias1

Hbias2

% Right analog bias info

RIGHT_BIAS_NUM 3

RIGHT_BIAS_REPS 2

RIGHT_BIAS_NAMES

Hbias0

Hbias1

Hbias2

% Top analog bias info

TOP_BIAS_NUM 2

TOP_BIAS_REPS 2

TOP_BIAS_NAMES

Vbias0

Vbias1

% Bottom analog bias info

BOTTOM_BIAS_NUM 2

BOTTOM_BIAS_REPS 2

BOTTOM_BIAS_NAMES

Vbias0

Vbias1

END

25

Chapter 3

Pad-Frame Layout

When the ‘Padframe’ option is checked, ChipGen generates layout with pads in a cell named ‘chip’
(Figure 3.1). The top and bottom pads (FrameTop and FrameBottom) are reserved for analog
power and biases. The left pads (FrameLeft) are reserved for digital power and receiver signals.
The right pads (FrameRight) are reserved for digital power and transmitter signals. Below is a
detailed description of each element of the padframe:

FrameTop

1. Generated if there are right and top biases; not generated otherwise.

2. The ‘Guard Pads’ option places two pairs of Guard Vdd/Gnd pads (see Figure 3.1) on the
left and right.

3. The ‘Reduce Pads’ option removes a pair of Analog Vdd/Gnd pads and a pair of Guard
Vdd/Gnd pads (see Figure 3.1).

FrameBottom

1. Generated if there are left and bottom biases; not generated otherwise.

2. Excluded if ‘Biases on Top’ option is checked (any left and bottom biases are routed to
‘FrameTop’).

3. The ‘Guard Pads’ option places two pairs of Guard Vdd/Gnd pads (see Figure 3.1) on the
left and right.

4. The ‘Reduce Pads’ option removes a pair of Analog Vdd/Gnd pads and a pair of Guard
Vdd/Gnd pads (see Figure 3.1).

26

FrameLeft

1. Generated if there is a receiver.

2. Power and ground (RcvPVdd/Gnd) pads are interleaved between the address and control
signals.

3. Address bits are named RcvAdr0’ to RcvAdr{N − 1} where N is the maximum address bits
of the receiver.

4. The control signals are labeled (from bottom to top):

• RcvRst—reset

• RcvAck—acknowledge

• RcvReqY—active-high row-request

• ∼RcvReqX—active-low column-request

5. The ‘Reduce Pads’ option removes a pair of Digital Vdd/Gnd pads and a pair of RcvPVdd/Gnd
pads (see Figure 3.1).

6. The ‘Biases on Top’ option places a pair of Analog Vdd/Gnd pads in the bottom corner.

FrameRight

1. Generated if there is a transmitter.

2. Power and ground (XmtPVdd/Gnd) pads are interleaved between the address and control
signals.

3. Address bits are named XmtAdr0 to XmtAdr{N − 1} where N is the maximum address bits
of the transmitter.

4. The control signals are labeled (from bottom to top):

• XmtRst—reset

• XmtAck—acknowledge

• XmtReqY—active-high row-request

• ∼XmtReqX—active-low column-request

5. The ‘Reduce Pads’ option removes a pair of Digital Vdd/Gnd pads and a pair of Xmt-
PVdd/Gnd pads (see Figure 3.1).

6. The ‘Biases on Top’ option places a pair of Analog Vdd/Gnd pads in the top corner.

27

Figure 3.1: Example chip layout with pads.
A 64x64 array of PixelFootPrint from example pixel.tdb; layout was generated with the ‘Padframe’ and ‘Guard

Pads’ options set. Pads with a red outline are removed when the ‘Reduce Pads’ option is checked; pads with a

green outline are removed when the ‘Guard Pads’ option is unchecked. All ground pads are labeled with ‘DGnd’

when the ‘Short Substrate’ option is checked.

28

Chapter 4

Simulation

In this chapter we describe how to simulate your PixelFootPrint and the Core or Chip that ChipGen
generates. We will start with PixelFootPrint.

4.1 Simulating PixelFootPrint

It is important to simulate PixelFootPrint so that you can confirm that your pixel’s event-generation
circuitry generates a request signal (Figure 4.1) with rise and fall times of less than 5 nanoseconds
(0.25µm technology). Typically, some form of positive feedback is required to achieve this.1

An S-Edit schematic file containing the PixelFootPrint testbench is in the file ‘pixeltest.sdb’
(Figure 4.2). This testbench will supply synaptic input to your neuron circuit and readout its
spikes. It includes the following modules:

• PixelRcvEnv—simulates receiver environment, appropriately following the handshaking pro-
tocol (Figure 4.1).

• PixelRcvIntfc—interfaces neuron with receiver (see Figure 1.4).

• TestNeuron—receives synaptic input and generates spikes (see Figure 4.3).

• PixelXmtIntfc—interfaces neuron with transmitter (see Figure 1.4).

• PixelXmtEnv—simulates transmitter environment, appropriately following the handshaking
protocol (Figure 4.1).

The four interfaces between these five modules use the following signals:
1E Culurciello, R Etienne-Cummings, and K Boahen, A Biomorphic Digital Image Sensor, IEEE Journal of Solid

State Circuits, vol 38, no 2, pp 281-294, 2003.

29

PixelRcvEnv to PixelRcvIntfc

• nrselx—active-low column-select (i.e., request)

• nrsely—active-low row-select (i.e., request)

• npixack—active-low pixel-acknowledge

PixelRcvIntfc to TestNeuron

• synin—active-high synaptic event signal

TestNeuron to PixelXmtIntfc

• nreq—active-low pixel-request

• npixrst—active-low pixel-reset (i.e., acknowledge)

PixelXmtIntfc to PixelXmtEnv

• ntreqx—active-low column-request

• ntreqy—active-low row-request

• tsely—active-high row-select (i.e., acknowledge)

In addition, vpl controls how frequently PixelRcvEnv sends synaptic events to PixelRcvIntfc, and
nRST (active-low) resets PixelXmtEnv at the beginning of the simulation.

To illustrate the correct sequencing of these signals, we present results from simulating the
testbench with an example neuron circuit (Figure 4.3).2 This conductance-based design includes
an excitatory synapse, a refractory channel, a soma, and an axon-hillock. The synapse includes
a pulse-extender that extends the nanosecond-wide pulse supplied by PixelRcvIntfc. The axon-
hillock uses positive-feedback to generate a sufficiently fast nreq signal (PixelXmtIntfc requires rise
and fall times under 5ns).

After the soma integrates a couple of synaptic events, the axon-hillock starts generating spikes
(Figure 4.4a). These synaptic events are delivered by a three-nanosecond handshake involving
nsely, nselx (shorted to nsely), and npixack (Figure 4.4b). The spikes are read out by a ten-
nanosecond handshake involving ntreqy, ntreqx, and tsely (Figure 4.4c).

2JV Arthur and K Boahen, Learning in Silicon: Timing is Everything, Advances in Neural Information Processing
Systems 18, 2006.

30

Req

Ack

1

2

3

4

1
Req

Ack

Figure 4.1: Four-phase Handshake Protocol
The left block requests by asserting Req (1) and the right block acknowledges by asserting Ack (2). The

left block signals that it received the acknowledge by de-asserting Req (3) and the right block terminates the

communication by de-asserting Ack (4).

4.2 Simulating the Core

Use ‘testbench.sp’ to ensure your ChipGen-generated neuron array functions correctly with the
word-serial AER circuits. This testbench (Figure 4.5) instances the following subcircuits:

• ReceiverEnv—simulates the receiver environment by repeatedly sending the receiver a burst
consisting of a row address followed by two column addresses.

• TransmitterEnv—simulates the transmitter environment by acknowledging the transmitter
approriately.

The signals used in the testbench are:

ReceiverEnv

• RcvAdr{0,1}—receiver address-bits

• RcvReqY—active-high row-request

• ∼RcvReqX—active-low column-request

• RcvAck—active-high acknowledge

TransmitterEnv

• XmtAdr{0,1}—transmitter address-bits

• XmtReqY—active-high row-request

• ∼XmtReqX—active-low column-request

• XmtAck—active-high acknowledge

31

In addition, RcvRst and XmtRst reset the receiver and transmitter at the beginning of the simu-
lation.

To illustrate the correct sequencing of these signals, we present results from simulating the
testbench using an example neuron array (Figure 4.6).3 The example neuron array simply consists
of buffers so the transmitter output follows the receiver input.

You can simulate the chip without pads by extracting the ‘core’ layout cell (extract ‘chip’ to
simulate with pads). Include the extracted netlist into the testbench using the ‘.include’ statement.
The signal names for ‘core’ and ‘chip’ are the same.

3By convention, ∼XmtReqX should go low after the data becomes valid, however a delay was not necessary here
because the receiver adds delay between the request signal and its address latch.

32

Figure 4.2: PixelFootPrint TestBench Schematic
Use this testbench to simulate your neuron circuit by replacing TestNeuron with your own module. PixelRcvEnv

will deliver spikes to TestNeuron and PixelXmtEnv will readout spikes from TestNeuron. You can increase the

input spike rate by lowering the bias voltage vpl applied to PixelRcvEnv.

Figure 4.3: Example TestNeuron Schematic
An example conductance-based neuron with an excitatory synapse, a refractory channel, a soma, and an axon-

hillock. Each successive synaptic event at synin leaks charge off the pulse-extender’s node vpe. This in turn leaks

charge off vlpf and hence vmem. Once vmem passes a threshold, positive-feedback through the axon-hillock’s

current mirror kicks in to give nreq a fast slew rate. This request is acknowledged by nrst, which leaks charge

off vrfr, making the neuron refractory.

33

Figure 4.4: PixelFootPrint TestBench Waveforms
W-Edit plots of ‘pixeltest.sp’ simulation. (a) Each successive synin leaks charge off vpe, which leaks charge

off vlpf and ultimately vmem. Once vmem passes a threshold, positive-feedback kicks in to generate spikes. (b)

Following the four-phase handshake protocol (see Figure 4.1), PixelRcvEnv selects PixelRcvIntfc by pulling

nrsely and nrselx (not shown) low, which prompts PixelRcvIntfc to acknowledge with npixack; it also

pulls synin high (see (a)). (c) When PixelXmtIntfc sees nreq go low (due to spikes shown in (a)), it makes a

request to PixelXmtEnv by pulling ntreqy low. PixelXmtEnv acknowledges by taking tsely high. This prompts

PixelXmtIntfc to pull ntreqx low; it asserts npixrst (not shown) concurrently to clear nreq by terminating

the spike. This prompts ntreqy to go high, which is acknowledged by tsely going low, and that prompts ntreqx

to go high.

34

ReceiverEnv

RcvAdr{0,1}

RcvReqY

~RcvReqX

RcvAck

TransmitterEnv

Core

or

Chip

XmtAdr{0,1}

XmtReqY

~XmtReqX

XmtAck

Figure 4.5: Core or Chip Testbench Schematic
ReceiverEnv sends address-events to Core or Chip via four-phase handshaking, and Core or Chip sends

address-events to TransmitterEnv via four-phase handshaking.

Figure 4.6: Core TestBench Waveforms
W-Edit plots of ‘testbench.sp’ simulation. (a) ReceiverEnv sends the row address (row = 0) by driving RcvReqY

high, which prompts the receiver to acknowledge by taking RcvAck high, a two-phase handshake. ReceiverEnv

then sends the column address (column = 1) by driving ∼RcvReqX low, and the receiver acknowledges by driving

RcvAck low; subsequent transitions on these signals complete the four-phase handshake. The second column

address (column = 2) is sent by another four-phase handshake. The burst terminates when ReceiverEnv drives

RcvReqY low, prompting RcvAck to go low. (b) The XmtReqY, ∼XmtReqX, and XmtAck signals between the

transmitter and TransmitterEnv follow the same handshaking sequence as in (a).

35

Appendix A

Sample Netlist Files

Below are samples of netlist files needed for Netlist Generation (see Section 1.1.2). This example is
for a metapixel with a 2x3 subarray of neurons, each with one input synapse. The netlists do not
represent any usable circuit. They are designed to illustrate various points.

36

A.1 layout.sp

This file defines the signals entering/exiting the pixel. The sample file is presented first (in small
font) and a description of the circuit follows. NOTE: The first line of the file should not contain
the .layout statement.

*

* layout.sp

*

.layout

LEFT={TSelY_0,~TReqY_0,~RSelY_0,~PixAck_0,Vbr_0,OutL_0,TSelY_0,~TReqY_1,~RSelY_1,~PixAck_1,Vbr_1,OutL_1}

RIGHT={TSelY_0,~TReqY_0,~RSelY_0,~PixAck_0,Vbr_0,OutR_0,TSelY_0,~TReqY_1,~RSelY_1,~PixAck_1,Vbr_1,OutR_1}

TOP={~RSelX_0,~TReqX_0,Vinc_0,OutT_0,~RSelX_1,~TReqX_1,Vinc_1,OutT_1,~RSelX_2,~TReqX_2,Vinc_2,OutT_2}

BOTTOM={~RSelX_0,~TReqX_0,Vinc_0,OutB_0,~RSelX_1,~TReqX_1,Vinc_1,OutB_1,~RSelX_2,~TReqX_2,Vinc_2,OutB_2}

GLOBAL={Vbr,Vinc,AGnd,AVdd,DGnd,DVdd}

LEFTEDGE={TSelY_0,~TReqY_0,~RSelY_0,~PixAck_0,Vbr_0,Vdd,TSelY_0,~TReqY_1,~RSelY_1,~PixAck_1,Vbr_1,Vdd}

RIGHTEDGE={TSelY_0,~TReqY_0,~RSelY_0,~PixAck_0,Vbr_0,Gnd,TSelY_0,~TReqY_1,~RSelY_1,~PixAck_1,Vbr_1,Gnd}

END

** end layout.sp **

Remarks:

• Outside the receiver and transmitter signals, the only other signals exiting the metapixel
horizontally are Vbr, OutL, and OutR (remember, the indices are used to differentiate
between the various neurons within the metapixel). Vbr is defined as GLOBAL, and thus
has the same node name on left and right sides of the metapixel. OutL and OutR are local
connections between metapixels. Vertically, the only other signals are the global signal Vinc
and local signals OutT and OutB.

• The local signal pairs (OutL/OutR and OutT/OutB) are located in the same position
within each list, as is required to correctly connect them.

• OutL is connected to Gnd along the left side of the array (as defined by LEFTEDGE) and
OutR is connected to Vdd along the right side of the array (as defined by RIGHTEDGE).

• Since TOPEDGE and BOTTOMEDGE statements do not exist, the local signals OutT and
OutB are left hanging by default.

• All global biases and power signals need to be defined in GLOBAL.

37

A.2 pixel.sp

This file is the main file for the pixel.

*

* pixel.sp

*

Xsp0_0 OutL_0 OutR00 OutT_0 OutB00 TSelY_0 ~TReqY_0 ~RSelY_0 ~PixAck_0 ~RSelX_0 ~TReqX_0 Vinc_0 Vbr_0 DGnd AGnd DVdd AVdd subpixel

Xsp0_1 OutR00 OutR01 OutT_1 OutB01 TSelY_0 ~TReqY_0 ~RSelY_0 ~PixAck_0 ~RSelX_1 ~TReqX_1 Vinc_1 Vbr_0 DGnd AGnd DVdd AVdd subpixel

Xsp0_2 OutR01 OutR_0 OutT_2 OutB02 TSelY_0 ~TReqY_0 ~RSelY_0 ~PixAck_0 ~RSelX_2 ~TReqX_2 Vinc_2 Vbr_0 DGnd AGnd DVdd AVdd subpixel

Xsp1_0 OutL_1 OutR10 OutB00 OutB_0 TSelY_1 ~TReqY_1 ~RSelY_1 ~PixAck_1 ~RSelX_0 ~TReqX_0 Vinc_0 Vbr_1 DGnd AGnd DVdd AVdd subpixel

Xsp1_1 OutR10 OutR11 OutB01 OutB_1 TSelY_1 ~TReqY_1 ~RSelY_1 ~PixAck_1 ~RSelX_1 ~TReqX_1 Vinc_1 Vbr_1 DGnd AGnd DVdd AVdd subpixel

Xsp1_2 OutR11 OutR_0 OutB02 OutB_2 TSelY_1 ~TReqY_1 ~RSelY_1 ~PixAck_1 ~RSelX_2 ~TReqX_2 Vinc_2 Vbr_1 DGnd AGnd DVdd AVdd subpixel

** end pixel.sp **

Remarks:

• All the signals found within layout.sp must have the same name as in pixel.sp.

• This file only contains instances of subcircuits or individual components (e.g. transistors).
There should be no subcircuit definitions within this circuit.

• Local connections within this level of the netlist may exist (e.g. OutR00) that need not be
defined in layout.sp.

• Note how the index numbering corresponds to the position of the neuron within the 2x3
subarray in the metapixel. This need not be the case but is STRONGLY recommended.

38

A.3 subckts.sp

This file defines the subcircuits found within pixel.sp.

*

* subckts.sp

*

.SUBCKT subpixel OutL OutR OutR OutB TSelY ~TReqY ~RSelY ~PixAck ~RSelX ~TReqX Vinc Vbr DGnd AGnd DVdd AVdd

{******** component list or other subcircuit instances ****************}

.ENDS

{**************** other subcircuit definitions ******************}

** end subckts.sp **

The subcircuit contains components, such as transistors and capacitors, or other subcircuit
instances. In the latter case, the other subcircuit definitions need be defined within this file as well.

39

Appendix B

Walkthrough

Let us go through a simple example of ChipGen in action.

1. Make sure you have all the required files as specified in Chapter 1. Example files that have
been included:

• chiplib.tdb—AER cell layout library. Note that without Tanner’s Mixed-Signal Design
Kit1, most pads will appear as outlines.

• example pixel.tdb—An example metapixel layout.

• genlib.sp—AER circuits netlists.

• example pixel.sp—An example metapixel spice netlist.

• subckts.sp—The subcircuit netlist definitions for AER receiver and transmitter circuitry
used in the example metapixel.

• layout.sp—Layout definition for example metapixel.

2. Use chipgen gui.exe to generate chip.txt and spice files. Make sure that the directory fields
contain the correct path (e.g. if you are working from the example files, the layout directory
field should be c:\{folder you extracted to}\chipgen\layout)

3. Load and run “ChipGen.DLL” in L-Edit: Go to the menu bar and click on Tools → Macro
→ Load... → Run. Before you click the “Run” button, though, click on “Setup” to make
sure that, in the UPI tab in the console that pops up, the “Update display” checkbox in the
“While UPI code executes” section is clear.

4. After a few minutes, the layout will be created. Now you can DRC to detect any layout
errors: Go to the menu bar and click on Tools → DRC.

5. Once DRC has completed without any errors, you can extract a netlist of the layout: Go to the
menu bar and click on Tools → Extract... → Run. If you selected the “Short Substrate” option
in the ChipGen GUI, use the file “mTSMd026.ext” as the extract definition file, otherwise

1http://www.tanner.com/EDA/products/designkit/tsmc.htm

40

use “mTSMd026 open”; this file is located in c:\{folder you extracted to}\chipgen. Make
sure you save the extracted netlist into the same folder as the generated spice files (e.g.
c:\{folder you extracted to}\chipgen\spice) so that Tanner’s LVS program can find all the
required files.

6. Now you can LVS the extracted layout netlist with the generated netlist. In Tanner’s LVS
program go to the menu bar and click on File → New... → LVS Setup. In the console that
opens, the Input tab is used to specify the locations of the netlists; the generated chip netlist
is named example chip.sp. In the Options tab there is a checkbox named “Consider M bulk
terminals and B,J,Q,Z substrate terminals” in the “Device Terminals” section; check this box
if the “Short Substrate” option was selected in the ChipGen GUI, otherwise leave this clear.

41

Appendix C

Frequently Asked Questions

Why is the ChipGen GUI interface not displaying on my computer?

The GUI is written using the OpenGL Utility Toolkit (GLUT)1, originally written by Mark Kilgard,
ported to Win32 (Windows 95,98,Me,NT,2000,XP) by Nate Robins. Make sure you have the file
“glut32.dll” in the same directory as the GUI executable or in the Windows system directory.

Why does ChipGen generate the same layout after I have changed the parameters?

You must reload the L-Edit macro for the changes to take effect.

Why does ChipGen open up multiple cell windows?

This is an option in L-Edit that must be turned off. Go to the menu bar and click on Tools →
Macro... → Setup. In the UPI tab there will be a section called “While UPI code executes;” make
sure the “Update display” option is unchecked.

Why do I get the message “Error while copying {your pixel name}.tdb?”

Make sure that your .tdb file with metapixel layout has the same setup information as the chiplib.tdb
file that contains the AER cell library. To change setup information, in the menu bar go to File →
Replace Setup..., then use chiplib.tdb file as the file that you want setup information to come from.

1http://www.xmission.com/∼nate/glut.html

42

After loading ChipGen, some windows pop up then L-Edit becomes unresponsive—has
the program crashed?

The ChipGen macro can take up to twenty minutes to run for large chips (e.g. 256x256 of the
example pixel) so you may have to wait a bit. However, if your chip is not large and L-Edit
remains unresponsive for more than ten minutes, the macro may have encountered an error. If
such is the case, try checking that the metapixel layout obeys the rules mentioned in Chapter 1,
and that the parameters you set in the GUI match your layout.

Why do pads appear as just outlines?

Our lab uses the pads that are included in Tanner’s TSMC Mixed-Signal Design Kit2 so we cannot
give away these pads due to license restrictions. However, we have included “PadOut,” which has
been modified to reduce switching noise.

I have Tanner’s TSMC Mixed-Signal Design Kit—how do I get ChipGen to compile
these pads?

The pad layouts that need to be copied over into the AER layout library (chiplib.tdb) are “PadVdd”,
“PadGnd”, “PadInC”, and “PadAref”. Make sure both the AER layout library and the layout file
that contains the pad layouts are open in L-Edit, and that the AER layout library is the top-level
window. Go to the menu bar and click on Cell → Copy...; in the “File:” pulldown, select the layout
file that contains the pad layouts. Select the name of the pad layout that you want to copy, and
press the “OK” button; make sure that “Copy cell to current file” is selected in the “Reference
type” section at the bottom of the window. A “Conflict Resolution” window will open; for each
cell listed, in the pulldown menu under “Action,” select “Overwrite old cell.” Make sure you do
not overwrite the existing “PadOut” in the AER layout library with Tanner’s “PadOut”.

Why do I receive errors when I LVS the chip (core and padframes) but no errors when
I LVS the core alone?

The spice files that are generated contain netlists for the padframes so there will be element mis-
matches if the required pad layouts (see above question) are not present.

Why is my simulation failing even though my layout passed DRC and LVS?

Make sure your pixel’s event-generation circuitry generates the ∼Req signal (see Figure 1.4) with
rise and fall times of less than 5 nanoseconds (0.25µm technology). Typically, some form of positive

2http://www.tanner.com/EDA/products/designkit/tsmc.htm

43

feedback is required to achieve this.3

3E Culurciello, R Etienne-Cummings, and K Boahen, A Biomorphic Digital Image Sensor, IEEE Journal of Solid
State Circuits, vol 38, no 2, pp 281-294, 2003.

44

