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Abstract 

We present schemes for real-time generalized mesh cutting. Starting with the a basic 
example, we describe the details of implementing cutting on single and multiple 
surface objects as well as hybrid and volumetric meshes using virtual tools with 
single and multiple cutting surfaces. These methods have been implemented in a 
robust surgical simulation environment allowing us to model procedures ranging 
from animal dissection to cleft lip correction. 

 

 

1. Introduction  

 

Cutting is a common manipulation encountered in simulations such as surgical training, 
clothing design and CAD/CAM manufacturing. A number of techniques have been 
developed to simulate cutting surface and volumetric meshes [1-17]. The number of 
intermediate steps required to recreate the cutting procedure often limits the level of 
realism offered by these methods, but intermediate steps have historically been necessitated 
by the inability to interactively update the underlying topological changes on large meshes.  
 
The common element missing from these previous cutting tools is the ability to represent 
various forms of cutting using realistic tools on irregular meshes in real-time. The goal of 
this paper is to demonstrate how by using a very simple scheme, one can model widely 
differing behaviors of virtual tools within a real-time surgical simulation environment. 
 
 
2. Methods  

 

Starting with the most basic form of cutting, the following sections will describe the 
implementation of various cutting tools in a virtual environment. Since we start with a very 
general cutting scheme, each tool is an extension of the most basic cutting method 
requiring very little “special purpose” routines in order to model various forms of cutting.  
This method allows for any arbitrary cut to be made within an virtual object, and can 
simulate cutting surface, layered surface or tetrahedral objects using virtual scalpel, 
scissors, and loop cautery tools. 



The basic engine for the cutting routine is collision detection, collision response, 
deformable object solution, and user interface information. This paper will describe the 
first two phases, the reader is directed to [18] for a detailed description of the last two 
phases. 

 

Collision Detection 

 

When modeling a cutting instrument one can either pre-compute the sharp regions of the 
mesh or choose which areas will be allowed to cut based on inspection of the model and 
included as information within the object’s data file. This information can be a list of edges 
or faces [19].  

Even if an object is visually composed of faces, for the sake of collision detection, we can 
create bounding volumes around other primitives to directly obtain the information 
important to cutting. If we choose to ignore intersections away from the sharp regions of a 
cutting instrument, we can enclose only the sharp primitives, reducing the number of 
intersection tests. If we choose more than one primitive to be sharp, the bounding hierarchy 
will enclose all of the sharp primitives. Since most tools will have fewer sharp primitives 
than the number of primitives in the overall geometry, this dramatically reduces the number 
of intersections tests that are necessary at each iteration.  

When modeling cutting tools that are only composed of edges it is possible to pass over 
objects due to sampling latency.  To solve this problem, we can choose to detect collisions 
not on the edge, but on the surface swept by the edge [20]. Furthermore, by enclosing the 
swept surfaces of the sharp edges by bounding volumes [21], we can still exploit the 
benefits of a binary search tree.  

Currently we are storing intersection information as collision pairs with pointers to the 
objects that were in collision, the point at which collision occurred, and the primitives that 
were intersected.  This list of collision pairs is then passed to the collision response scheme 
of the tool and provides us with the necessary information to perform a probing or a cutting 
manipulation. 

 

Collision Response 

 

The selection of sharp edges automatically defines a cutting direction, that is, the directions 
that the object can be moved that cause the tool to perform the specified action. For 
example, motion of a scalpel along the cut direction allows the cutting action to be 
implemented, while motion out of the allowed range causes the object to perform the 
probing action [22]. 

Cutting 

The decision whether to cut a primitive is dependent on its state. These states are stored as 
information in the primitive class and used during re-meshing. For example, if the primitive 
has not been intersected before, then the intersection is recorded and the primitive is said to 
be in the start state. If at the next iteration the primitive is still in collision, then it is 
thought to be in the update state. In subsequent iterations, if the primitive is no longer in 
collision, then it is said to be in the move state and the primitive is cut based on the 
configuration of face and edge intersections that have been stored previously. The primitive 
state is determined by tracking which primitives the cutting edge was intersecting at the last 



iteration and checking that list against the list of primitives currently in collision. Figure 1 
describes the cutting loop. 
 

 

Figure 1. Flow diagram of the cutting loop. 

As described in [18], each instrument has it’s own dynamics and allowable behaviors. The 
following sections describe the results of implementing three kinds of instruments: a 
scalpel, a pair of scissors, and a cauterizing wire; on various mesh representations.  

 

 

3. Results 

 

On average, the simulation can detect collisions, compute the collision response, compute 
the deformation equations, update the bounding hierarchy and display the results on one 
processor of a Sun (Mountain View, CA) E3500 8x400 MHz UltraSparc workstation at 15 
frames/second while the objects are intersecting. This frame rate increases to 70 
frames/second if we display on one thread and run the simulation on another. 

 

Scalpel Cutting 

 

Single Surface 

Figure 2 demonstrates the use of a single sharp edge to cut a single deformable object 
composed of 5,000 triangles.  

 

Figure 2. Edge states. [Left]: Surface deforms until the yield limit is reached. [Right]: The sharp 
edge cuts as the user moves the scalpel. 



 

Multiple Surfaces 

Because cutting is based on primitive states and not an object-wide state, it is possible to 
cut complex surfaces with folds, and objects that model a volume by extruding a surface 
thereby creating two surfaces connected by springs [23]. In these cases, the list of last 
primitives intersected might contain non-adjacent triangles and triangles with variable 
compliance and attributes. These triangles might also come from different objects. Figure 3 
demonstrates the use of a single primitive to cut multiple surfaces. The deformable object is 
composed of 10,000 triangles.  

 

Figure 3. Cutting multiple surfaces. [Left]: Top View. [Right]: Side view. 

Hybrid surface 

In addition one might want to model separating a layer of a multiple surface object. In that 
case, one needs to use the hybrid method of collision detection enclosing the edges and 
faces of the surface with bounding spheres. In this case, the cutting scheme that is 
implemented is dependent on the type of primitive that is in collision. The triangular 
primitive is cut as before, however we choose to simply remove the intersected edges 
instead of subdividing it. This allows us to avoid creating edges with nodes that are not 
anchored and do not provide any structural or visual information to the model. Figure 4 
shows a scalpel being used to cut a hybrid surface composed of 25,000 triangles. 

 

Figure 4. [Left]: Scalpel cutting away top layers of a multi-layered object. [Right]: Virtual 
forceps peeling back top layers. 

Volume 

When cutting an irregularly meshed volumetric object, tool motion is not as straightforward 
as moving across a surface. It is possible to be in several tetrahedra at once and when using 



a tool that is more complex than a single long edge [11], it is possible to partially intersect 
tetrahedra requiring additional re-tetrahedralizing cases. Another factor to consider when 
using tetrahedra is that since we only record face and edge intersections, internal motion 
and depth of cut information is lost within the tetrahedral primitive. If these motions inside 
a tetrahedral primitive are important to the given simulation scenario, one might want to 
use a progressive cutting option. Progressive cutting re-tetrahredralizes the original 
primitive as the user moves the tool within the original tetrahedra, instead of waiting to re-
tetrahedralize once the tool has left the original tetrahedra. One must be aware however, 
that taking each of these internal motions literally will result in an increase in the number 
of tetrahedra unless additional mesh condensation schemes are employed. Figure 5 shows a 
scalpel cutting an irregular mesh of 300 tetrahedra.  

 

Figure 5. [Left]: A scalpel cutting a volumetric mesh. [Right]: Close-up on the cut path. 

 

Scissors Cutting 

 

When implementing scissors cutting, one must choose at least two edges as sharp. As 
mentioned previously, the allowable cutting direction is further restricted to permit cutting 
only when the cutting edges are moving towards each other. These two edges can either 
straddle the surface using the bottom edge to stabilize the surface while the top edge closes 
downward. Or if the edges are on the same side of the surface, the edges pinch the surface 
together until the two edges form a junction with the simulated tissue. Figure 6 shows a 
pair of virtual scissors cutting a deformable model consisting of 5,000 triangles. The figure 
also demonstrates how surface relaxes as the scissors are opened. 

 

Figure 6. [Left]: Virtual scissors cutting. [Right]: Surface relaxing as scissors are opened. 



Loop Cautery 

When modeling a loop cautery tool, one needs to choose several edges as sharp. These 
edges have their own wire dynamics that must be modeled as well. Figure 7 shows a wire 
that has been assigned 20 cutting edges and is cutting a virtual polyp consisting of 5,000 
triangles.  

 

Figure 7. Loop cautery cutting. [Left]: Snaring a virtual polyp. [Right]: Resulting cut. 

 

 

4. Conclusions  

 

Creating cuts through very large meshes is extremely simple using the schemes presented 
in this paper. These schemes have been employed in a rat dissection simulation system 
[24], a virtual polypectomy simulator [25], and a virtual hysteroscopy simulation system 
[26].  
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