We investigated the dominant/recessive nature of the XR-1 mutant locus in intraspecies Chinese hamster ovary (CHO) hybrids and interspecies hybrids with human cell lines that possess different radioresistances. The XR-1 cell is abnormally sensitive to killing by gamma rays in the G1 phase of the cell cycle, while late-S-phase cells have wild-type resistance. [3H]Thymidine selection was used to eliminate the resistant S-phase population. In both intraspecies and interspecies hybrids, the XR-1 mutation is recessive to the wild-type cell and is not influenced by differences in chromosome ploidy. Analysis of hybrids between human ataxia telangiectasia fibroblasts AT5BI and XR-1 cells revealed that they possess different genetic defects as they complemented each other in three of four hybrids tested. These data suggest that the XR-1 locus is evolutionarily conserved between hamster and human cells.