

Generalized Interactions Using Virtual
Tools within the Spring Framework:

Cutting

Cynthia D. Bruyns1,2 Kevin Montgomery1
1Center for Bioinformatics, NASA Ames Research Center, Moffett Field, CA 94035,

2National Biocomputation Center, Stanford University, Stanford, CA 94305

Abstract

We present schemes for real-time generalized mesh cutting. Starting with the a basic
example, we describe the details of implementing cutting on single and multiple
surface objects as well as hybrid and volumetric meshes using virtual tools with
single and multiple cutting surfaces. These methods have been implemented in a
robust surgical simulation environment allowing us to model procedures ranging
from animal dissection to cleft lip correction.

1. Introduction

Cutting is a common manipulation encountered in simulations such as surgical training,
clothing design and CAD/CAM manufacturing. A number of techniques have been
developed to simulate cutting surface and volumetric meshes [1-17]. The number of
intermediate steps required to recreate the cutting procedure often limits the level of
realism offered by these methods, but intermediate steps have historically been necessitated
by the inability to interactively update the underlying topological changes on large meshes.

The common element missing from these previous cutting tools is the ability to represent
various forms of cutting using realistic tools on irregular meshes in real-time. The goal of
this paper is to demonstrate how by using a very simple scheme, one can model widely
differing behaviors of virtual tools within a real-time surgical simulation environment.

2. Methods

Starting with the most basic form of cutting, the following sections will describe the
implementation of various cutting tools in a virtual environment. Since we start with a very
general cutting scheme, each tool is an extension of the most basic cutting method
requiring very little “special purpose” routines in order to model various forms of cutting.
This method allows for any arbitrary cut to be made within an virtual object, and can
simulate cutting surface, layered surface or tetrahedral objects using virtual scalpel,
scissors, and loop cautery tools.

The basic engine for the cutting routine is collision detection, collision response,
deformable object solution, and user interface information. This paper will describe the
first two phases, the reader is directed to [18] for a detailed description of the last two
phases.

Collision Detection

When modeling a cutting instrument one can either pre-compute the sharp regions of the
mesh or choose which areas will be allowed to cut based on inspection of the model and
included as information within the object’s data file. This information can be a list of edges
or faces [19].

Even if an object is visually composed of faces, for the sake of collision detection, we can
create bounding volumes around other primitives to directly obtain the information
important to cutting. If we choose to ignore intersections away from the sharp regions of a
cutting instrument, we can enclose only the sharp primitives, reducing the number of
intersection tests. If we choose more than one primitive to be sharp, the bounding hierarchy
will enclose all of the sharp primitives. Since most tools will have fewer sharp primitives
than the number of primitives in the overall geometry, this dramatically reduces the number
of intersections tests that are necessary at each iteration.

When modeling cutting tools that are only composed of edges it is possible to pass over
objects due to sampling latency. To solve this problem, we can choose to detect collisions
not on the edge, but on the surface swept by the edge [20]. Furthermore, by enclosing the
swept surfaces of the sharp edges by bounding volumes [21], we can still exploit the
benefits of a binary search tree.

Currently we are storing intersection information as collision pairs with pointers to the
objects that were in collision, the point at which collision occurred, and the primitives that
were intersected. This list of collision pairs is then passed to the collision response scheme
of the tool and provides us with the necessary information to perform a probing or a cutting
manipulation.

Collision Response

The selection of sharp edges automatically defines a cutting direction, that is, the directions
that the object can be moved that cause the tool to perform the specified action. For
example, motion of a scalpel along the cut direction allows the cutting action to be
implemented, while motion out of the allowed range causes the object to perform the
probing action [22].

Cutting

The decision whether to cut a primitive is dependent on its state. These states are stored as
information in the primitive class and used during re-meshing. For example, if the primitive
has not been intersected before, then the intersection is recorded and the primitive is said to
be in the start state. If at the next iteration the primitive is still in collision, then it is
thought to be in the update state. In subsequent iterations, if the primitive is no longer in
collision, then it is said to be in the move state and the primitive is cut based on the
configuration of face and edge intersections that have been stored previously. The primitive
state is determined by tracking which primitives the cutting edge was intersecting at the last

iteration and checking that list against the list of primitives currently in collision. Figure 1
describes the cutting loop.

Figure 1. Flow diagram of the cutting loop.

As described in [18], each instrument has it’s own dynamics and allowable behaviors. The
following sections describe the results of implementing three kinds of instruments: a
scalpel, a pair of scissors, and a cauterizing wire; on various mesh representations.

3. Results

On average, the simulation can detect collisions, compute the collision response, compute
the deformation equations, update the bounding hierarchy and display the results on one
processor of a Sun (Mountain View, CA) E3500 8x400 MHz UltraSparc workstation at 15
frames/second while the objects are intersecting. This frame rate increases to 70
frames/second if we display on one thread and run the simulation on another.

Scalpel Cutting

Single Surface

Figure 2 demonstrates the use of a single sharp edge to cut a single deformable object
composed of 5,000 triangles.

Figure 2. Edge states. [Left]: Surface deforms until the yield limit is reached. [Right]: The sharp
edge cuts as the user moves the scalpel.

Multiple Surfaces

Because cutting is based on primitive states and not an object-wide state, it is possible to
cut complex surfaces with folds, and objects that model a volume by extruding a surface
thereby creating two surfaces connected by springs [23]. In these cases, the list of last
primitives intersected might contain non-adjacent triangles and triangles with variable
compliance and attributes. These triangles might also come from different objects. Figure 3
demonstrates the use of a single primitive to cut multiple surfaces. The deformable object is
composed of 10,000 triangles.

Figure 3. Cutting multiple surfaces. [Left]: Top View. [Right]: Side view.

Hybrid surface

In addition one might want to model separating a layer of a multiple surface object. In that
case, one needs to use the hybrid method of collision detection enclosing the edges and
faces of the surface with bounding spheres. In this case, the cutting scheme that is
implemented is dependent on the type of primitive that is in collision. The triangular
primitive is cut as before, however we choose to simply remove the intersected edges
instead of subdividing it. This allows us to avoid creating edges with nodes that are not
anchored and do not provide any structural or visual information to the model. Figure 4
shows a scalpel being used to cut a hybrid surface composed of 25,000 triangles.

Figure 4. [Left]: Scalpel cutting away top layers of a multi-layered object. [Right]: Virtual
forceps peeling back top layers.

Volume

When cutting an irregularly meshed volumetric object, tool motion is not as straightforward
as moving across a surface. It is possible to be in several tetrahedra at once and when using

a tool that is more complex than a single long edge [11], it is possible to partially intersect
tetrahedra requiring additional re-tetrahedralizing cases. Another factor to consider when
using tetrahedra is that since we only record face and edge intersections, internal motion
and depth of cut information is lost within the tetrahedral primitive. If these motions inside
a tetrahedral primitive are important to the given simulation scenario, one might want to
use a progressive cutting option. Progressive cutting re-tetrahredralizes the original
primitive as the user moves the tool within the original tetrahedra, instead of waiting to re-
tetrahedralize once the tool has left the original tetrahedra. One must be aware however,
that taking each of these internal motions literally will result in an increase in the number
of tetrahedra unless additional mesh condensation schemes are employed. Figure 5 shows a
scalpel cutting an irregular mesh of 300 tetrahedra.

Figure 5. [Left]: A scalpel cutting a volumetric mesh. [Right]: Close-up on the cut path.

Scissors Cutting

When implementing scissors cutting, one must choose at least two edges as sharp. As
mentioned previously, the allowable cutting direction is further restricted to permit cutting
only when the cutting edges are moving towards each other. These two edges can either
straddle the surface using the bottom edge to stabilize the surface while the top edge closes
downward. Or if the edges are on the same side of the surface, the edges pinch the surface
together until the two edges form a junction with the simulated tissue. Figure 6 shows a
pair of virtual scissors cutting a deformable model consisting of 5,000 triangles. The figure
also demonstrates how surface relaxes as the scissors are opened.

Figure 6. [Left]: Virtual scissors cutting. [Right]: Surface relaxing as scissors are opened.

Loop Cautery

When modeling a loop cautery tool, one needs to choose several edges as sharp. These
edges have their own wire dynamics that must be modeled as well. Figure 7 shows a wire
that has been assigned 20 cutting edges and is cutting a virtual polyp consisting of 5,000
triangles.

Figure 7. Loop cautery cutting. [Left]: Snaring a virtual polyp. [Right]: Resulting cut.

4. Conclusions

Creating cuts through very large meshes is extremely simple using the schemes presented
in this paper. These schemes have been employed in a rat dissection simulation system
[24], a virtual polypectomy simulator [25], and a virtual hysteroscopy simulation system
[26].

Acknowledgements

We wish to thank Richard Boyle and the Center for Bioinformatics at the NASA Ames Research
Center for their support of this research. Special thanks to the National Biocomputation Center and
including Joel Brown, Steven Sorkin, Fredric Mazzella, Anil Menon, Jeremie Roux, Julien Durand,
Bharat Beeedu, Guillame Thonier and Jean Claude Latombe. This work was supported by grants
from NASA (NCC2-1010), NIH (NLM-3506, HD38223), NSF (IIS-9907060), and a generous
donation from Sun Microsystems.

References

[1] Pieper, S., Rosen, J., Zeltzer, D.: Interactive Graphics for Plastic Surgery: A Task-level Analysis
and Implementation. Symposium on Interactive 3D Graphics ACM Press, New Yo rk, (1992)
pp.127–134.

[2] Song, G. and Reddy, N.: Tissue Cutting in Virtual Environments. In: Medicine Meets Virtual
Reality. IOS Press, Amsterdam (1995) pp. 359-364.

[3] Keeve, E., Girod, S., and Girod, B.: Computer-Aided Craniofacial Surgery. Journal of the Int.
Society for Computer Aided Surgery. 3 (1996) 6-10.

[4] Mazura, A., Seifert, S.: Virtual Cutting in Medical Data. In: Westwood, J., et. al. (eds.) Medicine
Meets Virtual Reality. IOS Press, Amsterdam (1997) pp. 420-429.

[5] Wong, K. C., Siu, T. Y., and Heng, P.: Interactive Volume Cutting. Technical Report, Department
of Computer Science and Engineering, Chinese University of Hong Kong (1998).

[6] Basdogan, C., Ho, C., and Srinivasan, M.A.: Simulation of Tissue Cutting and Bleeding for
Laparoscopic Surgery Using Auxiliary Surfaces. In: Westwood, J., et. al. (eds.) Medicine Meets
Virtual Reality. IOS Press, Amsterdam (1999) pp. 38-44.

[7] Bro-Nielsen, M., Helfrick, D., Glass, B., Zeng, X., Connacher, H:. VR Simulation of Abdominal
Trauma Surgery. Westwood, J., et. al. (eds.) Medicine Meets Virtual Reality, IOS Press,
Amsterdam (1999) pp.117-123.

[8] Voss, G., Hahn, J.K., Muller, W., Lineman, R.W.: Virtual Cutting of Anatomical Structures. In:
Westwood, J., et. al. (eds.) Medicine Meets Virtual Reality, IOS Press, Amsterdam (1999)
pp.381-383.

[9] Beisler, D., Gross, M.: Interactive Simulation of Surgical Cuts. Proceedings of Pacific Graphics,
IEEE Computer Society Press, (2000) pp. 116-125.

[10] Neumann. P.: Near Real-Time Cutting. Siggraph 2000, Sketches and Applications. New Orleans,
La. (2000).

[11] Ganovelli, F., Cignoni, P., Montani, C., Scopigno, R.: A Multiresolution Model for Soft Objects
Supporting Interactive Cuts and Lacerations. Proceedings of the 21st European Conference on
Computer Graphics. Blackwell, Cambridge (2000) pp. 271-282

[12] Mor, A., Kanade, T.: Modifying Soft Tissue Models: Progressive Cutting With Minimal New
Element Creation. In: Niessen, W.J. et. al. (eds.) MICCAI 2000, LNCS 1935, Springer, Berlin
Heidelberg, (2000) pp. 598-607.

[13] Schutyser, F., Van Cleyenbreugel, J., Nadjmi, N., Schoenaers, J., Suetens, P.: 3D Image-Based
Planning for Unilateral Mandibular Distraction. In. Heinz. U., et. al. (eds.) Computer Assisted
Radiology and Surgery, Elsevier, Amsterdam (2000) pp.899-904.

[14] Bruyns, C., Senger. S.: Interactive Cutting of 3D Surface Meshes. Computer and Graphics, 25
(2001) 635-642.

[15] Nienhuys, H-W., van der Stappen, A.F.: A Surgery Simulation Supporting Cuts and Finite
Element Deformation, In: Niessen, W.J., et. al. (eds.) MICCAI 2001, LNCS 2208, Springer,
Berlin Heidelberg, (2001) pp. 145-152.

[16] Meier, U., Monserrat, C., Parr, N-C., Garcia, F.J., Gil, J.A.: Real-Time Simulation of Minimally-
Invasive Surgery with Cutting Based in Boundary Element Methods. In: Niessen, W.J., et. al.
(eds.) MICCAI 2001, LNCS 2208, Springer, Berlin Heidelberg, (2001) pp. 1263-1264.

[17] Serby, D., Harders, M., Szekely, G.: A New Approach to Cutting into Finite Element Models. In:
Niessen, W.J., et. al. (eds.) MICCAI 2001, LNCS 2208, Springer, Berlin Heidelberg, (2001) pp.
425-433.

[18] Montgomery, K., Bruyns, C., Brown, J., Sorkin, S., Mazzella, F., Thonier, G., Tellier, A.,
Lerman, B., Menon, A.: Spring: A General Framework for Collaborative, Real-time Surgical
Simulation, In: Westwood, J., et. al. (eds.): Medicine Meets Virtual Reality, IOS Press,
Amsterdam, (2002).

[19] Bruyns, C., Senger, S., Wildermuth, S., Montgomery, K., Boyle, R.: Real-time Interactions Using
Virtual Tools. In: Niessen, W.J., et .al. (eds.) MICCAI 2001, LNCS 2208, Springer, Berlin
Heidelberg, (2001) pp. 1349-1351.

[20] Boyse, J.W.: Interference Collision Detection Among Solids and Surfaces. Communications of
the ACM 22 (1979) 3-9.

[21] Sorkin, S.: Distance Computing Between Deformable Objects. Honors Thesis, Computer Science
Department, Stanford University, (2000).

[22] Bruyns, C., Montgomery, K.: Generalized Interactions Using Virtual Tools within the Spring
Framework: Probing, Piercing, Cauterizing and Ablating, In: Westwood, J., et. al. (eds.):
Medicine Meets Virtual Reality, IOS Press, Amsterdam, (2002).

[23] Mazzella, F.: Auto Acquisition of Elastic Properties for Surgical Simulation,
http://biocomp.stanford.edu/papers/

[24] Bruyns, C., Montgomery, K., Wildermuth, S.,: A Virtual Environment for Simulated Rat
Dissection. In: Westwood, J., et. al. (eds.) Medicine Meets Virtual Reality, IOS Press, Amsterdam
(2001) pp. 75-81.

[25] Wildermuth, S., Bruyns, C., Montgomery, K., Marincek, B., Virtual Colon Polyp Extraction
(Simulation and Preoperative Planning), In: Niessen, W.J., et .al. (eds.) MICCAI 2001, LNCS
2208, Springer, Berlin Heidelberg, (2001) pp. 1347-1348.

[26] Montgomery, K.; Heinrichs, L., Bruyns, C., Wildermuth, S., Hasser, C., Ozenne, S., Bailey, D.,:
Surgical Simulator for Operative Hysteroscopy and Endometrial Ablation, In: Lemke, H., et. al.
(eds.) Computer-Aided Radiology and Surgery, Elsevier, Amsterdam (2001) pp. 79-84.

