Format

Send to

Choose Destination
Cancer Res. 1991 Aug 15;51(16):4463-9.

The hypersensitivity of the Chinese hamster ovary variant BL-10 to bleomycin killing is due to a lack of glutathione S-transferase-alpha activity.

Author information

1
Department of Radiation Oncology, Stanford University School of Medicine, California 94305.

Abstract

As a means to understand the fundamental mechanisms of bleomycin cell killing, we previously isolated 19 bleomycin-sensitive mutants which represent at least six genetically distinct complementation groups (T.D. Stamato, B. Peters, P. Patil, N. Denko, R. Weinstein, and A. Giaccia. Cancer Res., 47: 1588-1592, 1987). One class of mutants represented by the cell line BL-10 displays only hypersensitivity to killing by bleomycin in both acute (16 h) and chronic treatments but no sensitivity to killing by other DNA-damaging agents. Complementation studies between this mutant and human fibroblasts suggested that the human gene which corrects the defect of BL-10 rested on human chromosome 6. It has been reported that the gene for human glutathione S-transferase (GST) alpha also resides on chromosome 6. Measurements of selenium-independent peroxidase (alpha-GST + glutathione peroxidase) activity in wild-type Chinese hamster ovary (CHO) cells, using cumene hydrogen peroxide as a substrate, gave a value of 112 nmol of glutathione oxidized/min/mg protein compared with 88.1 nmol of glutathione oxidized/min/mg protein for BL-10. Measurement of the selenium-dependent peroxidase activity, using H2O2 as a substrate, resulted in 65.9 nmol of reduced glutathione oxidized/min/mg protein in CHO and 81.5 nmol of reduced glutathione oxidized/min/mg protein for BL-10. In other words, BL-10 cells did not exhibit a difference in their ability to metabolize both substrates in contrast to CHO cells. This indicates that BL-10 possesses little alpha-GST activity. Transfection of BL-10 cells with a mammalian expression vector containing the alpha-GST gene increases the survival of BL-10 to bleomycin and does not increase the bleomycin resistance of two other bleomycin mutants which lie in different genetic complementation groups. These data strongly implicate a role for alpha-GST in the resistance of cells to bleomycin.

PMID:
1714344
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center